Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A comparative study of multifractal detrended fluctuation analysis and multifractal detrended moving average algorithm to estimate the multifractal spectrum

Xi Cai-Ping Zhang Shu-Ning Xiong Gang Zhao Hui-Chang

Citation:

A comparative study of multifractal detrended fluctuation analysis and multifractal detrended moving average algorithm to estimate the multifractal spectrum

Xi Cai-Ping, Zhang Shu-Ning, Xiong Gang, Zhao Hui-Chang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Multifractal detrended fluctuation analysis (MFDFA) and multifractal detrended moving average (MFDMA) algorithm have been established as two important methods to estimate the multifractal spectrum of the one-dimensional random fractal signals. They have been generalized to deal with two-dimensional and higher-dimensional fractal signals. This paper gives a brief introduction of the two algorithms, and a detail description of the numerical experiments on the one-dimensional time series by using the two methods. By applying the two methods to the series generated from the binomial multiplicative cascades (BMC), we systematically carry out comparative analysis to get the advantages, disadvantages and the applicability of the two algorithms, for the first time so far as we know, from six aspects: the similarities and differences of the algorithm models, the statistical accuracy, the sensitivities of the sample size, the selection of scaling range, the choice of the q-orders, and the calculation amount. For one class of signals, the larger the sample size, the more accurate the estimated multifractal spectrum. Selection of appropriate scaling range affects the statistical accuracy in comparison of the two methods for almost all examples. The presence of scale invariance should be checked by first running the two methods over a large scaling range (e.g., from 10 to (N+1)/11 in this paper) and then plot log10 (Fq (scale)) against log10 (scale). In the MFDFA-m (m is the polynomial order, and in this paper m=1) method, the scaling range can be selected from {m + 2, 10} to N/10, N is the sample size of the time series. In the MFDMA algorithm, the scaling range should be from 10 to (N+1)/11. It is favorable to have an equal spacing between scales and the number of the scales should be larger than 10 and usually be selected from 20 to 40. The q-orders should consist of both positive and negative q's. When |q| = 5, the calculated results will not be sensitive with the increase of Δq from 0.05 to 1. If Δq = 0.1, the calculation error will be relatively small when 0 q|≤ 10. With the increase of |q|, the width of the multifractal spectrum will obviously become wider when 0 q|≤10 and the change will be smaller when |q|≥20. If |q| continues to increase, the local fluctuations will approach zero when the scale is small. The critical steps exist in the calculation of local trends for the MFDFA-m and the running moving average for the MFDMA. If the sample size N is fixed and the scale is relatively small, the runtime of the critical steps of MFDFA-1 will be longer than that of MFDMA. When the scale increases from 4 to N/4, it will be shorter than that of MFDMA. Results provide a valuable reference on how to choose the algorithm between MFDFA and MFDMA, and how to make the schemes of the parameter setting of the two algorithms when dealing with specific signals in practical applications.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61301216, 61171168).
    [1]

    Serrano E, Figliola A 2009 Physica A 388 2793

    [2]

    Ge E J, Leung Y 2013 J. Geogr. Syst. 15 115

    [3]

    Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E, Bunde A, Havlin S, Stanley H E 2002 Physica A 316 87

    [4]

    Kantelhardt J W 2008 arXiv:0804.0747v1[physics. data-an]

    [5]

    Espen A F, Ihlen 2012 Front. Physiol. 3 141

    [6]

    Espen A F, Ihlen 2013 Behav. Res. Methods 45 928

    [7]

    Chen Z, Ivanov P C, Hu K, Stanley H E 2002 Phys. Rev. E 65 041107

    [8]

    Rybski D, Bunde A, Havlin S, Kantelhardt J W, Koscielny-Bunde E 2011 In Extremis (Berlin Heidelberg: Springer-Verlag) pp216-248

    [9]

    Zhou Y, Leung Y, Yu Z G 2011 Chin. Phys. B 20 090507

    [10]

    Bashan A, Bartsch R, Kantelhardt J W, Havlin S 2008 Physica A 387 5080

    [11]

    Vandewalle N, Ausloos M 1998 Phys. Rev. E 58 6832

    [12]

    Gu G F, Zhou W X 2010 Phys. Rev. E 82 011136

    [13]

    Arianos S, Carbone A 2007 Physica A 382 9

    [14]

    Shao Y H, Gu G F, Jiang Z Q, Zhou W X, Sornette D 2012 Sci. Rep. 2 835

    [15]

    Gu G F, Zhou W X 2006 Phys. Rev. E 74 061104

    [16]

    Xiong G, Zhang S N, Zhao H C 2014 Acta Phys. Sin. 63 150503 (in Chinese) [熊刚, 张淑宁, 赵惠昌 2014 63 150503]

    [17]

    Xiong G, Zhang S N, Zhao H C 2014 Chaos Soliton. Fract. 65 97

    [18]

    Xu L M, Ivanov P C, Hu K, Chen Z, Carbone A, Stanley H E 2005 Phys. Rev. E 71 051101

    [19]

    Alessio E, Carbone A, Castelli G, Frappietro V 2002 Eur. Phys. J. B 27 197

    [20]

    Carbone A, Castelli G, Stanley H E 2004 Physica A 344 267

    [21]

    Jiang Z Q, Zhou W X 2011 Phys. Rev. E 84 016106

    [22]

    Guan J, Liu N B, Huang Y 2011 Radar Target Detection and Application of Fractal Theory (Beijing: Publishing House Of Electronics Industry) p68 (in Chinese) [关键, 刘宁波, 黄勇 2011 雷达目标检测的分形理论及应用(北京:电子工业出版社) 第68页]

    [23]

    Zhang B 2013 Ph. D. Dissertation (Xian: Xidian University) (in Chinese) [张波 2013 博士学位论文(西安: 西安电子科技大学)]

  • [1]

    Serrano E, Figliola A 2009 Physica A 388 2793

    [2]

    Ge E J, Leung Y 2013 J. Geogr. Syst. 15 115

    [3]

    Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E, Bunde A, Havlin S, Stanley H E 2002 Physica A 316 87

    [4]

    Kantelhardt J W 2008 arXiv:0804.0747v1[physics. data-an]

    [5]

    Espen A F, Ihlen 2012 Front. Physiol. 3 141

    [6]

    Espen A F, Ihlen 2013 Behav. Res. Methods 45 928

    [7]

    Chen Z, Ivanov P C, Hu K, Stanley H E 2002 Phys. Rev. E 65 041107

    [8]

    Rybski D, Bunde A, Havlin S, Kantelhardt J W, Koscielny-Bunde E 2011 In Extremis (Berlin Heidelberg: Springer-Verlag) pp216-248

    [9]

    Zhou Y, Leung Y, Yu Z G 2011 Chin. Phys. B 20 090507

    [10]

    Bashan A, Bartsch R, Kantelhardt J W, Havlin S 2008 Physica A 387 5080

    [11]

    Vandewalle N, Ausloos M 1998 Phys. Rev. E 58 6832

    [12]

    Gu G F, Zhou W X 2010 Phys. Rev. E 82 011136

    [13]

    Arianos S, Carbone A 2007 Physica A 382 9

    [14]

    Shao Y H, Gu G F, Jiang Z Q, Zhou W X, Sornette D 2012 Sci. Rep. 2 835

    [15]

    Gu G F, Zhou W X 2006 Phys. Rev. E 74 061104

    [16]

    Xiong G, Zhang S N, Zhao H C 2014 Acta Phys. Sin. 63 150503 (in Chinese) [熊刚, 张淑宁, 赵惠昌 2014 63 150503]

    [17]

    Xiong G, Zhang S N, Zhao H C 2014 Chaos Soliton. Fract. 65 97

    [18]

    Xu L M, Ivanov P C, Hu K, Chen Z, Carbone A, Stanley H E 2005 Phys. Rev. E 71 051101

    [19]

    Alessio E, Carbone A, Castelli G, Frappietro V 2002 Eur. Phys. J. B 27 197

    [20]

    Carbone A, Castelli G, Stanley H E 2004 Physica A 344 267

    [21]

    Jiang Z Q, Zhou W X 2011 Phys. Rev. E 84 016106

    [22]

    Guan J, Liu N B, Huang Y 2011 Radar Target Detection and Application of Fractal Theory (Beijing: Publishing House Of Electronics Industry) p68 (in Chinese) [关键, 刘宁波, 黄勇 2011 雷达目标检测的分形理论及应用(北京:电子工业出版社) 第68页]

    [23]

    Zhang B 2013 Ph. D. Dissertation (Xian: Xidian University) (in Chinese) [张波 2013 博士学位论文(西安: 西安电子科技大学)]

  • [1] Zhu Bing-Hui, Yang Ai-Xiang, Niu Shu-Tong, Chen Xi-Meng, Zhou Wang Shao, Jian-Xiong. Simulation analyses of 100-keV as well as low and high energy protons through insulating nanocapillary. Acta Physica Sinica, 2018, 67(1): 013401. doi: 10.7498/aps.67.20171701
    [2] Xu Ling-Feng, Li Chuan-Dong, Chen Ling. Contrastive analysis of neuron model. Acta Physica Sinica, 2016, 65(24): 240701. doi: 10.7498/aps.65.240701
    [3] Zhou Jie, Yang Shuang-Bo. Multifractal behaviors of the wave function for the periodically kicked free top. Acta Physica Sinica, 2015, 64(20): 200505. doi: 10.7498/aps.64.200505
    [4] Su Tao, Feng Guo-Lin. The characteristics of the summer atmospheric water cycle over China and comparison of ERA-Interim and MERRA reanalysis. Acta Physica Sinica, 2014, 63(24): 249201. doi: 10.7498/aps.63.249201
    [5] Xiong Jie, Chen Shao-Kuan, Wei Wei, Liu Shuang, Guan Wei. Multi-fractal detrended fluctuation analysis algorithm based identification method of scale-less range for multi-fractal charateristics of traffic flow. Acta Physica Sinica, 2014, 63(20): 200504. doi: 10.7498/aps.63.200504
    [6] Yang Xiao-Niu, Li Jian-Dong, Tang Zhi-Ling. Study on fractal features of modulated radio signal. Acta Physica Sinica, 2011, 60(5): 056401. doi: 10.7498/aps.60.056401
    [7] Yuan Mei-Juan, Zheng Wei, Yu Bo-Ming, Yuan Jie. Fractal analysis of Casson fluid flow in porous media. Acta Physica Sinica, 2011, 60(2): 024703. doi: 10.7498/aps.60.024703
    [8] Yang Juan, Bian Bao-Min, Yan Zhen-Gang, Wang Chun-Yong, Li Zhen-Hua. Fractal characteristics of characteristic parameter statistical distributions of typical random signals. Acta Physica Sinica, 2011, 60(10): 100506. doi: 10.7498/aps.60.100506
    [9] Yang Juan, Bian Bao-Min, Peng Gang, Li Zhen-Hua. The fractal character of two-parameter pulse model for random signal. Acta Physica Sinica, 2011, 60(1): 010508. doi: 10.7498/aps.60.010508
    [10] Yang Juan, Lai Xiao-Ming, Peng Gang, Bian Bao-Min, Lu Jian. The fractal measurement of aerosol equivalent volume based on counting signal. Acta Physica Sinica, 2009, 58(5): 3008-3013. doi: 10.7498/aps.58.3008
    [11] Luo Shi-Hua, Zeng Jiu-Sun. Multi-fractal identification of the fluctuation of silicon content in blast furnace hot metal based on multi-resolution analysis. Acta Physica Sinica, 2009, 58(1): 150-157. doi: 10.7498/aps.58.150
    [12] Li Tong, Shang Peng-Jian. A multifractal approach to palmprint recognition. Acta Physica Sinica, 2007, 56(8): 4393-4400. doi: 10.7498/aps.56.4393
    [13] Luo Shi-Hua, Liu Xiang-Guan. The fractal structure of silicon content in molten iron in blast furnace. Acta Physica Sinica, 2006, 55(7): 3343-3348. doi: 10.7498/aps.55.3343
    [14] Gou Xue-Qiang, Zhang Yi-Jun, Dong Wan-Sheng. Wavelet-based multifractal analysis of ground electric field before occurrence of strong discharge in thunderstorm. Acta Physica Sinica, 2006, 55(2): 957-961. doi: 10.7498/aps.55.957
    [15] Shao Yuan-Zhi, Zhong Wei-Rong, Ren Shan, Cai Zhi-Su, Gong Lei. Multifractal spectra of growing clusters in nanoscale characterized by small angle x-ray scattering. Acta Physica Sinica, 2005, 54(7): 3290-3296. doi: 10.7498/aps.54.3290
    [16] Yu Hui-Sheng, Sun Xia, Luo Shou-Fu, Wang Yong-Rui, Wu Zi-Qin. . Acta Physica Sinica, 2002, 51(5): 999-1003. doi: 10.7498/aps.51.999
    [17] Deng Yong, Shi Wen-Kang, Liu Qi. . Acta Physica Sinica, 2002, 51(4): 759-762. doi: 10.7498/aps.51.759
    [18] SUN XIA, WU ZI-QIN. FRACTAL AND MULTIFRACTAL DESCRIPTION OF SURFACE TOPOGRAPHY. Acta Physica Sinica, 2001, 50(11): 2126-2131. doi: 10.7498/aps.50.2126
    [19] SUN XIA, XIONG GANG, FU ZHU-XI, WU ZI-QIN. MULTIFRACTAL SPECTRA OF ATOMIC FORCE MICROSCOPE IMAGES OF ZnO FILM. Acta Physica Sinica, 2000, 49(5): 854-862. doi: 10.7498/aps.49.854
    [20] WANG XIAO-PING, ZHOU XIANG, HE JUN, LIAO LIANG-SHENG, WU ZI-QIN. MULTIFRACTAL OF THE FAILURE PEROCESS OF ELECTROLUMINSCENCE OF ORGANIC THIN FILM. Acta Physica Sinica, 1999, 48(10): 1911-1916. doi: 10.7498/aps.48.1911
Metrics
  • Abstract views:  8062
  • PDF Downloads:  456
  • Cited By: 0
Publishing process
  • Received Date:  26 November 2014
  • Accepted Date:  03 February 2015
  • Published Online:  05 July 2015

/

返回文章
返回
Baidu
map