Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism for the coexistence phenomenon of random phase suppressing chaos and stochastic resonance in Duffing system

Li Shuang Li Qian Li Jiao-Rui

Citation:

Mechanism for the coexistence phenomenon of random phase suppressing chaos and stochastic resonance in Duffing system

Li Shuang, Li Qian, Li Jiao-Rui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Noise, which is ubiquitous in real systems, has been the subject of various and extensive studies in nonlinear dynamical systems. In general, noise is regarded as an obstacle. However, counterintuitive effects of noise on nonlinear systems have recently been recognized, such as noise suppressing chaos and stochastic resonance. Although the noise suppressing chaos and stochastic resonance have been studied extensively, little is reported about their relation under coexistent condition. In this paper by using Lyapunov exponent, Poincaré section, time history and power spectrum, the effect of random phase on chaotic Duffing system is investigated. It is found that as the intensity of random phase increases the chaotic behavior is suppressed and the power response amplitude passes through a maximum at an optimal noise intensity, which implies that the coexistence phenomenon of noise suppressing chaos and stochastic resonance occurs. Furthermore, an interesting phenomenon is that the optimal noise intensity at the SR curve is just the critical point from chaos to non-chaos. The average effect analysis of harmonic excitation with random phase and the system’s bifurcation diagram shows that the increasing of random phase intensity is in general equivalent to the decreasing of harmonic excitation amplitude of the original deterministic system. So there exists the critical noise intensity where the chaotic motion of large range disintegrates and non-chaotic motion of small scope appears, which implies the enhancing of the regularity of system motion and the increasing of the response amplitude at the input signal frequency. After that, the excess noise will not change the stability of the system any more, but will increase the degree of random fluctuation near the stable motion, resulting in the decreasing of the response amplitude. Therefore, the formation of stochastic resonance is due to the dynamical mechanism of random phase suppressing chaos.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11202155), the Education Department Foundation of Shaanxi, China (Grant No. 2013JK0595), and the Natural Science Foundation of Shaanxi, China (Grant No. 2014JQ9372).
    [1]

    Matsumoto K, Tsuda I 1983 J. Stat. Phys. 31 87

    [2]

    Ramesh M, Narayanan S 1999 Chaos, Soliton. Fract. 10 1473

    [3]

    Yang X L, Xu W 2009 Acta Phys. Sin. 58 3722 (in Chinese) [杨晓丽, 徐伟 2009 58 3722]

    [4]

    Wei J G, Leng G 1997 Appl. Math. Comput. 88 77

    [5]

    Yoshimoto M, Shirahama H, Kurosawa S 2008 J. Chem. Phys. 129 014508

    [6]

    Lei Y M, Xu W, Xu Y, Fang T 2004 Chaos, Soliton. Fract. 21 1175

    [7]

    Xu Y, Mahmoud G M, Xu W, Lei Y M 2005 Chaos, Soliton. Fract. 23 265

    [8]

    Li S, Xu W, Li R H 2006 Acta Phys. Sin. 55 1049 (in Chinese) [李爽, 徐伟, 李瑞红 2006 55 1049]

    [9]

    Gu Y F, Xiao J 2014 Acta Phys. Sin. 63 160506 (in Chinese) [古元凤, 肖剑 2014 63 160506]

    [10]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223

    [11]

    Zhang G J, Xu J X 2005 Chaos, Soliton. Fract. 27 1056

    [12]

    Jngling T, Benner H, Stemler T, Just W 2008 Phys. Rev. E 77 036216

    [13]

    Arathi S, Rajasekar S 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 4049

    [14]

    Lu K, Wang F Z, Zhang G L, Fu W H 2013 Chin. Phys. B 22 120202

    [15]

    Zhang L Y, Jin G X, Cao L, Wang Z Y 2012 Chin. Phys. B 21 120502

    [16]

    Wang K K, Liu X B 2014 Chin. Phys. B 23 010502

    [17]

    Yamazaki H, Yamada T, Kai S 1998 Phys. Rev. Lett. 81 4112

    [18]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [19]

    Qian M, Zhang X J 2001 Phys. Rev. E 65 011101

    [20]

    Zhang X J 2004 J. Phys. A: Math. Gen. 37 7473

  • [1]

    Matsumoto K, Tsuda I 1983 J. Stat. Phys. 31 87

    [2]

    Ramesh M, Narayanan S 1999 Chaos, Soliton. Fract. 10 1473

    [3]

    Yang X L, Xu W 2009 Acta Phys. Sin. 58 3722 (in Chinese) [杨晓丽, 徐伟 2009 58 3722]

    [4]

    Wei J G, Leng G 1997 Appl. Math. Comput. 88 77

    [5]

    Yoshimoto M, Shirahama H, Kurosawa S 2008 J. Chem. Phys. 129 014508

    [6]

    Lei Y M, Xu W, Xu Y, Fang T 2004 Chaos, Soliton. Fract. 21 1175

    [7]

    Xu Y, Mahmoud G M, Xu W, Lei Y M 2005 Chaos, Soliton. Fract. 23 265

    [8]

    Li S, Xu W, Li R H 2006 Acta Phys. Sin. 55 1049 (in Chinese) [李爽, 徐伟, 李瑞红 2006 55 1049]

    [9]

    Gu Y F, Xiao J 2014 Acta Phys. Sin. 63 160506 (in Chinese) [古元凤, 肖剑 2014 63 160506]

    [10]

    Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223

    [11]

    Zhang G J, Xu J X 2005 Chaos, Soliton. Fract. 27 1056

    [12]

    Jngling T, Benner H, Stemler T, Just W 2008 Phys. Rev. E 77 036216

    [13]

    Arathi S, Rajasekar S 2014 Commun. Nonlinear Sci. Numer. Simulat. 19 4049

    [14]

    Lu K, Wang F Z, Zhang G L, Fu W H 2013 Chin. Phys. B 22 120202

    [15]

    Zhang L Y, Jin G X, Cao L, Wang Z Y 2012 Chin. Phys. B 21 120502

    [16]

    Wang K K, Liu X B 2014 Chin. Phys. B 23 010502

    [17]

    Yamazaki H, Yamada T, Kai S 1998 Phys. Rev. Lett. 81 4112

    [18]

    Wolf A, Swift J B, Swinney H L, Vastano J A 1985 Physica D 16 285

    [19]

    Qian M, Zhang X J 2001 Phys. Rev. E 65 011101

    [20]

    Zhang X J 2004 J. Phys. A: Math. Gen. 37 7473

Metrics
  • Abstract views:  7394
  • PDF Downloads:  447
  • Cited By: 0
Publishing process
  • Received Date:  13 July 2014
  • Accepted Date:  24 December 2014
  • Published Online:  05 May 2015

/

返回文章
返回
Baidu
map