-
To develop deuterium-tritium (DT) cryogenic targets that meet the inertial confinement fusion (ICF) experiment requirements, the DT crystal seeding growth process needs to be controlled to obtain single crystalline DT-ice, thus reducing the crystal defects formed during crystal growth and improving ice-layering. In this paper, the close-packed hexagonal (hcp) single crystal growth mode has been established through kinetic theory of crystal growth morphology. Experimentally, the target chamber temperature is controlled to within ± 3 mK and the deuterium (D2) crystal growth process can be observed by backlit shadowgraphy. Results show that slow cooling can reduce the crystal defects significantly at the 20–100 Pa conducting helium pressure. When the cooling rate reaches 2 mK/min, two single crystal growth modes are observed with good reproducibility. Experimental results conform with the proposed hcp single crystal growth model. Compared with the results from Lawrence Livermore National Laboratory (LLNL), the methods of D2/DT single crystal growth in the cryogenic target are proposed.
-
Keywords:
- inertial confinement fusion(ICF) /
- backlit shadowgraphy /
- cooling rate /
- single crystal growth
[1] Schultzu K R, Kaae J L 1999 Fusion Engineering and Design. 68 441
[2] Jia G, Xiong J, Dong J Q, Xie Z Y, Wu J 2012 Chin. Phys. B 21 095202
[3] Harding D R, Meyerhofer D D 2006 Appl. Phys. Lett. 13 056316
[4] Kozioziemski B J, Kucheyev S O 2009 Journal of Applied Physics. 105 093512
[5] Harding D R, Wittman M D, Edgell D H 2012 Fusion Science and Technology. 28 95
[6] Chernov A A, Kozioziemski B J 2009 Appl. Phys. Lett. 94 064105
[7] Wang K, Lin W, Liu Y Q, Xie D, Li J, Ma K Q, Tang Y J, Lei H L 2012 Acta Phys. Sin. 61 195204 (in Chinese) [王凯, 林伟, 刘元琼, 谢端, 黎军, 马坤全, 唐永建, 雷海乐 2012 61 195204]
[8] Jie W Q 2010 Principle and Technology of Crystal Growth (Beijing: Science Press) pp97-102 (in Chinese) [介万奇 2010 晶体生长原理及技术 (北京:科学出版社) 第78–102页]
[9] Wang P, Li G C 2013 Crystallography Teaching Material (Beijing: National Defense Industry Press) pp18-20 (in Chinese) [王萍, 李国昌 2013 结晶学教程(北京:国防工业出版社) 第18–20页]
[10] Souers P C 1986 Hydrogen Properties for Fusion Energy (University of California, Berkeley) p74 (in USA)
-
[1] Schultzu K R, Kaae J L 1999 Fusion Engineering and Design. 68 441
[2] Jia G, Xiong J, Dong J Q, Xie Z Y, Wu J 2012 Chin. Phys. B 21 095202
[3] Harding D R, Meyerhofer D D 2006 Appl. Phys. Lett. 13 056316
[4] Kozioziemski B J, Kucheyev S O 2009 Journal of Applied Physics. 105 093512
[5] Harding D R, Wittman M D, Edgell D H 2012 Fusion Science and Technology. 28 95
[6] Chernov A A, Kozioziemski B J 2009 Appl. Phys. Lett. 94 064105
[7] Wang K, Lin W, Liu Y Q, Xie D, Li J, Ma K Q, Tang Y J, Lei H L 2012 Acta Phys. Sin. 61 195204 (in Chinese) [王凯, 林伟, 刘元琼, 谢端, 黎军, 马坤全, 唐永建, 雷海乐 2012 61 195204]
[8] Jie W Q 2010 Principle and Technology of Crystal Growth (Beijing: Science Press) pp97-102 (in Chinese) [介万奇 2010 晶体生长原理及技术 (北京:科学出版社) 第78–102页]
[9] Wang P, Li G C 2013 Crystallography Teaching Material (Beijing: National Defense Industry Press) pp18-20 (in Chinese) [王萍, 李国昌 2013 结晶学教程(北京:国防工业出版社) 第18–20页]
[10] Souers P C 1986 Hydrogen Properties for Fusion Energy (University of California, Berkeley) p74 (in USA)
Catalog
Metrics
- Abstract views: 6118
- PDF Downloads: 367
- Cited By: 0