-
In order to achieve the effective detection of the line spectrum of ship-radiated noise in low signal-to-noise ratio (SNR), in this paper we improve the conventional intermittent chaotic oscillator series method, and propose a signal detection method based on the adaptive step intermittent chaotic oscillator. Through setting a sequence of the calculating steps which can cover the frequency band of the signal to be measured, the method can use just one Duffing oscillator to accomplish the searching detection for the weak signal with unknown frequency. In order to further improve the weak signal detection performance, we analyze the Holmes Duffing equation’s sensitivity for weak signal detection at different internal frequencies. Through theoretical analysis and simulation study, it is found that the Duffing oscillator has the best weak signal detection performance when its internal frequency is 0.4 rad/s. According to this result we optimize the Duffing oscillator. The simulation result shows that the signal detection performance of the improved Duffing oscillator increases 14 dB. In the end, we use the proposed method to detect a set of actual data which contain the ship radiated line spectrum, the result shows that this method could achieve effective detection of the line spectrum in low SNR.
-
Keywords:
- weak line spectrum detection /
- unknown frequency detection /
- new intermittent chaotic oscillator /
- the frequency with best detecting performance
[1] Zheng Z N, Xiang D W 1993 Passive Detecting and parameter Estimating of Acoustic Signal (Beijing: Science Press) pp121–127 (in Chinese) [郑兆宁, 向大威 1993 水声信号被动检测与参数估计理论 (北京: 科学出版社) 第121–127页]
[2] Chen J J, Lu J R 2004 Tech. Acoust. 23 57 (in Chinese) [陈敬军, 陆佶人 2004 声学技术 23 57]
[3] Wang G Y, He S L 2003 IEEE Trans. Circ. Syst. 50 945
[4] Li Y, Yang B J, Shi Y W 2003 Acta Phys. Sin. 52 526 (in Chinese) [李月, 杨宝俊, 石要武 2003 52 526]
[5] Haykin S, Li X B 1995 Proceedings of the IEEE 93 237
[6] Abarbanel H D I, Richard K 1995 Navy J. Underwater Acoust. 44 313
[7] Jiang R J, Zhu S J 2001 J. Nonlinear Dyn. 8 15 (in Chinese) [姜荣俊, 朱石坚 2001 非线性动力学报 8 15]
[8] Zheng S Y, Guo H X, Li Y A 2007 Chin. Sci. Bull. 52 258 (in Chinese) [郑思仪, 郭红霞, 李亚安 2007 科学通报 52 258]
[9] Shi M, Xu X 2012 Ship and Ocean Engineering 41 161 (in Chinese) [石敏, 徐袭 2012 船海工程 41 161]
[10] Zhou S, Lin C S 2009 Wuhan Univ. Technol. 33 161 (in Chinese) [周胜, 林春生 2009 武汉理工大学学报 33 161]
[11] Wang H P, Wang L M, Wang C L 2010 Ship Electron. Engineer. 30 169 (in Chinese) [王红萍, 王黎明, 万程亮 2010 舰船电子工程 30 169]
[12] Zhang Y F, Zheng J, Wang L M 2012 Tech. Acoust. 31 170 (in Chinese) [张永峰, 郑健, 王黎明 2012 声学技术 31 170]
[13] Nie C Y 2009 Chaotic System and Weak Signal Detection (Beijing: Tsinghua University Press) pp55–62 (in Chinese) [聂春燕 2009 混沌系统与弱信号检测 (北京: 清华大学出版社) 第55–62页]
[14] Li Y, Yang B J, Shi Y W 2003 Acta Phys. Sin. 52 526 (in Chinese) [李月, 杨宝俊, 石要武 2003 52 526]
[15] Xu W, Ma S J, Xie W X 2008 Chin. Phys. B 17 857
[16] Nie C Y, Shi Y W 2001 Chin. J. Sci. Instrum. 22 32 (in Chinese) [聂春燕, 石要武 2001 仪器仪表学报 22 32]
[17] Wang G Y, Chen D J 1999 Trans. Industr. Electron. 46 440
[18] Lai Z H, Leng Y G 2012 Acta Phys. Sin. 61 050503 (in Chinese) [赖智慧, 冷永刚 2012 61 050503]
[19] Zhou J, Lu J A, Lu J H 2006 IEEE Trans. Automatic Control 51 652
[20] Mohammad P A 2011 Chin. Phys. B 20 090505
[21] Li Q Y, Wang N C, Yi D Y 2008 Numerical Analysis (Beijing: Tsinghua Uniwersity Press) pp286–291 (in Chinese) [李庆扬, 王能超, 易大义 2008 数值分析 (北京: 清华大学出版社) 第286–291页]
[22] Chu Y Q, Li C Y 1996 Analysis of Nonlinear Vibrations (Beijing: Beijing Institute of Technology Press) pp258–261 (in Chinese) [褚亦清, 李翠英 2012 非线性振动分析 (北京: 北京理工大学出版社) 第 258–261页]
[23] Jordan D W, Smith P 1987 Nonlinear Ordinary Differential Equations (Oxford Univ. Press) pp523–528
[24] Yi W S, Shi Y W, Nie C Y 2006 Acta Metrologica Sin. 27 156 (in Chinese) [衣文索, 石要武, 聂春燕 2006 计量学报 27 156]
[25] Li Y, Lu P 2006 Acta Phys. Sin. 55 1672 (in Chinese) [李月, 路鹏 2006 55 1672]
[26] Xu W, Ma S J, Xie W X 2008 Chin. Phys. B 17 857
-
[1] Zheng Z N, Xiang D W 1993 Passive Detecting and parameter Estimating of Acoustic Signal (Beijing: Science Press) pp121–127 (in Chinese) [郑兆宁, 向大威 1993 水声信号被动检测与参数估计理论 (北京: 科学出版社) 第121–127页]
[2] Chen J J, Lu J R 2004 Tech. Acoust. 23 57 (in Chinese) [陈敬军, 陆佶人 2004 声学技术 23 57]
[3] Wang G Y, He S L 2003 IEEE Trans. Circ. Syst. 50 945
[4] Li Y, Yang B J, Shi Y W 2003 Acta Phys. Sin. 52 526 (in Chinese) [李月, 杨宝俊, 石要武 2003 52 526]
[5] Haykin S, Li X B 1995 Proceedings of the IEEE 93 237
[6] Abarbanel H D I, Richard K 1995 Navy J. Underwater Acoust. 44 313
[7] Jiang R J, Zhu S J 2001 J. Nonlinear Dyn. 8 15 (in Chinese) [姜荣俊, 朱石坚 2001 非线性动力学报 8 15]
[8] Zheng S Y, Guo H X, Li Y A 2007 Chin. Sci. Bull. 52 258 (in Chinese) [郑思仪, 郭红霞, 李亚安 2007 科学通报 52 258]
[9] Shi M, Xu X 2012 Ship and Ocean Engineering 41 161 (in Chinese) [石敏, 徐袭 2012 船海工程 41 161]
[10] Zhou S, Lin C S 2009 Wuhan Univ. Technol. 33 161 (in Chinese) [周胜, 林春生 2009 武汉理工大学学报 33 161]
[11] Wang H P, Wang L M, Wang C L 2010 Ship Electron. Engineer. 30 169 (in Chinese) [王红萍, 王黎明, 万程亮 2010 舰船电子工程 30 169]
[12] Zhang Y F, Zheng J, Wang L M 2012 Tech. Acoust. 31 170 (in Chinese) [张永峰, 郑健, 王黎明 2012 声学技术 31 170]
[13] Nie C Y 2009 Chaotic System and Weak Signal Detection (Beijing: Tsinghua University Press) pp55–62 (in Chinese) [聂春燕 2009 混沌系统与弱信号检测 (北京: 清华大学出版社) 第55–62页]
[14] Li Y, Yang B J, Shi Y W 2003 Acta Phys. Sin. 52 526 (in Chinese) [李月, 杨宝俊, 石要武 2003 52 526]
[15] Xu W, Ma S J, Xie W X 2008 Chin. Phys. B 17 857
[16] Nie C Y, Shi Y W 2001 Chin. J. Sci. Instrum. 22 32 (in Chinese) [聂春燕, 石要武 2001 仪器仪表学报 22 32]
[17] Wang G Y, Chen D J 1999 Trans. Industr. Electron. 46 440
[18] Lai Z H, Leng Y G 2012 Acta Phys. Sin. 61 050503 (in Chinese) [赖智慧, 冷永刚 2012 61 050503]
[19] Zhou J, Lu J A, Lu J H 2006 IEEE Trans. Automatic Control 51 652
[20] Mohammad P A 2011 Chin. Phys. B 20 090505
[21] Li Q Y, Wang N C, Yi D Y 2008 Numerical Analysis (Beijing: Tsinghua Uniwersity Press) pp286–291 (in Chinese) [李庆扬, 王能超, 易大义 2008 数值分析 (北京: 清华大学出版社) 第286–291页]
[22] Chu Y Q, Li C Y 1996 Analysis of Nonlinear Vibrations (Beijing: Beijing Institute of Technology Press) pp258–261 (in Chinese) [褚亦清, 李翠英 2012 非线性振动分析 (北京: 北京理工大学出版社) 第 258–261页]
[23] Jordan D W, Smith P 1987 Nonlinear Ordinary Differential Equations (Oxford Univ. Press) pp523–528
[24] Yi W S, Shi Y W, Nie C Y 2006 Acta Metrologica Sin. 27 156 (in Chinese) [衣文索, 石要武, 聂春燕 2006 计量学报 27 156]
[25] Li Y, Lu P 2006 Acta Phys. Sin. 55 1672 (in Chinese) [李月, 路鹏 2006 55 1672]
[26] Xu W, Ma S J, Xie W X 2008 Chin. Phys. B 17 857
Catalog
Metrics
- Abstract views: 6047
- PDF Downloads: 564
- Cited By: 0