-
Using the time-dependent density functional theory and non-adiabatic coupling in molecular dynamics, the reaction dynamics of collisions between energetic proton and hydroxy is studied. The variations in kinetic energy of proton and hydroxy and the motions of electron of hydroxyl and ion before and after collisions are investigated. It is found that when a proton is incident in the direction perpendicular to the molecular axis, it that has lose kinetic energy rebounds, and captures electrons from hydroxy, while the hydroxy that has lost part of electrons gains kinetic energy, and thus translates toward the calculating boundary in the manner of contracting vibration. The larger the kinetic energy of incident proton, the more the number of electrons captured from hydroxy is. Therefore the bond length of hydroxy lengthens, oscillation strengthens, and vibrational frequency decreases. In addition, it is found that the incident direction of proton has a great influence on the dynamic behavior of excitation in a collision process. Considering the case where the proton is incident from different directions, the results show that the larger the kinetic energy of incident proton, the more the lost energy is, and the lost energy is linearly related to the initial kinetic energy of incident proton. For hydroxy, when the incident kinetic energy of proton is less than 25 eV, the kinetic energy gained by the proton is linearly related to the initial kinetic energy, but unrelated to incident direction, while when the initial kinetic energy of incident proton is larger than 25 eV, the increment in kinetic energy of hydroxyl is much larger in the case where the proton is incident along the axis of hydroxyl molecule than in the case where the proton is incident in the direction perpendicular to the axis of the hydroxyl molecule.
-
Keywords:
- time-dependent density functional theory /
- molecular dynamics /
- hydroxy /
- collision
[1] Zhu R B 1987 Radiation Biology (Beijing: Science Press) pp611–623 (in Chinese) [朱壬葆 1987 辐射生物学 (北京: 科学出版社) 第611–623页]
[2] Mathur D 1993 Phys. Rep. 225 193
[3] Luna H, Montenegro E C 2005 Phys. Rev. Lett. 94 043201
[4] Michael B D, O’Neill P 2000 Science 287 1603
[5] Cyriac J, Pradeep T, Kang H, Souda R, Cooks R G 2012 Chem. Rev. 112 5356
[6] Shukla M K, Leszczynski J 2002 J. Phys. Chem. A 106 1011
[7] von Sonntag C 1991 Free-Radical-Induced DNA Damage and Its Repair: A Chemical Perspective (New York: Plenum Press) pp234–257
[8] Murakami M, Kirchner T, Horbatsch M, Ldde H J 2012 Phys. Rev. A 85 052713
[9] Hu Y H, Ye D D, Qi Y Y, Liu X J, Liu L 2012 Acta Phys. Sin. 61 243401 (in Chinese) [胡亚华, 叶丹丹, 祁月盈, 刘晓菊, 刘玲 2012 61 243401]
[10] Errea L F, Illescas C, Méndez L, Rabadán I 2013 Phys. Rev. A 87 032709
[11] Stopera C, Maiti B, Grimes T V, McLaurin P M, Morales J A 2012 J. Chem. Phys. 136 054304
[12] Stopera C, Maiti B, Morales J A 2012 Chem. Phys. Lett. 551 42
[13] Stopera C, Maiti B, Grimes T V, McLaurin P M, Morales J A 2011 J. Chem. Phys. 134 224308
[14] Calvayrac F, Reinhard P G, Suraud E, Ullrich C A 2000 Phys. Rep. 337 493
[15] Fennel T, Meiwes-Broer K H, Tiggesbáumker J, Reinhard P G, Dinh P M, Suraud E 2003 Rev. Mod. Phys. 82 1793
[16] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[17] Legrand C, Suraud E, Reinhard P G 2002 J. Phys. B 35 1115
[18] Goedecker S, Teter M, Hutter J 1996 Phys. Rev. B 54 1703
[19] Johnson R D 2013 NIST Computational Chemistry Comparison and Benchmark Database (Washington: National Institute of Standards and Technology)
[20] Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397
[21] Bilalbegovié G 2008 Eur. Phys. J. D 49 43
[22] Burnus T, Marques M A L, Gross E K U 2005 Phys. Rev. A 71 010501(R)
-
[1] Zhu R B 1987 Radiation Biology (Beijing: Science Press) pp611–623 (in Chinese) [朱壬葆 1987 辐射生物学 (北京: 科学出版社) 第611–623页]
[2] Mathur D 1993 Phys. Rep. 225 193
[3] Luna H, Montenegro E C 2005 Phys. Rev. Lett. 94 043201
[4] Michael B D, O’Neill P 2000 Science 287 1603
[5] Cyriac J, Pradeep T, Kang H, Souda R, Cooks R G 2012 Chem. Rev. 112 5356
[6] Shukla M K, Leszczynski J 2002 J. Phys. Chem. A 106 1011
[7] von Sonntag C 1991 Free-Radical-Induced DNA Damage and Its Repair: A Chemical Perspective (New York: Plenum Press) pp234–257
[8] Murakami M, Kirchner T, Horbatsch M, Ldde H J 2012 Phys. Rev. A 85 052713
[9] Hu Y H, Ye D D, Qi Y Y, Liu X J, Liu L 2012 Acta Phys. Sin. 61 243401 (in Chinese) [胡亚华, 叶丹丹, 祁月盈, 刘晓菊, 刘玲 2012 61 243401]
[10] Errea L F, Illescas C, Méndez L, Rabadán I 2013 Phys. Rev. A 87 032709
[11] Stopera C, Maiti B, Grimes T V, McLaurin P M, Morales J A 2012 J. Chem. Phys. 136 054304
[12] Stopera C, Maiti B, Morales J A 2012 Chem. Phys. Lett. 551 42
[13] Stopera C, Maiti B, Grimes T V, McLaurin P M, Morales J A 2011 J. Chem. Phys. 134 224308
[14] Calvayrac F, Reinhard P G, Suraud E, Ullrich C A 2000 Phys. Rep. 337 493
[15] Fennel T, Meiwes-Broer K H, Tiggesbáumker J, Reinhard P G, Dinh P M, Suraud E 2003 Rev. Mod. Phys. 82 1793
[16] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[17] Legrand C, Suraud E, Reinhard P G 2002 J. Phys. B 35 1115
[18] Goedecker S, Teter M, Hutter J 1996 Phys. Rev. B 54 1703
[19] Johnson R D 2013 NIST Computational Chemistry Comparison and Benchmark Database (Washington: National Institute of Standards and Technology)
[20] Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397
[21] Bilalbegovié G 2008 Eur. Phys. J. D 49 43
[22] Burnus T, Marques M A L, Gross E K U 2005 Phys. Rev. A 71 010501(R)
Catalog
Metrics
- Abstract views: 6618
- PDF Downloads: 372
- Cited By: 0