-
By using the analog variable of the holonomy variable of loop quantum gravity and the corresponding quantization method, the gravity field near the center of the Schwarichild-de Sitter black hole is processed though quantization. The spectrums of 1/r and the curvature invariant are computed near the black hole center and the result that the both spectrums is bounded from above are obtained. Following the above quantization method and by computing the quantum Hamiltonian constraint equation of the gravity field near the classical singularity r=0, the evolution formula of the black hole wave function is obtained and the result that the wave function can evolve though the classical singularity is obtained.
-
Keywords:
- The spacetime singularity resolution of Schwarichild-de Sitter black hole in loop quantum gravity /
- /
[1] [1]Smolin L 2004 arXiv:hep-th/0408048
[2] [2]Ashtekar A, Lewandomski J 2004 Class,Quant. Grav. 21 R53
[3] [3]Thiemann T 2001 arXiv: gr-qc/0110034
[4] [4]Rovelli C, Smolin L 1995 Nucl. Phys. B 442 593
[5] [5]Brunnemann J, Thiemann T 2006 Class.Quant.Grav. 23 1289
[6] [6]Bianchi E 2008 arXiv: gr-qc/0806.4710.
[7] [7]Brunnemann J, Thiemann T 2006 Class.Quant.Grav. 23 1395
[8] [8]Modesto L 2005 arXiv:gr-qc/0504043
[9] [9]Ashtekar A 2008 arXiv:gr-qc:0812.4703
[10] [10]Bojowald M 2001 Phys. Rev. Lett. 86 5227
[11] [11]Viqar H, Oliver W 2004 Phys. Rev. D 69 084016
[12] [12]Modesto L 2004 Phys. Rev. D 70 124009
[13] [13]Abhay Ashtekar, Martin Bojowald 2006 Class.Quant.Grav. 23 391
[14] [14]Bojowald.M 2001 Phys. Rev.D 64 084018
[15] [15]Ashtekar A, Bojowald M, Lewandomski J 2003 Adv. Theor. Math. Phys. 7 233
[16] [16]Ashtekar A, Bojowald M 2005 Class. Quant.Grav. 22 3349
[17] [17]Ashtekar A, Taveras V, Varadarajan M 2008 arXiv:gr-qc/0801.1811
[18] [18]Rovelli C 1996 Phys. Rev. Lett. 77 3288
[19] [19]Ashtekar A et al 1998 Phys. Rev. Lett. 90 904
[20] [20]Corichi A, Diaz-Polo Z, Fernandez-Borija E 2007 Phys. Rev. Lett. 98 131801
[21] [21]Bekenstein J D 1973 Phys. Rev. D 7 2333
[22] [22]Hawking S W 1975 Commun. Math. Phys. 43 199
[23] [23]Wald R M 2006 The Thermodynamics of Black Holes (US: Springer US)
[24] [24]Jing J L 1998 Int. J. Theor. Phys. 37 1441
[25] [25]Shen Y G 2002 Phys. Lett. B 537 187
[26] [26]Zhao R,Zhang L C,Li H F 2008 Acta Phys.Sin. 57 7463(in Chinese)[赵仁、张丽春、李怀繁 2008 57 7463]
[27] [27]Zhang J Y ,Zhao Z 2006 Acta Phys.Sin. 55 3796 (in Chinese)[张靖仪、赵峥 2006 55 3796]
[28] [28]Meng Q M,jiang J J,Liu J L,Zheng D L 2009 Acta Phys.Sin. 58 78(in Chinese)[孟庆苗、蒋继建、刘景伦、郑德力 2009 58 78]
[29] [29]Liu C Z, Zhao Z 2006 Acta Phys.Sin. 55 1607(in Chinese)[刘成周、赵峥 2006 55 1607]
[30] [30]Liu W B 2007 Acta Phys.Sin. 56 6164(in Chinese)[刘文彪 2007 56 6164]
[31] [31]Jiang Q Q,Wu S Q,Cai M 2007 Acta Phys.Sin. 56 3083(in Chinese)[蒋青权、吴双清、蔡瑁 2007 56 3083]
[32] [32]He T M,Fan J H,Wang Y J 2008 Chin. Phys. B 17 2321
[33] [33]Mi L Q,Li Z H 2006 Chin. Phys. 15 1184
[34] [34]Wang B B2008 Chin. Phys. B 17 467
[35] [35]Norbert Straumann 2002 arXiv:astro-ph/0203330
[36] [36]Kotter F 1918 Ann.Phys. 56 401[37]Thiemann T 1998 Class. Quant. Grav. 15 839
[37] [38]Halvorson H 2004 Studies in History and Philosophy of Modern Physics 35 45[39]Liu L, Zhao Z 2004 General Theory of Relativity (Second Edition)(Beijing:Higher Education Press) (in Chinese)[刘辽、赵峥 2004广义相对论(第二版) (北京:高等教育出版社)]
-
[1] [1]Smolin L 2004 arXiv:hep-th/0408048
[2] [2]Ashtekar A, Lewandomski J 2004 Class,Quant. Grav. 21 R53
[3] [3]Thiemann T 2001 arXiv: gr-qc/0110034
[4] [4]Rovelli C, Smolin L 1995 Nucl. Phys. B 442 593
[5] [5]Brunnemann J, Thiemann T 2006 Class.Quant.Grav. 23 1289
[6] [6]Bianchi E 2008 arXiv: gr-qc/0806.4710.
[7] [7]Brunnemann J, Thiemann T 2006 Class.Quant.Grav. 23 1395
[8] [8]Modesto L 2005 arXiv:gr-qc/0504043
[9] [9]Ashtekar A 2008 arXiv:gr-qc:0812.4703
[10] [10]Bojowald M 2001 Phys. Rev. Lett. 86 5227
[11] [11]Viqar H, Oliver W 2004 Phys. Rev. D 69 084016
[12] [12]Modesto L 2004 Phys. Rev. D 70 124009
[13] [13]Abhay Ashtekar, Martin Bojowald 2006 Class.Quant.Grav. 23 391
[14] [14]Bojowald.M 2001 Phys. Rev.D 64 084018
[15] [15]Ashtekar A, Bojowald M, Lewandomski J 2003 Adv. Theor. Math. Phys. 7 233
[16] [16]Ashtekar A, Bojowald M 2005 Class. Quant.Grav. 22 3349
[17] [17]Ashtekar A, Taveras V, Varadarajan M 2008 arXiv:gr-qc/0801.1811
[18] [18]Rovelli C 1996 Phys. Rev. Lett. 77 3288
[19] [19]Ashtekar A et al 1998 Phys. Rev. Lett. 90 904
[20] [20]Corichi A, Diaz-Polo Z, Fernandez-Borija E 2007 Phys. Rev. Lett. 98 131801
[21] [21]Bekenstein J D 1973 Phys. Rev. D 7 2333
[22] [22]Hawking S W 1975 Commun. Math. Phys. 43 199
[23] [23]Wald R M 2006 The Thermodynamics of Black Holes (US: Springer US)
[24] [24]Jing J L 1998 Int. J. Theor. Phys. 37 1441
[25] [25]Shen Y G 2002 Phys. Lett. B 537 187
[26] [26]Zhao R,Zhang L C,Li H F 2008 Acta Phys.Sin. 57 7463(in Chinese)[赵仁、张丽春、李怀繁 2008 57 7463]
[27] [27]Zhang J Y ,Zhao Z 2006 Acta Phys.Sin. 55 3796 (in Chinese)[张靖仪、赵峥 2006 55 3796]
[28] [28]Meng Q M,jiang J J,Liu J L,Zheng D L 2009 Acta Phys.Sin. 58 78(in Chinese)[孟庆苗、蒋继建、刘景伦、郑德力 2009 58 78]
[29] [29]Liu C Z, Zhao Z 2006 Acta Phys.Sin. 55 1607(in Chinese)[刘成周、赵峥 2006 55 1607]
[30] [30]Liu W B 2007 Acta Phys.Sin. 56 6164(in Chinese)[刘文彪 2007 56 6164]
[31] [31]Jiang Q Q,Wu S Q,Cai M 2007 Acta Phys.Sin. 56 3083(in Chinese)[蒋青权、吴双清、蔡瑁 2007 56 3083]
[32] [32]He T M,Fan J H,Wang Y J 2008 Chin. Phys. B 17 2321
[33] [33]Mi L Q,Li Z H 2006 Chin. Phys. 15 1184
[34] [34]Wang B B2008 Chin. Phys. B 17 467
[35] [35]Norbert Straumann 2002 arXiv:astro-ph/0203330
[36] [36]Kotter F 1918 Ann.Phys. 56 401[37]Thiemann T 1998 Class. Quant. Grav. 15 839
[37] [38]Halvorson H 2004 Studies in History and Philosophy of Modern Physics 35 45[39]Liu L, Zhao Z 2004 General Theory of Relativity (Second Edition)(Beijing:Higher Education Press) (in Chinese)[刘辽、赵峥 2004广义相对论(第二版) (北京:高等教育出版社)]
Catalog
Metrics
- Abstract views: 8890
- PDF Downloads: 1066
- Cited By: 0