[1] |
Sun Xian-Ting, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun. Form invariance and Mei conserved quantity for generalized Hamilton systems after adding additional terms. Acta Physica Sinica,
2015, 64(6): 064502.
doi: 10.7498/aps.64.064502
|
[2] |
Sun Xian-Ting, Zhang Yao-Yu, Zhang Fang, Jia Li-Qun. Conformal invariance and Hojman conserved quantity of Lie symmetry for Appell equations in a holonomic system. Acta Physica Sinica,
2014, 63(14): 140201.
doi: 10.7498/aps.63.140201
|
[3] |
Xie Yin-Li, Jia Li-Qun, Yang Xin-Fang. Lie symmetry and Hojman conserved quantity of Nielsen equation in a dynamical system of the relative motion. Acta Physica Sinica,
2011, 60(3): 030201.
doi: 10.7498/aps.60.030201
|
[4] |
Dong Wen-Shan, Fang Jian-Hui, Huang Bao-Xin. Hojman conserved quantities of generalized linear nonholonomic mechanical systems. Acta Physica Sinica,
2010, 59(2): 724-728.
doi: 10.7498/aps.59.724
|
[5] |
Gu Shu-Long, Zhang Hong-Bin. Noether symmetry and the Hojman conserved quantity of the Kepler equation. Acta Physica Sinica,
2010, 59(2): 716-718.
doi: 10.7498/aps.59.716
|
[6] |
Liu Chang, Liu Shi-Xing, Mei Feng-Xiang, Guo Yong-Xin. Conformal invariance and Hojman conserved quantities of generalized Hamilton systems. Acta Physica Sinica,
2008, 57(11): 6709-6713.
doi: 10.7498/aps.57.6709
|
[7] |
Liu Chang, Mei Feng-Xiang, Guo Yong-Xin. Conformal symmetry and Hojman conserved quantity of Lagrange system. Acta Physica Sinica,
2008, 57(11): 6704-6708.
doi: 10.7498/aps.57.6704
|
[8] |
Zhang Yi. Non-Noether conserved quantities for systems with unilateral non-Chetaev nonholonomic constraints. Acta Physica Sinica,
2006, 55(2): 504-510.
doi: 10.7498/aps.55.504
|
[9] |
Qiao Yong-Fen, Zhao Shu-Hong. Form invariance and non-Noether conserved quantity of generalized Raitzin’s canonical equations of non-conservative system. Acta Physica Sinica,
2006, 55(2): 499-503.
doi: 10.7498/aps.55.499
|
[10] |
Xu Xue-Jun, Mei Feng-Xiang, Qin Mao-Chang. Hojman conserved quantity for a holonomic system in the event space. Acta Physica Sinica,
2005, 54(3): 1009-1014.
doi: 10.7498/aps.54.1009
|
[11] |
Ge Wei-Kuan. Effects of mass variation on form invariance and conserved quantity of mechanical systems. Acta Physica Sinica,
2005, 54(6): 2478-2481.
doi: 10.7498/aps.54.2478
|
[12] |
Fang Jian-Hui, Zhang Peng-Yu. The conserved quantity of Hojman for mechanicalsystems with variable mass in phase space. Acta Physica Sinica,
2004, 53(12): 4041-4044.
doi: 10.7498/aps.53.4041
|
[13] |
Luo Shao-Kai, Guo Yong-Xin, Mei Feng-Xiang. Noether symmetry and Hojman conserved quantity for nonholonomic mechanical systems. Acta Physica Sinica,
2004, 53(5): 1270-1275.
doi: 10.7498/aps.53.1270
|
[14] |
Xu Xue-Jun, Mei Feng-Xiang, Qin Mao-Chang. A nonNoether conserved quantity constructed using form invariance for Nielsen equation of a non-conservativemechanical system. Acta Physica Sinica,
2004, 53(12): 4021-4025.
doi: 10.7498/aps.53.4021
|
[15] |
Zhang Yi. Form invariance of mechanical systems with unilateral holonomic constraints. Acta Physica Sinica,
2004, 53(2): 331-336.
doi: 10.7498/aps.53.331
|
[16] |
Luo Shao-Kai, Guo Yong-Xin, Mei Feng-Xiang. Form invariance and Hojman conserved quantity for nonholonomic mechanical systems. Acta Physica Sinica,
2004, 53(8): 2413-2418.
doi: 10.7498/aps.53.2413
|
[17] |
Fang Jian-Hui, Yan Xiang-Hong, Chen Pei-Sheng. Form invariance and Noether symmetry of a relativistic mechanical system. Acta Physica Sinica,
2003, 52(7): 1561-1564.
doi: 10.7498/aps.52.1561
|
[18] |
Fang Jian-Hui, Chen Pei-Sheng, Zhang Jun, Li Hong. Form invariance and Lie symmetry of relativistic mechanical system. Acta Physica Sinica,
2003, 52(12): 2945-2948.
doi: 10.7498/aps.52.2945
|
[19] |
Qiao Yong-Fen, Zhang Yao-Liang, Han Guang-Cai. Form invariance of Hamilton's canonical equations of a nonholonomic mechanical s ystem. Acta Physica Sinica,
2003, 52(5): 1051-1056.
doi: 10.7498/aps.52.1051
|
[20] |
Fang Jian-Hui, Xue Qing-Zhong, Zhao Shou-Qing. . Acta Physica Sinica,
2002, 51(10): 2183-2185.
doi: 10.7498/aps.51.2183
|