[1] |
Xu Chao, Li Yuan-Cheng. Lie-Mei symmetry and conserved quantities of Nielsen equations for a singular nonholonomic system of Chetaev'type. Acta Physica Sinica,
2013, 62(12): 120201.
doi: 10.7498/aps.62.120201
|
[2] |
Zheng Shi-Wang, Wang Jian-Bo, Chen Xiang-Wei, Li Yan-Min, Xie Jia-Fang. Lie symmetry and their conserved quantities of Tznoff equations for the vairable mass nonholonomic systems. Acta Physica Sinica,
2012, 61(11): 111101.
doi: 10.7498/aps.61.111101
|
[3] |
Zhang Yi, Xue Yun, Ge Wei-Kuan. Symmetries and conserved quantities of the Rosenberg problem. Acta Physica Sinica,
2010, 59(7): 4434-4436.
doi: 10.7498/aps.59.4434
|
[4] |
Zheng Shi-Wang, Xie Jia-Fang, Chen Xiang-Wei, Du Xue-Lian. Another kind of conserved quantity induced directly from Mei symmetry of Tzénoff equations for holonomic systems. Acta Physica Sinica,
2010, 59(8): 5209-5212.
doi: 10.7498/aps.59.5209
|
[5] |
Li Yuan-Cheng, Xia Li-Li, Wang Xiao-Ming, Liu Xiao-Wei. Lie-Mei symmetry and conserved quantities of Appell equation for a holonomic mechanical system. Acta Physica Sinica,
2010, 59(6): 3639-3642.
doi: 10.7498/aps.59.3639
|
[6] |
Li Yuan-Cheng, Wang Xiao-Ming, Xia Li-Li. Unified symmetry and conserved quantities of Nielsen equation for a holonomic mechanical system. Acta Physica Sinica,
2010, 59(5): 2935-2938.
doi: 10.7498/aps.59.2935
|
[7] |
Zhang Yi. Birkhoff symmetries and conserved quantities of generalized Birkhoffian systems. Acta Physica Sinica,
2009, 58(11): 7436-7439.
doi: 10.7498/aps.58.7436
|
[8] |
Zhang Yi, Ge Wei-Kuan. Lagrange symmetries and conserved quantities for nonholonomic systems of non-Chetaev’s type. Acta Physica Sinica,
2009, 58(11): 7447-7451.
doi: 10.7498/aps.58.7447
|
[9] |
Jia Li-Qun, Cui Jin-Chao, Zhang Yao-Yu, Luo Shao-Kai. Lie symmetry and conserved quantity of Appell equation for a Chetaev’s type constrained mechanical system. Acta Physica Sinica,
2009, 58(1): 16-21.
doi: 10.7498/aps.58.16
|
[10] |
Li Yuan-Cheng, Xia Li-Li, Wang Xiao-Ming. Unified symmetry of mechanico-electrical systems with nonholonomic constraints of non-Chetaev’s type. Acta Physica Sinica,
2009, 58(10): 6732-6736.
doi: 10.7498/aps.58.6732
|
[11] |
Ge Wei-Kuan. Mei symmetry and conserved quantity of a holonomic system. Acta Physica Sinica,
2008, 57(11): 6714-6717.
doi: 10.7498/aps.57.6714
|
[12] |
Lou Zhi-Mei. The study of symmetries and conserved quantities for one-dimensional damped-amplified harmonic oscillators. Acta Physica Sinica,
2008, 57(3): 1307-1310.
doi: 10.7498/aps.57.1307
|
[13] |
Zheng Shi-Wang, Jia Li-Qun. Mei symmetry and conserved quantity of Tzénoff equations for nonholonomic systems. Acta Physica Sinica,
2007, 56(2): 661-665.
doi: 10.7498/aps.56.661
|
[14] |
Li Yuan-Cheng, Xia Li-Li, Zhao Wei, Hou Qi-Bao, Wang Jing, Jing Hong-Xing. Unified symmetry of mechanico-electrical systems. Acta Physica Sinica,
2007, 56(9): 5037-5040.
doi: 10.7498/aps.56.5037
|
[15] |
Xu Xue-Jun, Mei Feng-Xiang. Unified symmetry of the holonomic system in terms of quasi-coordinates. Acta Physica Sinica,
2005, 54(12): 5521-5524.
doi: 10.7498/aps.54.5521
|
[16] |
Zhang Yi, Mei Feng-Xiang. Effects of constraints on Noether symmetries and conserved quantities in a Birkhoffian system. Acta Physica Sinica,
2004, 53(8): 2419-2423.
doi: 10.7498/aps.53.2419
|
[17] |
Zhang Yi, Fan Cun-Xin, Ge Wei-Kuan. A new type of conserved quantities for Birkhoffian systems*. Acta Physica Sinica,
2004, 53(11): 3644-3647.
doi: 10.7498/aps.53.3644
|
[18] |
Zhang Yi. . Acta Physica Sinica,
2002, 51(3): 461-464.
doi: 10.7498/aps.51.461
|
[19] |
Li Yuan-Cheng, Zhang Yi, Liang Jing-Hui. . Acta Physica Sinica,
2002, 51(10): 2186-2190.
doi: 10.7498/aps.51.2186
|
[20] |
Ge Wei-Kuan. . Acta Physica Sinica,
2002, 51(6): 1156-1158.
doi: 10.7498/aps.51.1156
|