搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

奇异 Chetaev型非完整系统Nielsen方程的Lie-Mei对称性与守恒量

徐超 李元成

引用本文:
Citation:

奇异 Chetaev型非完整系统Nielsen方程的Lie-Mei对称性与守恒量

徐超, 李元成

Lie-Mei symmetry and conserved quantities of Nielsen equations for a singular nonholonomic system of Chetaev'type

Xu Chao, Li Yuan-Cheng
PDF
导出引用
  • 研究奇异Chetaev型非完整系统Nielsen方程的Lie-Mei对称性, 建立系统Nielsen方程的Lie-Mei对称性方程, 给出系统Nielsen方程强Lie-Mei对称性和弱Lie-Mei对称性的定义, 得到对称性导致的Hojman守恒量和Mei守恒量, 最后给出说明性算例.
    Using an invariance of differential equations under the infinitesimal transformations of group, we study the Lie-Mei symmetry of Nielsen equations for a singular nonholonomic system of Chetaev'type. We establish the Lie-Mei symmetry equations. The definitions of weak and strong Lie-Mei symmetry are given, and Hojman conserved quantities and Mei conserved quantities are obtained. An example is given to illustrate the application of the results.
    • 基金项目: 中国石油大学(华东)自主创新基金(批准号: 11CX06088A)资助的课题.
    • Funds: Project supported by the Innovation Fund of China University of Petroleum (East China) (Grant No. 11CX06088A).
    [1]

    Noether A E 1918 Math. Phys. KI II 235

    [2]

    Djukić D S, Vujanović B D 1975 Acta Mech. 23 17

    [3]

    Lutzky M 1979 J. Phys. A: Math. Gen. 12 973

    [4]

    Mei F X 2000 J. Beijing Inst. Technol. 9 120

    [5]

    Mei F X 2001 Chin. Phys. 10 177

    [6]

    Mei F X, Chen X W 2001 J. Beijing Inst. Technol. 10 138

    [7]

    Mei F X 1985 Foundations of Mechanics of Nonholonomic Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔 1985 非完整力学基础(北京: 北京工业学院出版社)]

    [8]

    Ge W K, Zhang Y 2005 Acta Phys. Sin. 54 4985 (in Chinese) [葛伟宽, 张毅 2005 54 4985

    [9]

    Zhang Y 2002 Acta Phys. Sin. 51 461 (in Chinese) [张毅 2002 51 461]

    [10]

    Chen X W, Mei F X 2000 Chin. Phys. 9 721

    [11]

    Fu J L, Chen L Q 2003 Chin. Phys. 12 695

    [12]

    Zhang H B 2002 Chin. Phys. 11 1

    [13]

    Xu X J, Mei F X, Qin M C 2004 Acta Phys. Sin. 53 4021 (in Chinese) [许学军, 梅凤翔, 秦茂昌 2004 53 4021]

    [14]

    Wu H B 2005 Chin. Phys. 14 452

    [15]

    Li Y C, Xia L L, Wang X M 2010 Acta Phys. Sin. 59 3639 (in Chinese) [李元成, 夏丽莉, 王小明2010 59 3639]

    [16]

    Jia L Q, Luo S K, Zhang Y Y 2008 Acta Phys. Sin. 57 2006 (in Chinese) [贾利群, 罗绍凯, 张耀宇2008 57 2006]

    [17]

    Cui J C, Jia L Q, Zhang Y Y 2009 Commun. Theor. Phys. 52 7

    [18]

    Li Y C, Wang X M, Xia L L 2010 Acta Phys. Sin. 59 2935 (in Chinese) [李元成, 王小明, 夏丽莉 2010 59 2935]

    [19]

    Xie Y L, Jia L Q, Yang X F 2011 Acta Phys. Sin. 60 030201 (in Chinese) [解银丽, 贾利群, 杨新芳 2011 60 030201]

    [20]

    Li Z P 1991 J. Phys. A: Math. Gen. 24 4261

    [21]

    Li Z P 1992 Chin. Sci. Bull. 37 2204 (in Chinese) [李子平 1992 科学通报 37 2204]

    [22]

    Li Z P 1992 Sci. Sin: Math. 9A 977 (in Chinese) [李子平1992 中国科学: 数学 9A 977]

    [23]

    Zhong S G 1998 Chin. Ann. Math. 19A 361 (in Chinese) [钟寿国1998 数学年刊 19A 361]

    [24]

    Lu K J, Zhang G S 1997 J. Wuhan Univ. (Natural Science Edition) 43 273 (in Chinese) [路可见, 张桂生1997 武汉大学学报 (自然科学版) 43 273]

    [25]

    Luo S K 2004 Acta Phys. Sin. 53 5 (in Chinese) [罗绍凯 2004 53 5]

    [26]

    Mei F X, Zhu H P 2000 J. Beijing Inst. Technol. 9 11

    [27]

    Li Y C, Zhang Y, Liang J H 2002 Acta Phys. Sin. 51 2186 (in Chinese) [李元成, 张毅, 梁景辉 2002 51 2186]

    [28]

    Luo S K, Zhang Y F 2008 Advances in the Study of Dynamics of Constrained Systems (Beijing: Science Press) (in Chinese) [罗绍凯, 张永发 2008 约束系统动力学研究进展(北京: 科学出版社)]

    [29]

    Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanics Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔2004约束力学系统的对称性与守恒量(北京: 北京理工大学出版社)]

    [30]

    Ding N, Fang J H 2006 Commun.Theor. Phys. 46 265

  • [1]

    Noether A E 1918 Math. Phys. KI II 235

    [2]

    Djukić D S, Vujanović B D 1975 Acta Mech. 23 17

    [3]

    Lutzky M 1979 J. Phys. A: Math. Gen. 12 973

    [4]

    Mei F X 2000 J. Beijing Inst. Technol. 9 120

    [5]

    Mei F X 2001 Chin. Phys. 10 177

    [6]

    Mei F X, Chen X W 2001 J. Beijing Inst. Technol. 10 138

    [7]

    Mei F X 1985 Foundations of Mechanics of Nonholonomic Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔 1985 非完整力学基础(北京: 北京工业学院出版社)]

    [8]

    Ge W K, Zhang Y 2005 Acta Phys. Sin. 54 4985 (in Chinese) [葛伟宽, 张毅 2005 54 4985

    [9]

    Zhang Y 2002 Acta Phys. Sin. 51 461 (in Chinese) [张毅 2002 51 461]

    [10]

    Chen X W, Mei F X 2000 Chin. Phys. 9 721

    [11]

    Fu J L, Chen L Q 2003 Chin. Phys. 12 695

    [12]

    Zhang H B 2002 Chin. Phys. 11 1

    [13]

    Xu X J, Mei F X, Qin M C 2004 Acta Phys. Sin. 53 4021 (in Chinese) [许学军, 梅凤翔, 秦茂昌 2004 53 4021]

    [14]

    Wu H B 2005 Chin. Phys. 14 452

    [15]

    Li Y C, Xia L L, Wang X M 2010 Acta Phys. Sin. 59 3639 (in Chinese) [李元成, 夏丽莉, 王小明2010 59 3639]

    [16]

    Jia L Q, Luo S K, Zhang Y Y 2008 Acta Phys. Sin. 57 2006 (in Chinese) [贾利群, 罗绍凯, 张耀宇2008 57 2006]

    [17]

    Cui J C, Jia L Q, Zhang Y Y 2009 Commun. Theor. Phys. 52 7

    [18]

    Li Y C, Wang X M, Xia L L 2010 Acta Phys. Sin. 59 2935 (in Chinese) [李元成, 王小明, 夏丽莉 2010 59 2935]

    [19]

    Xie Y L, Jia L Q, Yang X F 2011 Acta Phys. Sin. 60 030201 (in Chinese) [解银丽, 贾利群, 杨新芳 2011 60 030201]

    [20]

    Li Z P 1991 J. Phys. A: Math. Gen. 24 4261

    [21]

    Li Z P 1992 Chin. Sci. Bull. 37 2204 (in Chinese) [李子平 1992 科学通报 37 2204]

    [22]

    Li Z P 1992 Sci. Sin: Math. 9A 977 (in Chinese) [李子平1992 中国科学: 数学 9A 977]

    [23]

    Zhong S G 1998 Chin. Ann. Math. 19A 361 (in Chinese) [钟寿国1998 数学年刊 19A 361]

    [24]

    Lu K J, Zhang G S 1997 J. Wuhan Univ. (Natural Science Edition) 43 273 (in Chinese) [路可见, 张桂生1997 武汉大学学报 (自然科学版) 43 273]

    [25]

    Luo S K 2004 Acta Phys. Sin. 53 5 (in Chinese) [罗绍凯 2004 53 5]

    [26]

    Mei F X, Zhu H P 2000 J. Beijing Inst. Technol. 9 11

    [27]

    Li Y C, Zhang Y, Liang J H 2002 Acta Phys. Sin. 51 2186 (in Chinese) [李元成, 张毅, 梁景辉 2002 51 2186]

    [28]

    Luo S K, Zhang Y F 2008 Advances in the Study of Dynamics of Constrained Systems (Beijing: Science Press) (in Chinese) [罗绍凯, 张永发 2008 约束系统动力学研究进展(北京: 科学出版社)]

    [29]

    Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanics Systems (Beijing: Beijing Institute of Technology Press) (in Chinese) [梅凤翔2004约束力学系统的对称性与守恒量(北京: 北京理工大学出版社)]

    [30]

    Ding N, Fang J H 2006 Commun.Theor. Phys. 46 265

  • [1] 徐超, 李元成. 奇异变质量单面非完整系统Nielsen方程的Noether-Lie对称性与守恒量.  , 2013, 62(17): 171101. doi: 10.7498/aps.62.171101
    [2] 张斌, 方建会, 张克军. 变质量非完整系统的Lagrange对称性与守恒量.  , 2012, 61(2): 021101. doi: 10.7498/aps.61.021101
    [3] 郑世旺, 王建波, 陈向炜, 李彦敏, 解加芳. 变质量非完整系统Tznoff方程的Lie 对称性与其导出的守恒量.  , 2012, 61(11): 111101. doi: 10.7498/aps.61.111101
    [4] 王肖肖, 孙现亭, 张美玲, 解银丽, 贾利群. Chetaev型约束的相对运动动力学系统Nielsen方程的Noether对称性与Noether守恒量.  , 2012, 61(6): 064501. doi: 10.7498/aps.61.064501
    [5] 王肖肖, 张美玲, 韩月林, 贾利群. Chetaev型非完整约束相对运动动力学系统Nielsen方程的Mei对称性和Mei守恒量.  , 2012, 61(20): 200203. doi: 10.7498/aps.61.200203
    [6] 贾利群, 孙现亭, 张美玲, 王肖肖, 解银丽. Nielsen方程Mei对称性导致的一种新型守恒量.  , 2011, 60(8): 084501. doi: 10.7498/aps.60.084501
    [7] 解银丽, 贾利群, 杨新芳. 相对运动动力学系统Nielsen方程的Lie对称性与Hojman守恒量.  , 2011, 60(3): 030201. doi: 10.7498/aps.60.030201
    [8] 郑世旺, 解加芳, 陈向炜, 杜雪莲. 完整系统Tzénoff方程的Mei对称性直接导致的另一种守恒量.  , 2010, 59(8): 5209-5212. doi: 10.7498/aps.59.5209
    [9] 李元成, 王小明, 夏丽莉. 完整系统Nielsen方程的统一对称性与守恒量.  , 2010, 59(5): 2935-2938. doi: 10.7498/aps.59.2935
    [10] 李元成, 夏丽莉, 王小明, 刘晓巍. 完整系统Appell方程的Lie-Mei对称性与守恒量.  , 2010, 59(6): 3639-3642. doi: 10.7498/aps.59.3639
    [11] 张毅. 广义Birkhoff系统的Birkhoff对称性与守恒量.  , 2009, 58(11): 7436-7439. doi: 10.7498/aps.58.7436
    [12] 贾利群, 崔金超, 张耀宇, 罗绍凯. Chetaev型约束力学系统Appell方程的Lie对称性与守恒量.  , 2009, 58(1): 16-21. doi: 10.7498/aps.58.16
    [13] 贾利群, 崔金超, 罗绍凯, 张耀宇. 事件空间中单面非Chetaev型非完整系统Nielsen方程的Mei对称性与Mei守恒量.  , 2009, 58(4): 2141-2146. doi: 10.7498/aps.58.2141
    [14] 葛伟宽. 一类完整系统的Mei对称性与守恒量.  , 2008, 57(11): 6714-6717. doi: 10.7498/aps.57.6714
    [15] 贾利群, 罗绍凯, 张耀宇. 非完整系统Nielsen方程的Mei对称性与Mei守恒量.  , 2008, 57(4): 2006-2010. doi: 10.7498/aps.57.2006
    [16] 刘仰魁, 方建会. 相空间中变质量力学系统Lie-Mei对称性的两个守恒量.  , 2008, 57(11): 6699-6703. doi: 10.7498/aps.57.6699
    [17] 郑世旺, 贾利群. 非完整系统Tzénoff方程的Mei对称性和守恒量.  , 2007, 56(2): 661-665. doi: 10.7498/aps.56.661
    [18] 方建会, 王 鹏, 丁 宁. 相空间中力学系统的Lie-Mei对称性.  , 2006, 55(8): 3821-3824. doi: 10.7498/aps.55.3821
    [19] 李元成, 张毅, 梁景辉. 一类非完整奇异系统的Lie对称性与守恒量.  , 2002, 51(10): 2186-2190. doi: 10.7498/aps.51.2186
    [20] 梅凤翔. 包含伺服约束的非完整系统的Lie对称性与守恒量.  , 2000, 49(7): 1207-1210. doi: 10.7498/aps.49.1207
计量
  • 文章访问数:  6166
  • PDF下载量:  578
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-15
  • 修回日期:  2013-03-04
  • 刊出日期:  2013-06-05

/

返回文章
返回
Baidu
map