[1] |
Wu Hui-Bin, Mei Feng-Xiang. A gradient representation of holonomic system in the event space. Acta Physica Sinica,
2015, 64(23): 234501.
doi: 10.7498/aps.64.234501
|
[2] |
Zhang Fang, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun. Conformal invariance and conserved quantity of Mei symmetry for Appell equation in a holonomic system in relative motion. Acta Physica Sinica,
2015, 64(13): 134501.
doi: 10.7498/aps.64.134501
|
[3] |
Ge Wei-Kuan, Xue Yun, Lou Zhi-Mei. Generalized gradient representation of holonomic mechanical systems. Acta Physica Sinica,
2014, 63(11): 110202.
doi: 10.7498/aps.63.110202
|
[4] |
Sun Xian-Ting, Han Yue-Lin, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun. A type of new conserved quantity of Mei symmetry for Appell equations in a holonomic system. Acta Physica Sinica,
2012, 61(20): 200204.
doi: 10.7498/aps.61.200204
|
[5] |
Zheng Shi-Wang, Wang Jian-Bo, Chen Xiang-Wei, Li Yan-Min, Xie Jia-Fang. Lie symmetry and their conserved quantities of Tznoff equations for the vairable mass nonholonomic systems. Acta Physica Sinica,
2012, 61(11): 111101.
doi: 10.7498/aps.61.111101
|
[6] |
Li Yuan-Cheng, Wang Xiao-Ming, Xia Li-Li. Unified symmetry and conserved quantities of Nielsen equation for a holonomic mechanical system. Acta Physica Sinica,
2010, 59(5): 2935-2938.
doi: 10.7498/aps.59.2935
|
[7] |
Li Yuan-Cheng, Xia Li-Li, Wang Xiao-Ming, Liu Xiao-Wei. Lie-Mei symmetry and conserved quantities of Appell equation for a holonomic mechanical system. Acta Physica Sinica,
2010, 59(6): 3639-3642.
doi: 10.7498/aps.59.3639
|
[8] |
Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu. Mei symmetry and Mei conserved quantity of Nielsen equation for a nonholonomic system. Acta Physica Sinica,
2008, 57(4): 2006-2010.
doi: 10.7498/aps.57.2006
|
[9] |
Ge Wei-Kuan. Mei symmetry and conserved quantity of a holonomic system. Acta Physica Sinica,
2008, 57(11): 6714-6717.
doi: 10.7498/aps.57.6714
|
[10] |
Hu Chu-Le. Lie symmetries and Hojman conserved quantities of one kind of differential equations of motion of nonholonomic systems. Acta Physica Sinica,
2007, 56(7): 3675-3677.
doi: 10.7498/aps.56.3675
|
[11] |
Zheng Shi-Wang, Jia Li-Qun. Mei symmetry and conserved quantity of Tzénoff equations for nonholonomic systems. Acta Physica Sinica,
2007, 56(2): 661-665.
doi: 10.7498/aps.56.661
|
[12] |
Qiao Yong-Fen, Zhao Shu-Hong, Li Ren-Jie. Existence theorem and its converse of conserved quantities for the nonholonomic nonconservative systems in the event space. Acta Physica Sinica,
2006, 55(11): 5585-5589.
doi: 10.7498/aps.55.5585
|
[13] |
Qiao Yong-Fen, Zhao Shu-Hong. Form invariance and non-Noether conserved quantity of generalized Raitzin’s canonical equations of non-conservative system. Acta Physica Sinica,
2006, 55(2): 499-503.
doi: 10.7498/aps.55.499
|
[14] |
Zheng Shi-Wang, Qiao Yong-Fen. Integrating factors and conservation theorems of Lagrange’s equations for generalized nonconservative systems in terms of quasi-coordinates. Acta Physica Sinica,
2006, 55(7): 3241-3245.
doi: 10.7498/aps.55.3241
|
[15] |
Ge Wei-Kuan, Zhang Yi. Lie-form invariance of holonomic mechanical systems. Acta Physica Sinica,
2005, 54(11): 4985-4988.
doi: 10.7498/aps.54.4985
|
[16] |
Xu Xue-Jun, Mei Feng-Xiang. Unified symmetry of the holonomic system in terms of quasi-coordinates. Acta Physica Sinica,
2005, 54(12): 5521-5524.
doi: 10.7498/aps.54.5521
|
[17] |
Xu Xue-Jun, Mei Feng-Xiang, Qin Mao-Chang. Hojman conserved quantity for a holonomic system in the event space. Acta Physica Sinica,
2005, 54(3): 1009-1014.
doi: 10.7498/aps.54.1009
|
[18] |
Qiao Yong-Fen, Li Ren-Jie, Sun Dan-Na. Hojman’s conservation theorems for Raitzin’s canonical equations of motion of nonlinear nonholonomic systems. Acta Physica Sinica,
2005, 54(2): 490-495.
doi: 10.7498/aps.54.490
|
[19] |
Qiao Yong-Fen, Zhang Yao-Liang, Han Guang-Cai. Form invariance of Hamilton's canonical equations of a nonholonomic mechanical s ystem. Acta Physica Sinica,
2003, 52(5): 1051-1056.
doi: 10.7498/aps.52.1051
|
[20] |
Zhang Yi, Ge Wei-Kuan. Integrating factors and conservation laws for non-holonomic dynamical systems. Acta Physica Sinica,
2003, 52(10): 2363-2367.
doi: 10.7498/aps.52.2363
|