[1] |
Leng Chun-Ling, Zhang Ying-Qiao, Ji Xin. The -type four-particle entangled state generated by using superconducting artificial atoms with broken symmetry. Acta Physica Sinica,
2015, 64(18): 184207.
doi: 10.7498/aps.64.184207
|
[2] |
Chen Xi, Yu Whitney, Joglekar Yogesh N, Zheng You-Qu, Xu You-Sheng, Wu Feng-Min. The influence of different driving patterns on parity time-reversal symmetry. Acta Physica Sinica,
2014, 63(6): 060206.
doi: 10.7498/aps.63.060206
|
[3] |
Jia Li-Qun, Cui Jin-Chao, Luo Shao-Kai, Zhang Yao-Yu. Mei symmetry and Mei conserved quantity of Nielsen equations for nonholonomic systems of unilateral non-Chetaev’s type in the event space. Acta Physica Sinica,
2009, 58(4): 2141-2146.
doi: 10.7498/aps.58.2141
|
[4] |
Lu Kai, Fang Jian-Hui, Zhang Ming-Jiang, Wang Peng. Noether symmetry and Mei symmetry of discrete holonomic system in phase space. Acta Physica Sinica,
2009, 58(11): 7421-7425.
doi: 10.7498/aps.58.7421
|
[5] |
Liu Yang-Kui, Fang Jian-Hui. Two types of conserved quantities of Lie-Mei symmetry for a variable mass system in phase space. Acta Physica Sinica,
2008, 57(11): 6699-6703.
doi: 10.7498/aps.57.6699
|
[6] |
Xia Li-Li, Li Yuan-Cheng. Perturbation to symmetries and adiabatic invariant for nonholonomic controllable mechanical system in phase place. Acta Physica Sinica,
2007, 56(11): 6183-6187.
doi: 10.7498/aps.56.6183
|
[7] |
Zhang Yi. Perturbation of symmetries and Hojman adiabatic invariants of discrete mechanical systems in the phase space. Acta Physica Sinica,
2007, 56(4): 1855-1859.
doi: 10.7498/aps.56.1855
|
[8] |
Jia Li-Qun, Zheng Shi-Wang, Zhang Yao-Yu. Mei symmetry and Mei conserved quantity of nonholonomic systems of non-Chetaev’s type in event space. Acta Physica Sinica,
2007, 56(10): 5575-5579.
doi: 10.7498/aps.56.5575
|
[9] |
Zhang Yi. Lie symmetries and adiabatic invariants for holonomic systems in event space. Acta Physica Sinica,
2007, 56(6): 3054-3059.
doi: 10.7498/aps.56.3054
|
[10] |
Gu Shu-Long, Zhang Hong-Bin. Mei symmetry, Noether symmetry and Lie symmetry of an Emden system. Acta Physica Sinica,
2006, 55(11): 5594-5597.
doi: 10.7498/aps.55.5594
|
[11] |
Fang Jian-Hui, Wang Peng, Ding Ning. Lie-Mei symmetry of mechanical system in phase space. Acta Physica Sinica,
2006, 55(8): 3821-3824.
doi: 10.7498/aps.55.3821
|
[12] |
Zhang Yi. Symmetries and conserved quantities of mechanical systems with unilateral holonomic constraints in phase space. Acta Physica Sinica,
2005, 54(10): 4488-4495.
doi: 10.7498/aps.54.4488
|
[13] |
Fang Jian-Hui, Liao Yong-Pan, Peng Yong. Tow kinds of Mei symmeties and conserved quantities of a mechanical system in phase space. Acta Physica Sinica,
2005, 54(2): 500-503.
doi: 10.7498/aps.54.500
|
[14] |
Li Wen-Bo, Li Ke-Xuan, Li Ye, Li Mi-Shan, Li Ya-Ling, Wen Xiao-Yang, Yuan Guang-Jun. Symmetry in spectrum space of isotonic oscillator and two-photon parametric model. Acta Physica Sinica,
2004, 53(12): 4202-4210.
doi: 10.7498/aps.53.4202
|
[15] |
Luo Shao-Kai. Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system. Acta Physica Sinica,
2003, 52(12): 2941-2944.
doi: 10.7498/aps.52.2941
|
[16] |
QIAO YONG-FEN, LI REN-JIE, ZHAO SHU-HONG. SYMMETRY AND INVARIANT IN GENERALIZED MECHANICAL SYSTEMS IN THE HIGH-DIMENSIONAL EXTENDED PHASE SPACE. Acta Physica Sinica,
2001, 50(5): 811-815.
doi: 10.7498/aps.50.811
|
[17] |
ZHANG ZONG-YE, LI GUANG-LIE. SYMMETRY CLASSIFICATION FOR EXCITED STATES OF HYPERNUCLEI. Acta Physica Sinica,
1977, 26(6): 467-476.
doi: 10.7498/aps.26.467
|
[18] |
LUO LIAO-FU, LU TAN. THE INNER SYMMETRIES OF HADRONS AND THE SUPERNARROW RESONANCES. Acta Physica Sinica,
1976, 25(2): 168-171.
doi: 10.7498/aps.25.168
|
[19] |
ZHANG ZONG-YE, LI GUANG-LIE. THE SYMMETRY CLASSIFICATION FOR THE EXCITED STATES OF HYPERNUCLEI. Acta Physica Sinica,
1976, 25(2): 172-174.
doi: 10.7498/aps.25.172
|
[20] |
. . Acta Physica Sinica,
1939, 3(2): 85-88.
doi: 10.7498/aps.3.85
|