[1] |
Li Kai-Hui, Liu Han-Ze, Xin Xiang-Peng. Lie symmetry analysis, optimal system, exact solutions and conservation laws of a class of high-order nonlinear wave equations. Acta Physica Sinica,
2016, 65(14): 140201.
doi: 10.7498/aps.65.140201
|
[2] |
Zhang Fang, Li Wei, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun. Conformal invariance and conserved quantity of Mei symmetry for Appell equations in nonholonomic systems of Chetaev’s type with variable mass. Acta Physica Sinica,
2014, 63(16): 164501.
doi: 10.7498/aps.63.164501
|
[3] |
Jia Li-Qun, Sun Xian-Ting, Zhang Mei-Ling, Zhang Yao-Yu, Han Yue-Lin. Generalized Hojman conserved quantity deduced from generalized Lie symmetry of Appell equations for a variable mass mechanical system in relative motion. Acta Physica Sinica,
2014, 63(1): 010201.
doi: 10.7498/aps.63.010201
|
[4] |
Wang Ting-Zhi, Sun Xian-Ting, Han Yue-Lin. Conformal invariance and conserved quantity for a variable mass holonomic system in relative motion. Acta Physica Sinica,
2013, 62(23): 231101.
doi: 10.7498/aps.62.231101
|
[5] |
Zhang Bin, Fang Jian-Hui, Zhang Ke-Jun. Symmetry and conserved quantity of Lagrangians for nonholonomic variable mass system. Acta Physica Sinica,
2012, 61(2): 021101.
doi: 10.7498/aps.61.021101
|
[6] |
Yang Xin-Fang, Sun Xian-Ting, Wang Xiao-Xiao, Zhang Mei-Ling, Jia Li-Qun. Mei symmetry and Mei conserved quantity of Appell equations for nonholonomic systems of Chetaevs type with variable mass. Acta Physica Sinica,
2011, 60(11): 111101.
doi: 10.7498/aps.60.111101
|
[7] |
Xia Li-Li, Li Yuan-Cheng, Wang Xian-Jun. Non-Noether conserved quantities for nonholonomic controllable mechanical systems with relativistic rotational variable mass. Acta Physica Sinica,
2009, 58(1): 28-33.
doi: 10.7498/aps.58.28
|
[8] |
Xia Li-Li, Li Yuan-Cheng. Non-Noether conserved quantity for relativistic nonholonomic controllable mechanical system with variable mass. Acta Physica Sinica,
2008, 57(8): 4652-4656.
doi: 10.7498/aps.57.4652
|
[9] |
Zhang Peng-Yu, Fang Jian-Hui. Lie symmetry and non-Noether conserved quantities of variable mass Birkhoffian system. Acta Physica Sinica,
2006, 55(8): 3813-3816.
doi: 10.7498/aps.55.3813
|
[10] |
Zhang Yi. Symmetries and conserved quantities of mechanical systems with unilateral holonomic constraints in phase space. Acta Physica Sinica,
2005, 54(10): 4488-4495.
doi: 10.7498/aps.54.4488
|
[11] |
Ge Wei-Kuan. Effects of mass variation on form invariance and conserved quantity of mechanical systems. Acta Physica Sinica,
2005, 54(6): 2478-2481.
doi: 10.7498/aps.54.2478
|
[12] |
Zhang Yi, Ge Wei-Kuan. A new conservation law from Mei symmetry for the relativistic mechanical system. Acta Physica Sinica,
2005, 54(4): 1464-1467.
doi: 10.7498/aps.54.1464
|
[13] |
Luo Shao-Kai, Mei Feng-Xiang. A non-Noether conserved quantity, i.e. Hojman conserved quantity, for nonholonomic mechanical systems. Acta Physica Sinica,
2004, 53(3): 6-10.
doi: 10.7498/aps.53.6
|
[14] |
Jia Li-Qun. A theory of relativistic analytical statics of rotational systems. Acta Physica Sinica,
2003, 52(5): 1039-1043.
doi: 10.7498/aps.52.1039
|
[15] |
Fang Jian-Hui, Chen Pei-Sheng, Zhang Jun, Li Hong. Form invariance and Lie symmetry of relativistic mechanical system. Acta Physica Sinica,
2003, 52(12): 2945-2948.
doi: 10.7498/aps.52.2945
|
[16] |
Fang Jian-Hui, Yan Xiang-Hong, Chen Pei-Sheng. Form invariance and Noether symmetry of a relativistic mechanical system. Acta Physica Sinica,
2003, 52(7): 1561-1564.
doi: 10.7498/aps.52.1561
|
[17] |
QIAO YONG-FEN, ZHAO SHU-HONG. EQUATIONS OF MOTION OF VARIABLE MASS NONHOLONOMIC DYNAMICAL SYSTEMS IN POINCARé-CHETAEV VARIABLES. Acta Physica Sinica,
2001, 50(5): 805-810.
doi: 10.7498/aps.50.805
|
[18] |
LUO SHAO-KAI, FU JING-LI, CHEN XIANG-WEI. BASIC THEORY OF RELATIVISTIC BIRKHOFFIAN DYNAMICS OF ROTATIONAL SYSTEM. Acta Physica Sinica,
2001, 50(3): 383-389.
doi: 10.7498/aps.50.383
|
[19] |
FU JING-LI, CHEN LI-QUN, LUO SHAO-KAI, CHEN XIANG-WEI, WANG XIN-MIN. STUDY ON DYNAMICS OF RELATIVISTIC BIRKHOFF SYSTEMS. Acta Physica Sinica,
2001, 50(12): 2289-2295.
doi: 10.7498/aps.50.2289
|
[20] |
FANG JIAN-HUI, ZHAO SONG-QING. LIE SYMMETRIES AND CONSERED QUANTITIES OF RELATIVISTIC ROTATIONAL VARIABLE MASS SYSTEM. Acta Physica Sinica,
2001, 50(3): 390-393.
doi: 10.7498/aps.50.390
|