搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类高阶非线性波方程的李群分析、最优系统、精确解和守恒律

李凯辉 刘汉泽 辛祥鹏

引用本文:
Citation:

一类高阶非线性波方程的李群分析、最优系统、精确解和守恒律

李凯辉, 刘汉泽, 辛祥鹏

Lie symmetry analysis, optimal system, exact solutions and conservation laws of a class of high-order nonlinear wave equations

Li Kai-Hui, Liu Han-Ze, Xin Xiang-Peng
PDF
导出引用
  • 本文运用李群分析的方法研究了一类高阶非线性波方程, 得到了五阶非线性波方程的对称以及方程的最优系统, 进而运用幂级数的方法, 求得了方程的精确幂级数解. 最后, 给出了五阶非线性波方程的一些守恒律.
    The symmetries, conservation laws and exact solutions to the nonlinear partial differential equations play a significant role in nonlinear science and mathematical physics. Symmetry is derived from physics, and it is a mathematical description for invariance. Symmetry group theory plays an important role in constructing explicit solutions, whether the equations are integrable or not. By using the symmetry method, an original nonlinear system can be reduced to a system with fewer independent variables through any given subgroup. But, since there are almost always an infinite number of such subgroups, it is usually not feasible to list all possible group invariant solutions to the system. It is anticipated to find all those equivalent group invariant solutions, that is to say, to construct the one-dimensional optimal system for the Lie algebra. Construction of explicit forms of conservation laws is meaningful, as they are used for developing the appropriate numerical methods and for making mathematical analyses, in particular, of existence, uniqueness and stability. In addition, the existence of a large number of conservation laws of a partial differential equation (system) is a strong indication of its integrability. The similarity solutions are of importance for investigating the long-time behavior, blow-up profile and asymptotic phenomena of a non-linear system. For instance, in some circumstance, the asymptotic behaviors of finite-mass solutions of non-linear diffusion equation with non-linear source term are described by an explicit self-similar solution, etc. However, how to tackle these matters is a complicated problem that challenges researchers to be solved. In this paper, by using the symmetry method, we obtain the symmetry reduction, optimal systems, and many new exact group invariant solution of a fifth-order nonlinear wave equation. By Lie symmetry analysis method, the point symmetries and an optimal system of the equation are obtained. The exact power series solutions to the equation are provided by the power series method, such solutions can be used for numerical computations in both theory and physical applications conveniently. Finally, a lot of conservation laws of the fifth-order nonlinear wave equation are presented by using the adjoint equation and symmetries of the equation.
      通信作者: 刘汉泽, hnz_liu@aliyun.com
    • 基金项目: 国家自然科学基金(批准号:11171041,11505090)和山东省优秀中青年科学家科研奖励基金(批准号:BS2015SF009)资助的课题.
      Corresponding author: Liu Han-Ze, hnz_liu@aliyun.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11171041, 11505090) and the Research Award Foundation for Outstanding Young Scientists of Shandong Province, China (Grant No. BS2015SF009).
    [1]

    Xin X P, Liu X Q, Zhang L L 2010 Appl. Math. Comput. 215 3669

    [2]

    Liu N 2010 Appl. Math. Comput. 217 4178

    [3]

    Gardner C S, Greene J M, Kruskal M D, Miura M R 1967 Phys. Rev. Lett. 19 1095

    [4]

    Bassom A P, Clarkson P A 1995 Stud. Appl. Math. 95 1

    [5]

    Hirota R 1971 Phys. Rev. Lett. 27 1192

    [6]

    Wang M L, Zhou Y B, Li Z B 1996 Phys. Lett. A 216 67

    [7]

    Fan E G 2000 Phys. Lett. A 265 353

    [8]

    Wang M L, Li X Z, Zhang J L 2008 Phys. Lett. A 372 417

    [9]

    Lou S Y, Ma H C 2005 J. Phys. A: Math. Gen. 38 L129

    [10]

    Li N, Liu X Q 2013 Acta Phys. Sin. 62 160203 (in Chinese) [李宁, 刘希强 2013 62 160203]

    [11]

    Fan E G 2000 Phys. Lett. A 277 212

    [12]

    Elwakil S A, El-Labany S K, Zahran M A 2002 Phys. Lett. A 299 179

    [13]

    Liang L W, Li X D, Li Y X 2009 Acta Phys. Sin. 58 2159 (in Chinese) [梁立为, 李兴东, 李玉霞 2009 58 2159]

    [14]

    Xin X P, Miao Q, Chen Y 2014 Chin. Phys. B 23 010203

    [15]

    Lou S Y 1994 Chin. Phys. Lett. 11 593

    [16]

    Lou S Y, Hu X B 1997 J. Phys. A: Math. Gen. 30 L95

    [17]

    Weiss J, Tabor M, Carnevale G 1983 J. Math. Phys. 24 522

    [18]

    Zhou Y, Wang M, Wang Y 2003 Phys. Lett. A 308 31

    [19]

    Wang Z L, Liu X Q 2014 Acta Phys. Sin. 63 180205

    [20]

    Zhang L J, Chen L Q 2015 Appl. Math. Mech. 36 548 (in Chinese) [张丽俊, 陈立群 2015 应用数学和力学 36 548]

    [21]

    Sawada K, Kotera T 1974 Prog. Theor. Phys. 51 1355

    [22]

    Caudrey P J, Dodd R K, Gibbon J D 1976 Proc. R. Soc. London 351 407

    [23]

    Li J B, Qiao Z J 2011 J. Appl. Anal. Comput. 1 243

    [24]

    Kupershmidt B A 1984 Phys. Lett. A 102 213

    [25]

    Hu X R, Li Y Q, Chen Y 2015 J. Math. Phys. 56 053504

    [26]

    Xin X P, Miao Q, Chen Y 2014 Chin. Phys. B 23 010203

    [27]

    Olver P J 1993 Applications of Lie Groups to Differential Equations (New York: Springer) pp202-206

    [28]

    Ibragimov N H 2006 J. Math. Anal. Appl. 318 742

    [29]

    Ibragimov N H 2011 J. Phys. A: Math. Theor. 44 432002

    [30]

    Ibragimov N H 2007 J. Math. Anal. Appl. 333 311

  • [1]

    Xin X P, Liu X Q, Zhang L L 2010 Appl. Math. Comput. 215 3669

    [2]

    Liu N 2010 Appl. Math. Comput. 217 4178

    [3]

    Gardner C S, Greene J M, Kruskal M D, Miura M R 1967 Phys. Rev. Lett. 19 1095

    [4]

    Bassom A P, Clarkson P A 1995 Stud. Appl. Math. 95 1

    [5]

    Hirota R 1971 Phys. Rev. Lett. 27 1192

    [6]

    Wang M L, Zhou Y B, Li Z B 1996 Phys. Lett. A 216 67

    [7]

    Fan E G 2000 Phys. Lett. A 265 353

    [8]

    Wang M L, Li X Z, Zhang J L 2008 Phys. Lett. A 372 417

    [9]

    Lou S Y, Ma H C 2005 J. Phys. A: Math. Gen. 38 L129

    [10]

    Li N, Liu X Q 2013 Acta Phys. Sin. 62 160203 (in Chinese) [李宁, 刘希强 2013 62 160203]

    [11]

    Fan E G 2000 Phys. Lett. A 277 212

    [12]

    Elwakil S A, El-Labany S K, Zahran M A 2002 Phys. Lett. A 299 179

    [13]

    Liang L W, Li X D, Li Y X 2009 Acta Phys. Sin. 58 2159 (in Chinese) [梁立为, 李兴东, 李玉霞 2009 58 2159]

    [14]

    Xin X P, Miao Q, Chen Y 2014 Chin. Phys. B 23 010203

    [15]

    Lou S Y 1994 Chin. Phys. Lett. 11 593

    [16]

    Lou S Y, Hu X B 1997 J. Phys. A: Math. Gen. 30 L95

    [17]

    Weiss J, Tabor M, Carnevale G 1983 J. Math. Phys. 24 522

    [18]

    Zhou Y, Wang M, Wang Y 2003 Phys. Lett. A 308 31

    [19]

    Wang Z L, Liu X Q 2014 Acta Phys. Sin. 63 180205

    [20]

    Zhang L J, Chen L Q 2015 Appl. Math. Mech. 36 548 (in Chinese) [张丽俊, 陈立群 2015 应用数学和力学 36 548]

    [21]

    Sawada K, Kotera T 1974 Prog. Theor. Phys. 51 1355

    [22]

    Caudrey P J, Dodd R K, Gibbon J D 1976 Proc. R. Soc. London 351 407

    [23]

    Li J B, Qiao Z J 2011 J. Appl. Anal. Comput. 1 243

    [24]

    Kupershmidt B A 1984 Phys. Lett. A 102 213

    [25]

    Hu X R, Li Y Q, Chen Y 2015 J. Math. Phys. 56 053504

    [26]

    Xin X P, Miao Q, Chen Y 2014 Chin. Phys. B 23 010203

    [27]

    Olver P J 1993 Applications of Lie Groups to Differential Equations (New York: Springer) pp202-206

    [28]

    Ibragimov N H 2006 J. Math. Anal. Appl. 318 742

    [29]

    Ibragimov N H 2011 J. Phys. A: Math. Theor. 44 432002

    [30]

    Ibragimov N H 2007 J. Math. Anal. Appl. 333 311

  • [1] 张丽香, 刘汉泽, 辛祥鹏. 广义(3+1)维Zakharov-Kuznetsov方程的对称约化、精确解和守恒律.  , 2017, 66(8): 080201. doi: 10.7498/aps.66.080201
    [2] 刘勇, 刘希强. 变系数Whitham-Broer-Kaup方程组的对称、约化及精确解.  , 2014, 63(20): 200203. doi: 10.7498/aps.63.200203
    [3] 王振立, 刘希强. Kaup-Kupershmidt方程的非局域对称及新的精确解.  , 2014, 63(18): 180205. doi: 10.7498/aps.63.180205
    [4] 尹君毅. 扩展的(G/G)展开法和Zakharov方程组的新精确解.  , 2013, 62(20): 200202. doi: 10.7498/aps.62.200202
    [5] 万晖. 带源项的变系数非线性反应扩散方程的精确解.  , 2013, 62(9): 090203. doi: 10.7498/aps.62.090203
    [6] 李宁, 刘希强. Broer-Kau-Kupershmidt方程组的对称、约化和精确解.  , 2013, 62(16): 160203. doi: 10.7498/aps.62.160203
    [7] 杨征, 马松华, 方建平. (2+1)维 Zakharov-Kuznetsov 方程的精确解和孤子结构.  , 2011, 60(4): 040508. doi: 10.7498/aps.60.040508
    [8] 雷军, 马松华, 方建平. (3+1)维Jimbo-Miwa方程的精确解及局域激发.  , 2011, 60(12): 120507. doi: 10.7498/aps.60.120507
    [9] 套格图桑, 斯仁道尔吉. 构造变系数非线性发展方程精确解的一种方法.  , 2009, 58(4): 2121-2126. doi: 10.7498/aps.58.2121
    [10] 套格图桑, 斯仁道尔吉. 辅助方程构造带强迫项变系数组合KdV方程的精确解.  , 2008, 57(3): 1295-1300. doi: 10.7498/aps.57.1295
    [11] 吴国将, 张 苗, 史良马, 张文亮, 韩家骅. 扩展的Jacobi椭圆函数展开法和Zakharov方程组的新的精确周期解.  , 2007, 56(9): 5054-5059. doi: 10.7498/aps.56.5054
    [12] 毛杰健, 杨建荣. 变系数广义KdV方程新的类孤波解和精确解.  , 2007, 56(9): 5049-5053. doi: 10.7498/aps.56.5049
    [13] 曾 昕, 张鸿庆. (2+1)维Boussinesq方程的Backlund变换与精确解.  , 2005, 54(4): 1476-1480. doi: 10.7498/aps.54.1476
    [14] 智红燕, 王 琪, 张鸿庆. (2+1) 维Broer-Kau-Kupershmidt方程一系列新的精确解.  , 2005, 54(3): 1002-1008. doi: 10.7498/aps.54.1002
    [15] 韩兆秀. 非线性Klein-Gordon方程新的精确解.  , 2005, 54(4): 1481-1484. doi: 10.7498/aps.54.1481
    [16] 刘成仕, 杜兴华. 耦合Klein-Gordon-Schr?dinger方程新的精确解.  , 2005, 54(3): 1039-1043. doi: 10.7498/aps.54.1039
    [17] 陆法林, 陈昌远. 非球谐振子势Schr?dinger方程的精确解.  , 2004, 53(3): 688-692. doi: 10.7498/aps.53.688
    [18] 黄定江, 张鸿庆. 扩展的双曲函数法和Zakharov方程组的新精确孤立波解.  , 2004, 53(8): 2434-2438. doi: 10.7498/aps.53.2434
    [19] 李德生, 张鸿庆. 非线性耦合标量场方程的新双周期解(Ⅰ).  , 2003, 52(10): 2373-2378. doi: 10.7498/aps.52.2373
    [20] 石玉仁, 吕克璞, 段文山, 洪学仁, 赵金保, 杨红娟. 组合KdV方程的显式精确解.  , 2003, 52(2): 267-270. doi: 10.7498/aps.52.267
计量
  • 文章访问数:  7105
  • PDF下载量:  691
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-26
  • 修回日期:  2016-03-04
  • 刊出日期:  2016-07-05

/

返回文章
返回
Baidu
map