[1] |
Chen Feng, Ren Gang. Analysis of quantum properties of two-mode coupled harmonic oscillator based on entangled state representation. Acta Physica Sinica,
2024, 73(23): 230302.
doi: 10.7498/aps.73.20241303
|
[2] |
Gao Jie, Zhang Min-Cang. Tridiagonal representation with pseudospin symmetry for a noncentral electric dipole and a ring-shaped anharmonic oscillator potential. Acta Physica Sinica,
2016, 65(2): 020301.
doi: 10.7498/aps.65.020301
|
[3] |
Ding Guang-Tao. A study on the first integrals of harmonic oscillators. Acta Physica Sinica,
2013, 62(6): 064502.
doi: 10.7498/aps.62.064502
|
[4] |
Zhang Min-Cang. Pseudospin symmetry for a noncentral electric dipole ring-shaped potential in the tridiagonal representation. Acta Physica Sinica,
2012, 61(24): 240301.
doi: 10.7498/aps.61.240301
|
[5] |
Wang Jian-Hui, Xiong Shuang-Quan, He Ji-Zhou, Liu Jiang-Tao. Performance analysis of a quantum heat engine working with a particle in a one-dimensional harmonic trap. Acta Physica Sinica,
2012, 61(8): 080509.
doi: 10.7498/aps.61.080509
|
[6] |
Xia Jian-Ping, Ren Xue-Zao, Cong Hong-Lu, Wang Xu-Wen, He Shu. Quantum evolution of entanglement property in two-qubit and oscillator coupling system. Acta Physica Sinica,
2012, 61(1): 014208.
doi: 10.7498/aps.61.014208
|
[7] |
Lu Zhi-Xin, Cao Li. Stochastic resonance of square wave signal in an overdamped harmonic oscillator. Acta Physica Sinica,
2011, 60(11): 110501.
doi: 10.7498/aps.60.110501
|
[8] |
Zhang Li, Liu Li, Cao Li. Stochastic resonance in an overdamped harmonic oscillator. Acta Physica Sinica,
2010, 59(3): 1494-1498.
doi: 10.7498/aps.59.1494
|
[9] |
Wang Xiao-Qin, Zhou Li-You, Lu Huai-Xin. Dynamical evolution for time-dependent qscillators. Acta Physica Sinica,
2008, 57(11): 6736-6740.
doi: 10.7498/aps.57.6736
|
[10] |
Xu Xiu-Wei, Ren Ting-Qi, Liu Shu-Yan, Dong Yong-Mian, Zhao Ji-De. General solution for multi-dimensional coupled and forced quantum oscillator. Acta Physica Sinica,
2006, 55(2): 535-538.
doi: 10.7498/aps.55.535
|
[11] |
Long Shu-Ming, Ran Qi-Wu, Xiong Xiao-Jun. The space dent of sphere-symmetry harmonic oscillator in ground state. Acta Physica Sinica,
2005, 54(3): 1044-1047.
doi: 10.7498/aps.54.1044
|
[12] |
Li Wen-Bo. . Acta Physica Sinica,
2002, 51(3): 547-553.
doi: 10.7498/aps.51.547
|
[13] |
Chen Chang-Yuan, Sun Dong-Sheng, Liu You-Wen, Cheng Tian-Long. . Acta Physica Sinica,
2002, 51(3): 468-473.
doi: 10.7498/aps.51.468
|
[14] |
LI BO-ZANG, LI LING. RIGOROUS EVOLVING STATES OF EXP-SIN TYPE FOR THE GENERALIZED TIME-DEPENDENT QUANTUM OSCILLATOR WITH A MOVING BOUNDARY. Acta Physica Sinica,
2001, 50(9): 1654-1660.
doi: 10.7498/aps.50.1654
|
[15] |
LIU DENG-YUN. THE BERRY PHASE OF THE QUANTUM STATE OF A HARMONIC OSCILLATOR WITH TIME-DEPENDENT FREQUENCY AND BOUNDARY CONDITIONS. Acta Physica Sinica,
1998, 47(8): 1233-1240.
doi: 10.7498/aps.47.1233
|
[16] |
LING RUI-LIANG, FENG JIN-FU. AN EXACT WAVEFUNCTION OF DAMPED HARMONIC OSCILLATOR. Acta Physica Sinica,
1998, 47(12): 1952-1956.
doi: 10.7498/aps.47.1952
|
[17] |
LONG JUN-YAN. KUSTANNHEIMO -STIEFEI TRANSFORMATION OF BARY-ON STRUCTURE MODEL WITH A FOUR-DIMENSI-ONAL COVARIANT HARMONIC OSCILLATOR. Acta Physica Sinica,
1994, 43(5): 717-724.
doi: 10.7498/aps.43.717
|
[18] |
R. D. KHAN, ZHANG JIE-LUN, DING SHENG, SHEN WEN-DA. EVOLUTION OF A VELOCITY-DEPENDENT FORCED QUANTUM ANHARMONIC OSCILLATOR. Acta Physica Sinica,
1993, 42(5): 699-704.
doi: 10.7498/aps.42.699
|
[19] |
CHEN WEI, CHANG ZHE, GUO HAN-YING. CLASSICAL q-DEFORMED HARMONIC OSCILLATORS AND THEIR ? QUANTIZATION. Acta Physica Sinica,
1991, 40(3): 337-344.
doi: 10.7498/aps.40.337
|
[20] |
PENG HUAN-WU. QUANTUM MECHANICAL TREATMENT OF A DAMPED HARMONIC OSCILLATOR. Acta Physica Sinica,
1980, 29(8): 1084-1089.
doi: 10.7498/aps.29.1084
|