搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于水窗高次谐波阿秒光源的瞬态吸收光谱装置

邓意民 张煜 陆培祥 曹伟

引用本文:
Citation:

基于水窗高次谐波阿秒光源的瞬态吸收光谱装置

邓意民, 张煜, 陆培祥, 曹伟

Apparatus for transient absorption spectroscopy based on water-window high-order harmonic attosecond light sources

DENG Yimin, ZHANG Yu, LU Peixiang, CAO Wei
cstr: 32037.14.aps.74.20250550
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 以软X射线相干光源作为超快探针的瞬态吸收光谱技术在化学、生物、材料领域有着广泛的应用前景. 本文介绍一种基于桌面式软X射线光源的瞬态吸收装置的设计, 该装置利用短波红外激光来驱动软X射线高次谐波阿秒光源的产生, 最大光子能量进入水窗波段(>300 eV). 产生的阿秒光源与近红外激光通过孔镜合束实现了泵浦探测光路的时空同步, 1 h内时间稳定性优于10 fs. 利用该装置开展了氩L边及碳K边瞬态吸收光谱的初步研究, 为实现元素分辨、时间分辨、跃迁通道分辨的电子动力学测量提供了重要的工具.
    Transient absorption spectroscopy using soft X-ray coherent light sources as ultrafast probes holds significant potential applications in chemistry, biology, and materials science. This article presents the design of a transient absorption apparatus based on desktop soft X-ray light sources. A commercial femtosecond laser system (4.4 mJ, 25 fs, 800 nm, 1 kHz) drives an optical parametric amplifier, generating a 900 μJ, 28 fs, 1440 nm short-wavelength infrared (SWIR) pulse. This SWIR pulse is spectrally broadened and temporally compressed into a few-cycle pulse (400 μJ, 16.5 fs, 1530 nm) by a hollow-core fiber compressor. Then, few-cycle SWIR pulse drives the generation of attosecond soft X-ray high-order harmonic radiation, with the maximum photon energy extending into the water window region (>300 eV). The spectral resolution of the soft X-ray spectrometer is determined to be 334 meV at 243 eV. The remaining 800 nm pump pulse from the OPA system is combined with the high-order harmonic soft X-ray probe by using a hole mirror, forming a Mach-Zehnder interferometer with a time jitter of less than 10 fs during the one-hour data acquisition. This setup demonstrates the feasibility of performing time-resolved soft X-ray spectroscopy in a compact experimental configuration. Preliminary studies of transient absorption near the argon L-edge and carbon K-edge are conducted, demonstrating that this system can be used as a powerful tool for element-specific, time-resolved, and transition-channel-resolved investigations of electron dynamics.
      通信作者: 曹伟, weicao@hust.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2023YFA1406800, 2024YFE0205800)、国家自然科学基金(批准号: 12274158, 12021004)和光学信息与模式识别湖北省重点实验室开放基金(批准号: 202304)资助的课题.
      Corresponding author: CAO Wei, weicao@hust.edu.cn
    • Funds: Project supported by the the National Key R&D Program of China (Grant Nos. 2023YFA1406800, 2024YFE0205800), the National Natural Science Foundation of China (Grant Nos. 12274158, 12021004), and the Open Fund Project of Hubei Key Laboratory of Optical Information and Pattern Recognition of Wuhan Institute of Technology, China (Grant No. 202304).
    [1]

    Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R, Krausz F 2010 Nature 466 739Google Scholar

    [2]

    Schultze M, Ramasesha K, Pemmaraju C, Sato S, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M, Leone S R 2014 Science 346 1348Google Scholar

    [3]

    Lucchini M, Sato S A, Ludwig A, Herrmann J, Volkov M, Kasmi L, Shinohara Y, Yabana K, Gallmann L, Keller U 2016 Science 353 916Google Scholar

    [4]

    Lysenko S, Rua A, Vikhnin V, Jimenez J, Fernandez F, Liu H 2006 Appl. Surf. Sci. 252 5512Google Scholar

    [5]

    Zhang G P, Hübner W 2000 Phys. Rev. Lett. 85 3025Google Scholar

    [6]

    Pertot Y, Schmidt C, Matthews M, Chauvet A, Huppert M, Svoboda V, von Conta A, Tehlar A, Baykusheva D, Wolf J P, Wörner H J 2017 Science 355 264Google Scholar

    [7]

    Barreau L, Ross A D, Garg S, Kraus P M, Neumark D M, Leone S R 2020 Sci. Rep. 10 5773Google Scholar

    [8]

    Zinchenko K S, Ardana-Lamas F, Lanfaloni V U, Luu T T, Pertot Y, Huppert M, Wörner H J 2023 Sci. Rep. 13 3059Google Scholar

    [9]

    Chew A, Douguet N, Cariker C, Li J, Lindroth E, Ren X, Yin Y, Argenti L, Hill W T, Chang Z 2018 Phys. Rev. A 97 031407Google Scholar

    [10]

    Saito N, Sannohe H, Ishii N, Kanai T, Kosugi N, Wu Y, Chew A, Han S, Chang Z, Itatani J 2019 Optica 6 1542Google Scholar

    [11]

    Saito N, Douguet N, Sannohe H, Ishii N, Kanai T, Wu Y, Chew A, Han S, Schneider B I, Olsen J, Argenti L, Chang Z, Itatani J 2021 Phys. Rev. Res. 3 043222Google Scholar

    [12]

    Zinchenko K S, Ardana-Lamas F, Seidu I, Neville S P, van der Veen J, Lanfaloni V U, Schuurman M S, Wörner H J 2021 Science 371 489Google Scholar

    [13]

    Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M, Chang Z 2017 Nat. Commun. 8 186Google Scholar

    [14]

    Smith A D, Balčiu̅nas T, Chang Y P, Schmidt C, Zinchenko K, Nunes F B, Rossi E, Svoboda V, Yin Z, Wolf J P, Wörner H J 2020 J. Phys. Chem. Lett. 11 1981Google Scholar

    [15]

    Van Kuiken B E, Cho H, Hong K, Khalil M, Schoenlein R W, Kim T K, Huse N 2016 J. Phys. Chem. Lett. 7 465Google Scholar

    [16]

    Garratt D, Misiekis L, Wood D, Larsen E W, Matthews M, Alexander O, Ye P, Jarosch S, Ferchaud C, Strüber C, Johnson A S, Bakulin A A, Penfold T J, Marangos J P 2022 Nat. Commun. 13 3414Google Scholar

    [17]

    Sekikawa T, Saito N, Kurimoto Y, Ishii N, Mizuno T, Kanai T, Itatani J, Saita K, Taketsugu T 2023 Phys. Chem. Chem. Phys. 25 8497Google Scholar

    [18]

    Bhattacherjee A, Pemmaraju C D, Schnorr K, Attar A R, Leone S R 2017 J. Am. Chem. Soc. 139 16576Google Scholar

    [19]

    Bhattacherjee A, Leone S R 2018 Acc. Chem. Res. 51 3203Google Scholar

    [20]

    Scutelnic V, Tsuru S, Pápai M, Yang Z, Epshtein M, Xue T, Haugen E, Kobayashi Y, Krylov A I, Møller K B, Coriani S, Leone S R 2021 Nat. Commun. 12 5003Google Scholar

    [21]

    Lee J P, Avni T, Alexander O, Maimaris M, Ning H, Bakulin A A, Burden P G, Moutoulas E, Georgiadou D G, Brahms C, Travers J C, Marangos J P, Ferchaud C 2024 Optica 11 1320Google Scholar

    [22]

    Teichmann S M, Silva F, Cousin S L, Hemmer M, Biegert J 2016 Nat. Commun. 7 11493Google Scholar

    [23]

    Popmintchev T, Chen M C, Bahabad A, Gerrity M, Sidorenko P, Cohen O, Christov I P, Murnane M M, Kapteyn H C 2009 Proc. Natl. Acad. Sci. U. S. A. 106 10516Google Scholar

    [24]

    Pupeikis J, Chevreuil P A, Bigler N, Gallmann L, Phillips C R, Keller U 2020 Optica 7 168Google Scholar

    [25]

    Ott C, Kaldun A, Argenti L, Raith P, Meyer K, Laux M, Zhang Y, Blättermann A, Hagstotz S, Ding T, Heck R, Madroñero J, Martín F, Pfeifer T 2014 Nature 516 374Google Scholar

  • 图 1  利用少周期短波红外激光产生软X射线进行瞬态吸收实验光路示意图

    Fig. 1.  Schematic of transient absorption experimental carried by soft X-ray generated by few-cycle infrared laser.

    图 2  少周期短波红外激光的产生光路示意图.

    Fig. 2.  Schematic of few-cycle SWIR laser generation.

    图 3  经过空芯光纤系统展宽后的短波红外光谱

    Fig. 3.  Spectrum of SWIR laser pulse after spectral broadening in hollow-core fiber.

    图 4  FROG脉宽测量结果 (a)测量得到的FROG trace; (b)重构得到的FROG trace; (c)重构得到的少周期短波红外光谱强度及相位; (d)重构得到的少周期短波红外时域结构

    Fig. 4.  Results of FROG measurement: (a) Measured FROG trace; (b) reconstructed FROG trace; (c) reconstructed spectral amplitude and phase of the few-cycle SWIR laser pulse; (d) constructed temporal structure of the SWIR laser pulse.

    图 5  产生软X射线高次谐波的气体靶室截面图

    Fig. 5.  Cross section view of the gas target for soft X-ray high harmonic generation.

    图 6  软X射线光谱仪

    Fig. 6.  Home-built soft X-ray spectrometer.

    图 7  不同气体产生的软X射线高次谐波光谱 (a)氖气; (b)氦气

    Fig. 7.  Soft X-ray high harmonic spectra from different gases: (a) Ne; (b) He.

    图 8  (a)氩气的二维静态吸收谱; (b)在氩的$\rm 2p_{2/3}^{-1}4s $吸收线附近对(a)进行空间积分后的吸收线型, 红色实线表示利用洛伦兹线型与高斯函数卷积的拟合结果, 结果表明该光谱仪分辨率约为344 meV

    Fig. 8.  (a) Two-dimensional static absorption spectrum of Ar gas; (b) spatial integrated absorption spectrum in panel (a) near $\rm 2p_{2/3}^{-1}4s$ transition line of Ar (blue), red solid line represents the fitting by convoluting the Lorentz line shape with a Gaussian function, the fitting results indicate that the spectrometer resolution is approximately 334 meV.

    图 9  (a)合频信号光谱随延时的变化, 白色圆圈线为合频信号中心波长位置; (b)合频信号中心波长随延时的变化(蓝线), 黄线是对蓝线的线性拟合

    Fig. 9.  (a) Sum-frequency generation spectrum as a function of delay, the white circles indicate the positions of central wavelength; (b) central wavelength of the sum-frequency generation as a function of delay (blue), yellow line represents the linear fitting of the blue line.

    图 10  3 h内相对延时的漂移曲线

    Fig. 10.  Relative delay drift over 3 h.

    图 11  氩原子的瞬态吸收实验结果

    Fig. 11.  Experimental results of transient absorption of helium atoms.

    图 12  吸收峰$\rm 2p_{2/3}^{-1}4s $ (a), $\rm 2p_{2/3}^{-1}5s/3d$ (b)和 $\rm 2p_{1/3}^{-1}5s/3d$ (c)的强度随延迟的变化, 其中蓝色实线为实验数据, 红线为高斯拟合结果

    Fig. 12.  Intensity of the absorption peak $\rm 2p_{2/3}^{-1}4s $ (a), $\rm 2p_{2/3}^{-1}5s/3d$ (b) and $\rm 2p_{1/3}^{-1}5s/3d$ (c) as a function of delay. The solid blue lines are the measured results, and the red lines represent the Gaussian fitting.

    图 13  CO2的瞬态吸收实验结果

    Fig. 13.  Experimental results of transient absorption of CO2.

    Baidu
  • [1]

    Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R, Krausz F 2010 Nature 466 739Google Scholar

    [2]

    Schultze M, Ramasesha K, Pemmaraju C, Sato S, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M, Leone S R 2014 Science 346 1348Google Scholar

    [3]

    Lucchini M, Sato S A, Ludwig A, Herrmann J, Volkov M, Kasmi L, Shinohara Y, Yabana K, Gallmann L, Keller U 2016 Science 353 916Google Scholar

    [4]

    Lysenko S, Rua A, Vikhnin V, Jimenez J, Fernandez F, Liu H 2006 Appl. Surf. Sci. 252 5512Google Scholar

    [5]

    Zhang G P, Hübner W 2000 Phys. Rev. Lett. 85 3025Google Scholar

    [6]

    Pertot Y, Schmidt C, Matthews M, Chauvet A, Huppert M, Svoboda V, von Conta A, Tehlar A, Baykusheva D, Wolf J P, Wörner H J 2017 Science 355 264Google Scholar

    [7]

    Barreau L, Ross A D, Garg S, Kraus P M, Neumark D M, Leone S R 2020 Sci. Rep. 10 5773Google Scholar

    [8]

    Zinchenko K S, Ardana-Lamas F, Lanfaloni V U, Luu T T, Pertot Y, Huppert M, Wörner H J 2023 Sci. Rep. 13 3059Google Scholar

    [9]

    Chew A, Douguet N, Cariker C, Li J, Lindroth E, Ren X, Yin Y, Argenti L, Hill W T, Chang Z 2018 Phys. Rev. A 97 031407Google Scholar

    [10]

    Saito N, Sannohe H, Ishii N, Kanai T, Kosugi N, Wu Y, Chew A, Han S, Chang Z, Itatani J 2019 Optica 6 1542Google Scholar

    [11]

    Saito N, Douguet N, Sannohe H, Ishii N, Kanai T, Wu Y, Chew A, Han S, Schneider B I, Olsen J, Argenti L, Chang Z, Itatani J 2021 Phys. Rev. Res. 3 043222Google Scholar

    [12]

    Zinchenko K S, Ardana-Lamas F, Seidu I, Neville S P, van der Veen J, Lanfaloni V U, Schuurman M S, Wörner H J 2021 Science 371 489Google Scholar

    [13]

    Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M, Chang Z 2017 Nat. Commun. 8 186Google Scholar

    [14]

    Smith A D, Balčiu̅nas T, Chang Y P, Schmidt C, Zinchenko K, Nunes F B, Rossi E, Svoboda V, Yin Z, Wolf J P, Wörner H J 2020 J. Phys. Chem. Lett. 11 1981Google Scholar

    [15]

    Van Kuiken B E, Cho H, Hong K, Khalil M, Schoenlein R W, Kim T K, Huse N 2016 J. Phys. Chem. Lett. 7 465Google Scholar

    [16]

    Garratt D, Misiekis L, Wood D, Larsen E W, Matthews M, Alexander O, Ye P, Jarosch S, Ferchaud C, Strüber C, Johnson A S, Bakulin A A, Penfold T J, Marangos J P 2022 Nat. Commun. 13 3414Google Scholar

    [17]

    Sekikawa T, Saito N, Kurimoto Y, Ishii N, Mizuno T, Kanai T, Itatani J, Saita K, Taketsugu T 2023 Phys. Chem. Chem. Phys. 25 8497Google Scholar

    [18]

    Bhattacherjee A, Pemmaraju C D, Schnorr K, Attar A R, Leone S R 2017 J. Am. Chem. Soc. 139 16576Google Scholar

    [19]

    Bhattacherjee A, Leone S R 2018 Acc. Chem. Res. 51 3203Google Scholar

    [20]

    Scutelnic V, Tsuru S, Pápai M, Yang Z, Epshtein M, Xue T, Haugen E, Kobayashi Y, Krylov A I, Møller K B, Coriani S, Leone S R 2021 Nat. Commun. 12 5003Google Scholar

    [21]

    Lee J P, Avni T, Alexander O, Maimaris M, Ning H, Bakulin A A, Burden P G, Moutoulas E, Georgiadou D G, Brahms C, Travers J C, Marangos J P, Ferchaud C 2024 Optica 11 1320Google Scholar

    [22]

    Teichmann S M, Silva F, Cousin S L, Hemmer M, Biegert J 2016 Nat. Commun. 7 11493Google Scholar

    [23]

    Popmintchev T, Chen M C, Bahabad A, Gerrity M, Sidorenko P, Cohen O, Christov I P, Murnane M M, Kapteyn H C 2009 Proc. Natl. Acad. Sci. U. S. A. 106 10516Google Scholar

    [24]

    Pupeikis J, Chevreuil P A, Bigler N, Gallmann L, Phillips C R, Keller U 2020 Optica 7 168Google Scholar

    [25]

    Ott C, Kaldun A, Argenti L, Raith P, Meyer K, Laux M, Zhang Y, Blättermann A, Hagstotz S, Ding T, Heck R, Madroñero J, Martín F, Pfeifer T 2014 Nature 516 374Google Scholar

  • [1] 张春艳. H离子团簇高次谐波平台展宽与团簇膨胀.  , 2023, 72(21): 214203. doi: 10.7498/aps.72.20230534
    [2] 麻永俊, 李睿晅, 李逵, 张光银, 钮津, 麻云凤, 柯长军, 鲍捷, 陈英爽, 吕春, 李捷, 樊仲维, 张晓世. 基于高次谐波X射线光源的三维纳米相干衍射成像技术.  , 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [3] 姚惠东, 崔波, 马思琦, 余超, 陆瑞锋. 原子错位堆栈增强双层MoS2高次谐波产率.  , 2021, 70(13): 134207. doi: 10.7498/aps.70.20210731
    [4] 徐佳伟, 许传喜, 张瑞田, 朱小龙, 冯文天, 赵冬梅, 梁贵云, 郭大龙, 高永, 张少锋, 苏茂根, 马新文. 态选择电荷交换实验测量以及对天体物理软X射线发射模型的检验.  , 2021, 70(8): 080702. doi: 10.7498/aps.70.20201685
    [5] 范鑫, 梁红静, 单立宇, 闫博, 高庆华, 马日, 丁大军. 基于高次谐波产生的极紫外偏振涡旋光.  , 2020, 69(4): 044203. doi: 10.7498/aps.69.20190834
    [6] 蔡怀鹏, 高健, 李博原, 刘峰, 陈黎明, 远晓辉, 陈民, 盛政明, 张杰. 相对论圆偏振激光与固体靶作用产生高次谐波.  , 2018, 67(21): 214205. doi: 10.7498/aps.67.20181574
    [7] 李夏至, 邹德滨, 周泓宇, 张世杰, 赵娜, 余德尧, 卓红斌. 等离子体光栅靶的表面粗糙度对高次谐波产生的影响.  , 2017, 66(24): 244209. doi: 10.7498/aps.66.244209
    [8] 罗香怡, 刘海凤, 贲帅, 刘学深. 非均匀激光场中氢分子离子高次谐波的增强.  , 2016, 65(12): 123201. doi: 10.7498/aps.65.123201
    [9] 管仲, 李伟, 王国利, 周效信. 激光驱动晶体发射高次谐波的特性研究.  , 2016, 65(6): 063201. doi: 10.7498/aps.65.063201
    [10] 俞祖卿, 何峰. 吸收多个远紫外光子生成的高次谐波的多重截止结构.  , 2016, 65(22): 224206. doi: 10.7498/aps.65.224206
    [11] 余朝, 孙真荣, 郭东升. 高次谐波的Guo-Åberg-Crasemann理论及其截断定律.  , 2015, 64(12): 124207. doi: 10.7498/aps.64.124207
    [12] 陈火耀, 刘正坤, 王庆博, 易涛, 杨国洪, 洪义麟, 付绍军. 软X射线全息平焦场光栅的条纹弯曲现象及其对光谱分辨率的影响.  , 2014, 63(23): 234203. doi: 10.7498/aps.63.234203
    [13] 陈高, 杨玉军, 郭福明. 晶体环境下高次谐波谱的截止频率分析.  , 2013, 62(8): 083202. doi: 10.7498/aps.62.083202
    [14] 刘正坤, 邱克强, 陈火耀, 刘颖, 徐向东, 付绍军, 王琛, 安红海, 方智恒. 软X射线双频光栅剪切干涉法研究.  , 2013, 62(7): 070703. doi: 10.7498/aps.62.070703
    [15] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响.  , 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [16] 马天鹏, 胡立群, 陈开云. 通过软X射线信号研究芯部等离子体的结构.  , 2009, 58(2): 1110-1114. doi: 10.7498/aps.58.1110
    [17] 鄢 芬, 崔明启, 陈 凯, 孙立娟, 席识博, 周克瑾, 郑 雷, 赵屹东, 王占山, 朱京涛, 张 众, 赵 佳. 基于多层膜偏振元件的软X射线磁光Faraday偏转测量.  , 2008, 57(5): 2860-2865. doi: 10.7498/aps.57.2860
    [18] 王 琛, 王 伟, 吴 江, 董佳钦, 孙今人, 王瑞容, 傅思祖, 顾 援, 王世绩, 黄关龙, 林尊琪, 张国平, 张覃鑫, 郑无敌. 类镍钽x射线激光实验研究.  , 2004, 53(11): 3752-3755. doi: 10.7498/aps.53.3752
    [19] 王大威, 刘婷婷, 杨宏, 蒋红兵, 龚旗煌. 介质的非均匀性对高次谐波影响的研究.  , 2002, 51(9): 2034-2037. doi: 10.7498/aps.51.2034
    [20] 喻 胜, 李宏福, 谢仲怜, 罗 勇. 渐变复合腔回旋管高次谐波注-波互作用非线性模拟.  , 2000, 49(12): 2455-2459. doi: 10.7498/aps.49.2455
计量
  • 文章访问数:  562
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-25
  • 修回日期:  2025-05-12
  • 上网日期:  2025-05-17
  • 刊出日期:  2025-08-05

/

返回文章
返回
Baidu
map