搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高电荷态N6+离子与H原子碰撞中态选择电荷交换过程理论研究

牛佳洁 张唯唯 祁月盈 高俊文

引用本文:
Citation:

高电荷态N6+离子与H原子碰撞中态选择电荷交换过程理论研究

牛佳洁, 张唯唯, 祁月盈, 高俊文

Theoretical study of state-selective charge exchange processes in collisions between highly charged N6+ ions and H atoms

NIU Jiajie, ZHANG Weiwei, QI Yueying, GAO Junwen
cstr: 32037.14.aps.74.20250541
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本研究采用双电子半经典渐近态强耦合方法, 系统研究了N6+(1s)离子与H(1s)原子碰撞体系在 0.25—225 keV/u 能区内的单电子俘获过程. 计算得到了自旋平均与自旋分辨的总截面、主量子数n分辨以及轨道量子数$n\ell $分辨的截面数据, 并与现有实验结果及多种理论方法的计算结果进行系统对比分析. 计算结果表明, 总截面在低能区对能量依赖性较弱, 而在高能区则呈现单调递减趋势. 态分辨截面分析显示, 低能区各子壳层之间存在显著的多通道耦合效应; 而在中高能区, 截面在轨道量子数$\ell $上的分布趋近于统计规律, 即电子更倾向于被俘获至具有较高$\ell $值的轨道. 研究结果进一步表明, 对高电荷态离子碰撞体系的准确建模需同时考虑高激发态通道间的耦合效应及电子关联作用. 然而, 不同理论方法在低能区表现出显著差异, 说明对进一步开展具备态分辨能力的实验测量有迫切需求. 本工作提供的截面数据, 对天体物理和实验室等离子体的诊断建模研究具有重要参考意义. 本文数据集可在https://doi.org/10.57760/sciencedb.j00213.00143中访问获取.
    In this work, we systematically investigate single-electron capture process in the collision between N6+(1s) ions and H(1s) atoms in a wide energy range from 0.25 to 225 keV/u by using a two-electron semiclassical asymptotic-state close-coupling method. Spin-averaged and spin-resolved total cross sections, as well as n-resolved and $n\ell $-resolved partial cross sections, are calculated and comprehensively compared with existing experimental measurements and theoretical predictions. The results show at low energies (<10 keV/u), energy dependence of the total cross section is weak, and it follows a monotonically decreasing trend at higher energies. The analysis of $n\ell $-resolved cross sections reveals the strong coupling effects between various channels at low energies, while at high energies the relative $\ell $ distributions in each $n\ell $-resolved cross section approximately follow the statistical $\ell $ distribution, for which the electrons are therefore mainly captured into subshells of the maximum $\ell $. The present study demonstrates the importance of a two-electron treatment taking into account electronic correlation and the use of extended basis sets in the close-coupling scheme. However, substantial discrepancies exist among theoretical approaches at low energies. It is clear that further experimental and theoretical efforts are required to draw definite conclusions. Our work provides a complete and consistent set of cross sections in a broad range of collision energies, which can be used for various plasma diagnosis and modeling. The datasets presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00143.
      通信作者: 祁月盈, yying_qi@zjxu.edu.cn ; 高俊文, gaojunwen@hznu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12374229)资助的课题.
      Corresponding author: QI Yueying, yying_qi@zjxu.edu.cn ; GAO Junwen, gaojunwen@hznu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12374229).
    [1]

    Fritsch W, Lin C D 1991 Phys. Rep. 202 1Google Scholar

    [2]

    Fogle M, Wulf D, Morgan K, McCammon D, Seely D G, Draganić I N, Havener C C 2014 Phys. Rev. A 89 042705Google Scholar

    [3]

    Gu L, Kaastra J, Raassen A J J 2016 A&A 588 A52Google Scholar

    [4]

    Anderson H, von Hellermann M G, Hoekstra R, Horton L D, Howman A C, Konig R W T, Martin R, Olson R E, Summers H P 2000 Plasma Phys. Control. Fusion 42 781Google Scholar

    [5]

    Delabie E, Brix M, Giroud C, Jaspers R J E, Marchuk O, O'Mullane M G, Ralchenko Y, Surrey E, von Hellermann M G, Zastrow K D, Contributors J E 2010 Plasma Phys. Control. Fusion 52 125008Google Scholar

    [6]

    Isler R C 1977 Phys. Rev. Lett. 38 1359Google Scholar

    [7]

    Isler R C 1994 Plasma Phys. Control. Fusion 36 171Google Scholar

    [8]

    von Hellermann M G, Bertschinger G, Biel W, Giroud C, Jaspers R, Jupen C, Marchuk O, Mullane M O, Summers H P, Whiteford A, Zastrow K D 2005 Phys. Scr. 2005 19Google Scholar

    [9]

    McDermott R M, Dux R, Pütterich T, Geiger B, Kappatou A, Lebschy A, Bruhn C, Cavedon M, Frank A, Harder N D, Viezzer E, the A U T 2018 Plasma Phys. Control. Fusion 60 095007Google Scholar

    [10]

    Lisse C M, Dennerl K, Englhauser J, Harden M, Marshall F E, Mumma M J, Petre R, Pye J P, Ricketts M J, Schmitt J, Trumper J, West R G 1996 Science 274 205Google Scholar

    [11]

    Cravens T E 1997 Geophys. Res. Lett. 24 105Google Scholar

    [12]

    Hoekstra R, Anderson H, Bliek F W, Hellermann M v, Maggi C F, Olson R E, Summers H P 1998 Plasma Phys. Control. Fusion 40 1541Google Scholar

    [13]

    Cravens T E 2000 Astrophys. J. 532 L153Google Scholar

    [14]

    Cravens T E 2002 Science 296 1042Google Scholar

    [15]

    Holmstrom M, Barabash S, Kallio E 2001 Geophys. Res. Lett. 28 1287Google Scholar

    [16]

    Beiersdorfer P, Boyce K R, Brown G V, Chen H, Kahn S M, Kelley R L, May M, Olson R E, Porter F S, Stahle C K, Tillotson W A 2003 Science 300 1558Google Scholar

    [17]

    Lallement R 2004 A&A 418 143Google Scholar

    [18]

    Branduardi-Raymont G, Bhardwaj A, Elsner R F, Gladstone G R, Ramsay G, Rodriguez P, Soria R, Waite Jr J H, Cravens T E 2007 A&A 463 761Google Scholar

    [19]

    Robertson I P, Kuntz K D, Collier M R, Cravens T E, Snowden S L 2009 AIP Conference Proceedings 1156 52Google Scholar

    [20]

    Wargelin B J, Kornbleuth M, Martin P L, Juda M 2014 Astrophys. J. 796 28Google Scholar

    [21]

    Audard M, Behar E, Güdel M, Raassen A J J, Porquet D, Mewe R, Foley C R, Bromage G E 2001 A&A 365 L329Google Scholar

    [22]

    Schwadron N A, Cravens T E 2000 Astrophys. J. 544 558Google Scholar

    [23]

    Mawhorter R J, Chutjian A, Cravens T E, Djurić N, Hossain S, Lisse C M, MacAskill J A, Smith S J, Simcic J, Williams I D 2007 Phys. Rev. A 75 032704Google Scholar

    [24]

    Bodewits D, Hoekstra R, Seredyuk B, McCullough R W, Jones G H, Tielens A G G M 2006 Astrophys. J. 642 593Google Scholar

    [25]

    Galeazzi M, Chiao M, Collier M R, Cravens T, Koutroumpa D, Kuntz K D, Lallement R, Lepri S T, McCammon D, Morgan K, Porter F S, Robertson I P, Snowden S L, Thomas N E, Uprety Y, Ursino E, Walsh B M 2014 Nature 512 171Google Scholar

    [26]

    Carruthers G R, Page T, Meier R R 1976 J. Geophys. Res. 81 1664Google Scholar

    [27]

    Rairden R L, Frank L A, Craven J D 1986 J. Geophys. Res. 91 13613Google Scholar

    [28]

    Dennerl K, Lisse C M, Bhardwaj A, Burwitz V, Englhauser J, Gunell H, Holmström M, Jansen F, Kharchenko V, Rodríguez-Pascual P M 2006 A&A 451 709Google Scholar

    [29]

    Koutroumpa D, Modolo R, Chanteur G, Chaufray J Y, Kharchenko V, Lallement R 2012 A&A 545 A153Google Scholar

    [30]

    Liang G Y, Sun T R, Lu H Y, Zhu X L, Wu Y, Li S B, Wei H G, Yuan D W, Zhong J Y, Cui W, Ma X W, Zhao G 2023 Astrophys. J. 943 85Google Scholar

    [31]

    Panov M N, Basalaev A A, Lozhkin K O 1983 Phys. Scr. 1983 124Google Scholar

    [32]

    Meyer F W, Howald A M, Havener C C, Phaneuf R A 1985 Phys. Rev. A 32 3310Google Scholar

    [33]

    Kearns D M, McCullough R W, Trassl R, Gilbody H B 2003 J. Phys. B 36 3653Google Scholar

    [34]

    Cumbee R S, Mullen P D, Lyons D, Shelton R L, Fogle M, Schultz D R, Stancil P C 2018 Astrophys. J. 852 7Google Scholar

    [35]

    Olson R E, Salop A 1977 Phys. Rev. A 16 531Google Scholar

    [36]

    Wu Y, Stancil P C, Liebermann H P, Funke P, Rai S N, Buenker R J, Schultz D R, Hui Y, Draganic I N, Havener C C 2011 Phys. Rev. A 84 022711Google Scholar

    [37]

    Igenbergs K, Schweinzer J, Veiter A, Perneczky L, Frühwirth E, Wallerberger M, Olson R E, Aumayr F 2012 J. Phys. B 45 065203Google Scholar

    [38]

    Zhang R T, Liao T, Zhang C J, Zou L P, Guo D L, Gao Y, Gu L Y, Zhu X L, Zhang S F, Ma X 2023 Mon. Not. R. Astron. Soc. 520 1417Google Scholar

    [39]

    Sisourat N, Pilskog I, Dubois A 2011 Phys. Rev. A 84 052722Google Scholar

    [40]

    Gao J W, Wu Y, Sisourat N, Wang J G, Dubois A 2017 Phys. Rev. A 96 052703Google Scholar

    [41]

    Gao J W, Qi Y Y, Wu Y, Wang J G 2023 Astrophys. J. 944 167Google Scholar

    [42]

    Gao J W, Qi Y Y, Wu Y, Wang J G, Sisourat N, Dubois A 2024 Phys. Rev. A 109 012801Google Scholar

    [43]

    Havener C C D I N, Schultz D R, Wu Y, Stancil P C (unpublished, the data is taken from Ref. [36].

    [44]

    Errea L F, Guzmán F, Illescas C, Méndez L, Pons B, Riera A, Suárez J 2006 Plasma Phys. Control. Fusion 48 1585Google Scholar

    [45]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [46]

    魏宝仁, 张瑞田 2025 中国科学: 物理学 力学 天文学 55 250008Google Scholar

    Wei B, Zhang R 2025 Sci. Sin. Phys. Mech. Astron. 55 250008Google Scholar

    [47]

    吴怡娇, 孟天鸣, 张献文, 谭旭, 马蒲芳, 殷浩, 任百惠, 屠秉晟, 张瑞田, 肖君, 马新文, 邹亚明, 魏宝仁 2024 73 240701Google Scholar

    Wu Y J, Meng T M, Zhang X W, Tan X, Ma P F, Yin H, Ren B H, Tu B S, Zhang R T, Xiao J, Ma X W, Zou Y M, Wei B R 2024 Acta Phys. Sin. 73 240701Google Scholar

    [48]

    Zhu X L, Cui S C, Xing D D, Xu J W, Najjari B, Zhao D M, Guo D L, Gao Y, Zhang R T, Su M G, Zhang S F, Ma X W 2024 Chin. Phys. B 33 023401Google Scholar

    [49]

    Ma X W, Zhang S F, Wen W Q, Huang Z K, Hu Z M, Guo D L, Gao J W, Najjari B, Xu S Y, Yan S C, Yao K, Zhang R T, Gao Y, Zhu X L 2022 Chin. Phys. B 31 093401Google Scholar

  • 图 1  N6+(1s)与H(1s)碰撞自旋态平均单电子俘获总截面随碰撞能量的变化, 以及当前结果同已有的实验数据[31,32,43]和理论计算[3538]的对比

    Fig. 1.  Spin-averaged total single-electron capture cross sections as a function of collision energy for N6+(1s) + H(1s) collisions. Present results are compared with experimental data[31,32,43] and theoretical calculations[3538].

    图 2  N6+(1s)与H (1s)碰撞自旋平均的主量子数n分辨单电子俘获截面随碰撞能量的变化, 以及当前结果同已有理论计算[36,37]对比 (a) n = 3; (b) n = 4; (c) n = 5

    Fig. 2.  Spin-averaged n-resolved single-electron capture cross sections as a function of collision energy for N6+(1s) + H(1s) collisions: (a) n = 3, (b) n = 4, (c) n = 5. Present results are compared with theoretical calculations[36,37].

    图 3  N6+(1s)与H(1s)碰撞中自旋平均的轨道量子数$n\ell $分辨单电子俘获截面随碰撞能量的变化, 以及本工作计算结果同已有的理论计算[36,37]对比 (a) $3\ell $态; (b) $4\ell $态; (c) $5\ell $态

    Fig. 3.  Spin-averaged $n\ell $-resolved single-electron capture cross sections as a function of collision energy for N6+(1s) + H(1s) collisions: (a) $3\ell $; (b) $4\ell $; (c) $5\ell $. Present results are compared with theoretical calculations[36,37].

    表 1  不同碰撞能量E (单位: keV/u)下, N6+(1s)离子与H(1s)原子碰撞自旋平均的单电子俘获总截面和俘获至N5+(1s$n\ell $)态分辨截面(单位: 10–16 cm2)

    Table 1.  Spin-averaged total single-electron capture cross sections and state-resolved cross sections for capture into N5+ (1s$n\ell $) states in N6+(1s) + H(1s) collisions at various collision energies E (unit: keV/u). All cross sections are given in units of 10–16 cm2.

    E 1s3s 1s3p 1s3d 1s4s 1s4p 1s4d 1s4f 1s5s 1s5p 1s5d 1s5f 1s5g 总截面
    0.25 0.0002 0.0002 0.0002 3.7648 12.7027 8.5685 13.3494 0.1747 0.6930 0.9648 0.4290 2.0774 42.7323
    0.56 0.0002 0.0007 0.0013 6.4063 10.4408 5.2656 13.6226 0.2466 1.9896 0.9673 1.0273 1.4035 41.4063
    1.00
    0.0023 0.0054 0.0108 9.2673 9.5404 5.9963 11.9886 0.8304 0.9395 1.0427 1.9539 0.9143 42.5571
    2.25 0.0273 0.0799 0.1115 7.5560 8.9939 7.4811 12.8323 0.6563 0.4619 0.4968 2.3590 2.3944 43.5764
    4.00 0.0927 0.4714 0.2950 5.7645 8.3648 9.1302 12.2192 0.3532 0.4350 0.7830 2.5118 3.1321 43.8349
    6.25 0.2357 0.6419 0.4629 3.3885 6.5808 10.4578 13.2696 0.4157 0.8553 0.9404 2.9255 4.2443 44.7038
    9.00 0.3394 0.6624 0.5941 1.8598 4.7615 9.9354 14.5785 0.2967 0.7135 1.1683 2.7464 5.8699 43.8333
    16.00 0.3529 0.9129 1.1518 0.6615 2.6646 7.6238 14.9072 0.1737 0.5804 1.4345 2.9620 5.9363 39.9444
    25.00 0.3508 1.0430 1.6138 0.3115 1.5698 4.7657 12.1202 0.1464 0.5298 1.3658 3.1366 5.4187 33.7083
    36.00 0.2659 0.9920 1.7688 0.1915 0.9180 2.7773 8.3503 0.1050 0.4919 1.1551 2.9266 4.6950 27.5872
    56.25 0.1245 0.5889 1.5077 0.0920 0.4132 1.1599 4.1918 0.0741 0.4061 0.7697 2.0000 2.7565 19.0517
    100.00 0.0250 0.1622 0.6719 0.0243 0.1261 0.4415 0.9926 0.0292 0.1383 0.3505 0.7732 0.6489 6.8768
    156.25 0.0103 0.0393 0.2537 0.0096 0.0326 0.1687 0.1934 0.0105 0.0340 0.1390 0.2303 0.1001 1.8768
    225.00 0.0035 0.0209 0.0742 0.0026 0.0170 0.0480 0.0392 0.0022 0.0130 0.0392 0.0594 0.0148 0.5114
    下载: 导出CSV

    表 2  不同碰撞能量E (单位: keV/u)下, N6+(1s)离子与H(1s)原子碰撞自旋单重态下的单电子俘获总截面和俘获至N5+(1s$n\ell $ 1L)态分辨截面(单位: 10–16 cm2)

    Table 2.  Spin-singlet total single-electron capture cross sections and state-resolved cross sections for capture into N5+(1s$n\ell $ 1L) states in N6+(1s) + H(1s) collisions at various collision energies E (unit: keV/u). All cross sections are given in units of 10–16 cm2.

    E 1s3s 1S 1s3p 1P 1s3d 1D 1s4s 1S 1s4p 1P 1s4d 1D 1s4f 1F 1s5s 1S 1s5p 1P 1s5d 1D 1s5f 1F 1s5g 1G 总截面1L
    0.25 0.0001 0.0002 0.0002 4.9841 4.1948 6.0168 13.7765 0.1364 1.1173 0.7492 0.4985 3.0177 34.5024
    0.56 0.0003 0.0010 0.0013 6.6345 3.7956 8.0072 13.0620 0.3696 1.9096 1.1744 1.0736 1.6679 37.7347
    1.00 0.0023 0.0073 0.0076 8.8291 4.8926 9.4065 12.8317 0.9635 1.1060 0.8840 1.9907 0.9559 41.9406
    2.25 0.0314 0.0879 0.0599 6.6027 5.3151 11.9836 14.0620 0.6144 0.5642 0.4328 2.4516 2.4166 44.7399
    4.00 0.1416 0.4313 0.2924 5.0184 5.9133 12.5596 13.2306 0.2941 0.4484 0.7915 2.4992 3.1441 45.0342
    6.25 0.3049 0.6447 0.4420 2.8775 5.0788 12.7611 14.0163 0.3535 0.7570 0.9597 2.8547 4.2684 45.5828
    9.00 0.3949 0.7666 0.6046 1.5960 3.9072 11.1796 15.1420 0.2527 0.6901 1.1460 2.6755 5.7122 44.3560
    16.00 0.3889 1.0895 1.2582 0.5916 2.5040 7.9453 14.9587 0.1480 0.6129 1.3966 2.9507 5.7149 40.1231
    25.00 0.3696 1.1997 1.7008 0.2885 1.6088 4.8367 11.9200 0.1366 0.5699 1.3379 3.0703 5.4103 33.7599
    36.00 0.2757 1.1118 1.8295 0.1861 0.9715 2.7831 8.2105 0.0998 0.5225 1.1366 2.8470 4.7282 27.6453
    56.25 0.1240 0.6285 1.5212 0.0906 0.4484 1.1474 4.1679 0.0700 0.4274 0.7624 1.9865 2.7557 19.0999
    100.00 0.0249 0.1684 0.6648 0.0245 0.1309 0.4330 0.9952 0.0297 0.1417 0.3476 0.7773 0.6477 6.8638
    156.25 0.0101 0.0413 0.2503 0.0092 0.0340 0.1657 0.1940 0.0101 0.0347 0.1368 0.2312 0.1003 1.8767
    225.00 0.0033 0.0222 0.0735 0.0024 0.0180 0.0474 0.0392 0.0021 0.0136 0.0387 0.0594 0.0148 0.5149
    下载: 导出CSV

    表 3  不同碰撞能量E (单位: keV/u)下, N6+(1s)离子与H(1s)原子碰撞自旋三重态下的单电子俘获总截面和俘获至N5+(1s$n\ell $ 3L)态分辨截面(单位:10–16 cm2)

    Table 3.  Spin-triplet total single-electron capture cross sections and state-resolved cross sections for capture into N5+(1s$n\ell $ 3L) states in N6+(1s) + H(1s) collisions at various collision energies E (unit: keV/u). All cross sections are given in units of 10–16 cm2.

    E 1s3s 3S 1s3p 3P 1s3d 3D 1s4s 3S 1s4p 3P 1s4d 3D 1s4f 3F 1s5s 3S 1s5p 3P 1s5d 3D 1s5f 3F 1s5g 3G 总截面3L
    0.25 0.0002 0.0002 0.0002 3.3584 15.5386 9.4191 13.2070 0.1875 0.5515 1.0366 0.4058 1.7640 45.4756
    0.56 0.0002 0.0006 0.0013 6.3302 12.6558 4.3517 13.8094 0.2056 2.0162 0.8983 1.0119 1.3154 42.6301
    1.00 0.0022 0.0048 0.0119 9.4133 11.0897 4.8596 11.7075 0.7860 0.8840 1.0955 1.9416 0.9004 42.7626
    2.25 0.0260 0.0772 0.1287 7.8738 10.2202 5.9803 12.4224 0.6703 0.4279 0.5181 2.3282 2.3870 43.1886
    4.00 0.0764 0.4847 0.2958 6.0132 9.1819 7.9870 11.8821 0.3729 0.4305 0.7801 2.5160 3.1281 43.4352
    6.25 0.2126 0.6409 0.4699 3.5588 7.0815 9.6901 13.0207 0.4365 0.8881 0.9340 2.9492 4.2362 44.4108
    9.00 0.3208 0.6277 0.5906 1.9477 5.0463 9.5207 14.3906 0.3114 0.7213 1.1757 2.7700 5.9224 43.6591
    16.00 0.3409 0.8540 1.1163 0.6848 2.7181 7.5166 14.8900 0.1822 0.5696 1.4472 2.9658 6.0101 39.8848
    25.00 0.3445 0.9908 1.5849 0.3192 1.5568 4.7420 12.1870 0.1497 0.5165 1.3750 3.1587 5.4216 33.6911
    36.00 0.2626 0.9520 1.7486 0.1933 0.9002 2.7754 8.3969 0.1067 0.4817 1.1613 2.9532 4.6839 27.5678
    56.25 0.1247 0.5757 1.5031 0.0924 0.4014 1.1641 4.1998 0.0755 0.3991 0.7721 2.0045 2.7568 19.0356
    100.00 0.0250 0.1601 0.6743 0.0243 0.1245 0.4443 0.9917 0.0290 0.1372 0.3515 0.7718 0.6493 6.8811
    156.25 0.0104 0.0387 0.2549 0.0098 0.0321 0.1697 0.1932 0.0106 0.0338 0.1398 0.2300 0.1001 1.8769
    225.00 0.0036 0.0204 0.0745 0.0027 0.0167 0.0482 0.0392 0.0023 0.0127 0.0394 0.0595 0.0148 0.5102
    下载: 导出CSV
    Baidu
  • [1]

    Fritsch W, Lin C D 1991 Phys. Rep. 202 1Google Scholar

    [2]

    Fogle M, Wulf D, Morgan K, McCammon D, Seely D G, Draganić I N, Havener C C 2014 Phys. Rev. A 89 042705Google Scholar

    [3]

    Gu L, Kaastra J, Raassen A J J 2016 A&A 588 A52Google Scholar

    [4]

    Anderson H, von Hellermann M G, Hoekstra R, Horton L D, Howman A C, Konig R W T, Martin R, Olson R E, Summers H P 2000 Plasma Phys. Control. Fusion 42 781Google Scholar

    [5]

    Delabie E, Brix M, Giroud C, Jaspers R J E, Marchuk O, O'Mullane M G, Ralchenko Y, Surrey E, von Hellermann M G, Zastrow K D, Contributors J E 2010 Plasma Phys. Control. Fusion 52 125008Google Scholar

    [6]

    Isler R C 1977 Phys. Rev. Lett. 38 1359Google Scholar

    [7]

    Isler R C 1994 Plasma Phys. Control. Fusion 36 171Google Scholar

    [8]

    von Hellermann M G, Bertschinger G, Biel W, Giroud C, Jaspers R, Jupen C, Marchuk O, Mullane M O, Summers H P, Whiteford A, Zastrow K D 2005 Phys. Scr. 2005 19Google Scholar

    [9]

    McDermott R M, Dux R, Pütterich T, Geiger B, Kappatou A, Lebschy A, Bruhn C, Cavedon M, Frank A, Harder N D, Viezzer E, the A U T 2018 Plasma Phys. Control. Fusion 60 095007Google Scholar

    [10]

    Lisse C M, Dennerl K, Englhauser J, Harden M, Marshall F E, Mumma M J, Petre R, Pye J P, Ricketts M J, Schmitt J, Trumper J, West R G 1996 Science 274 205Google Scholar

    [11]

    Cravens T E 1997 Geophys. Res. Lett. 24 105Google Scholar

    [12]

    Hoekstra R, Anderson H, Bliek F W, Hellermann M v, Maggi C F, Olson R E, Summers H P 1998 Plasma Phys. Control. Fusion 40 1541Google Scholar

    [13]

    Cravens T E 2000 Astrophys. J. 532 L153Google Scholar

    [14]

    Cravens T E 2002 Science 296 1042Google Scholar

    [15]

    Holmstrom M, Barabash S, Kallio E 2001 Geophys. Res. Lett. 28 1287Google Scholar

    [16]

    Beiersdorfer P, Boyce K R, Brown G V, Chen H, Kahn S M, Kelley R L, May M, Olson R E, Porter F S, Stahle C K, Tillotson W A 2003 Science 300 1558Google Scholar

    [17]

    Lallement R 2004 A&A 418 143Google Scholar

    [18]

    Branduardi-Raymont G, Bhardwaj A, Elsner R F, Gladstone G R, Ramsay G, Rodriguez P, Soria R, Waite Jr J H, Cravens T E 2007 A&A 463 761Google Scholar

    [19]

    Robertson I P, Kuntz K D, Collier M R, Cravens T E, Snowden S L 2009 AIP Conference Proceedings 1156 52Google Scholar

    [20]

    Wargelin B J, Kornbleuth M, Martin P L, Juda M 2014 Astrophys. J. 796 28Google Scholar

    [21]

    Audard M, Behar E, Güdel M, Raassen A J J, Porquet D, Mewe R, Foley C R, Bromage G E 2001 A&A 365 L329Google Scholar

    [22]

    Schwadron N A, Cravens T E 2000 Astrophys. J. 544 558Google Scholar

    [23]

    Mawhorter R J, Chutjian A, Cravens T E, Djurić N, Hossain S, Lisse C M, MacAskill J A, Smith S J, Simcic J, Williams I D 2007 Phys. Rev. A 75 032704Google Scholar

    [24]

    Bodewits D, Hoekstra R, Seredyuk B, McCullough R W, Jones G H, Tielens A G G M 2006 Astrophys. J. 642 593Google Scholar

    [25]

    Galeazzi M, Chiao M, Collier M R, Cravens T, Koutroumpa D, Kuntz K D, Lallement R, Lepri S T, McCammon D, Morgan K, Porter F S, Robertson I P, Snowden S L, Thomas N E, Uprety Y, Ursino E, Walsh B M 2014 Nature 512 171Google Scholar

    [26]

    Carruthers G R, Page T, Meier R R 1976 J. Geophys. Res. 81 1664Google Scholar

    [27]

    Rairden R L, Frank L A, Craven J D 1986 J. Geophys. Res. 91 13613Google Scholar

    [28]

    Dennerl K, Lisse C M, Bhardwaj A, Burwitz V, Englhauser J, Gunell H, Holmström M, Jansen F, Kharchenko V, Rodríguez-Pascual P M 2006 A&A 451 709Google Scholar

    [29]

    Koutroumpa D, Modolo R, Chanteur G, Chaufray J Y, Kharchenko V, Lallement R 2012 A&A 545 A153Google Scholar

    [30]

    Liang G Y, Sun T R, Lu H Y, Zhu X L, Wu Y, Li S B, Wei H G, Yuan D W, Zhong J Y, Cui W, Ma X W, Zhao G 2023 Astrophys. J. 943 85Google Scholar

    [31]

    Panov M N, Basalaev A A, Lozhkin K O 1983 Phys. Scr. 1983 124Google Scholar

    [32]

    Meyer F W, Howald A M, Havener C C, Phaneuf R A 1985 Phys. Rev. A 32 3310Google Scholar

    [33]

    Kearns D M, McCullough R W, Trassl R, Gilbody H B 2003 J. Phys. B 36 3653Google Scholar

    [34]

    Cumbee R S, Mullen P D, Lyons D, Shelton R L, Fogle M, Schultz D R, Stancil P C 2018 Astrophys. J. 852 7Google Scholar

    [35]

    Olson R E, Salop A 1977 Phys. Rev. A 16 531Google Scholar

    [36]

    Wu Y, Stancil P C, Liebermann H P, Funke P, Rai S N, Buenker R J, Schultz D R, Hui Y, Draganic I N, Havener C C 2011 Phys. Rev. A 84 022711Google Scholar

    [37]

    Igenbergs K, Schweinzer J, Veiter A, Perneczky L, Frühwirth E, Wallerberger M, Olson R E, Aumayr F 2012 J. Phys. B 45 065203Google Scholar

    [38]

    Zhang R T, Liao T, Zhang C J, Zou L P, Guo D L, Gao Y, Gu L Y, Zhu X L, Zhang S F, Ma X 2023 Mon. Not. R. Astron. Soc. 520 1417Google Scholar

    [39]

    Sisourat N, Pilskog I, Dubois A 2011 Phys. Rev. A 84 052722Google Scholar

    [40]

    Gao J W, Wu Y, Sisourat N, Wang J G, Dubois A 2017 Phys. Rev. A 96 052703Google Scholar

    [41]

    Gao J W, Qi Y Y, Wu Y, Wang J G 2023 Astrophys. J. 944 167Google Scholar

    [42]

    Gao J W, Qi Y Y, Wu Y, Wang J G, Sisourat N, Dubois A 2024 Phys. Rev. A 109 012801Google Scholar

    [43]

    Havener C C D I N, Schultz D R, Wu Y, Stancil P C (unpublished, the data is taken from Ref. [36].

    [44]

    Errea L F, Guzmán F, Illescas C, Méndez L, Pons B, Riera A, Suárez J 2006 Plasma Phys. Control. Fusion 48 1585Google Scholar

    [45]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [46]

    魏宝仁, 张瑞田 2025 中国科学: 物理学 力学 天文学 55 250008Google Scholar

    Wei B, Zhang R 2025 Sci. Sin. Phys. Mech. Astron. 55 250008Google Scholar

    [47]

    吴怡娇, 孟天鸣, 张献文, 谭旭, 马蒲芳, 殷浩, 任百惠, 屠秉晟, 张瑞田, 肖君, 马新文, 邹亚明, 魏宝仁 2024 73 240701Google Scholar

    Wu Y J, Meng T M, Zhang X W, Tan X, Ma P F, Yin H, Ren B H, Tu B S, Zhang R T, Xiao J, Ma X W, Zou Y M, Wei B R 2024 Acta Phys. Sin. 73 240701Google Scholar

    [48]

    Zhu X L, Cui S C, Xing D D, Xu J W, Najjari B, Zhao D M, Guo D L, Gao Y, Zhang R T, Su M G, Zhang S F, Ma X W 2024 Chin. Phys. B 33 023401Google Scholar

    [49]

    Ma X W, Zhang S F, Wen W Q, Huang Z K, Hu Z M, Guo D L, Gao J W, Najjari B, Xu S Y, Yan S C, Yao K, Zhang R T, Gao Y, Zhu X L 2022 Chin. Phys. B 31 093401Google Scholar

  • [1] 田馨, 舒鹏丽, 张珂童, 曾德超, 姚志飞, 赵波慧, 任晓森, 秦丽, 朱强, 魏久焱, 温焕飞, 李艳君, 菅原康弘, 唐军, 马宗敏, 刘俊. Au/CeO2(111)表面吸附的电荷转移特性.  , 2025, 74(5): 053101. doi: 10.7498/aps.74.20241522
    [2] 林晓贺, 林敏娟, 王堃, 吴勇, 任元, 王瑜, 李婕维. 低能区N3+离子与He原子碰撞电荷转移截面研究.  , 2025, 74(15): 152501. doi: 10.7498/aps.74.20250581
    [3] 葛振杰, 苏旭, 白丽华. 反旋双色椭圆偏振激光场中Ar原子的非序列双电离.  , 2024, 73(9): 093201. doi: 10.7498/aps.73.20231583
    [4] 李盈傧, 张可, 陈红梅, 康帅杰, 李整法, 程建国, 吴银梦, 翟春洋, 汤清彬, 许景焜, 余本海. 空间非均匀激光场驱动的原子非次序双电离.  , 2023, 72(16): 163201. doi: 10.7498/aps.72.20230548
    [5] 钟国华, 林海青. 芳香超导体: 电-声耦合与电子关联.  , 2023, 72(23): 237403. doi: 10.7498/aps.72.20231751
    [6] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖.  , 2019, 68(3): 033201. doi: 10.7498/aps.68.20181811
    [7] 袁国亮, 李爽, 任申强, 刘俊明. 激发态电荷转移有机体的多铁性研究.  , 2018, 67(15): 157509. doi: 10.7498/aps.67.20180759
    [8] 王逸飞, 李晓薇. 石墨烯/BiOI纳米复合物电子结构和光学性质的第一性原理模拟计算.  , 2018, 67(11): 116301. doi: 10.7498/aps.67.20172220
    [9] 高静, 常凯楠, 王鹿霞. 光激发作用下分子与多金属纳米粒子间的电荷转移研究.  , 2015, 64(14): 147303. doi: 10.7498/aps.64.147303
    [10] 余本海, 李盈傧. 椭圆偏振激光脉冲驱动的氩原子非次序双电离对激光强度的依赖.  , 2012, 61(23): 233202. doi: 10.7498/aps.61.233202
    [11] 余本海, 李盈傧, 汤清彬. 椭圆偏振激光脉冲驱动的氩原子非次序双电离.  , 2012, 61(20): 203201. doi: 10.7498/aps.61.203201
    [12] 张东玲, 汤清彬, 余本海, 陈东. 碰撞阈值下氩原子非次序双电离.  , 2011, 60(5): 053205. doi: 10.7498/aps.60.053205
    [13] 鲁彦霞, 谢安平, 李小华, 向东, 路兴强, 李新霞, 黄千红. Cq+(q=14)与He,Ne,Ar碰撞的电子损失截面测量与研究.  , 2011, 60(8): 083401. doi: 10.7498/aps.60.083401
    [14] 吕瑛, 陈熙萌, 曹柱荣, 吴卫东. 低能高电荷态离子(4≤ q ≤7)与He碰撞中双俘获与转移电离的截面反转效应.  , 2010, 59(6): 3892-3896. doi: 10.7498/aps.59.3892
    [15] 刘会平, 陈熙萌, 刘兆远, 高志民, 刘玉文, 杜 娟, 张红强, 孙光智, 王 俊, 席发元, 王 媛. 中速C3+与Ne原子靶相互作用过程中单电子转移绝对截面的测量.  , 2008, 57(8): 4846-4850. doi: 10.7498/aps.57.4846
    [16] 刘会平, 陈熙萌, 刘兆远, 丁宝卫, 邵剑雄, 崔 莹, 鲁彦霞, 高志民, 刘玉文, 杜 娟, 孙光智, 席发元, 王兴安, 娄凤君. 中低速C3+与He,Ne,Ar原子相互作用过程中单电子转移绝对截面的测量.  , 2008, 57(12): 7606-7611. doi: 10.7498/aps.57.7606
    [17] 周克瑾, Yasuhisa Tezuka, 崔明启, 马陈燕, 赵屹东, 吴自玉, Akira Yagishita. 硫化锰电子结构的软X射线共振非弹性散射研究.  , 2007, 56(5): 2986-2991. doi: 10.7498/aps.56.2986
    [18] 麻华丽, 李英兰, 杨保华, 王 锋. C60-聚甲基丙烯酸甲脂复合膜的结构、光学和电荷转移特性.  , 2005, 54(6): 2859-2862. doi: 10.7498/aps.54.2859
    [19] 曹柱荣, 蔡晓红, 于得洋, 杨 威, 卢荣春, 邵曹杰, 陈熙萌. 高电荷态Xe离子与He原子碰撞中的电子转移过程研究.  , 2004, 53(9): 2943-2946. doi: 10.7498/aps.53.2943
    [20] 魏建华, 解士杰, 梅良模. 低维混合金属卤化物中的电荷转移机理.  , 2000, 49(8): 1561-1566. doi: 10.7498/aps.49.1561
计量
  • 文章访问数:  436
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-24
  • 修回日期:  2025-05-15
  • 上网日期:  2025-06-06
  • 刊出日期:  2025-08-05

/

返回文章
返回
Baidu
map