搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对称和非对称十字微通道内液滴生成过程的数值模拟

李翔 李延 李滢艳 董志强 庄晓如 钟志刚 余鹏

引用本文:
Citation:

对称和非对称十字微通道内液滴生成过程的数值模拟

李翔, 李延, 李滢艳, 董志强, 庄晓如, 钟志刚, 余鹏

Numerical investigation of droplet generation process in symmetric and asymmetric cross-junction microchannels

LI Xiang, LI Yan, LI Yingyan, DONG Zhiqiang, ZHUANG Xiaoru, ZHONG Zhigang, YU Peng
cstr: 32037.14.aps.74.20250474
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 液滴微流控技术在化学分析、生物检测及材料制备等领域具有巨大的应用潜力, 被动生成液滴方法主要依赖微通道几何特性与剪切流动就能够快速实现液滴生成. 其中, 十字微通道作为典型结构, 其流体参数和对称性差异对液滴生成过程的影响尚未得到充分研究. 因此, 本文采用格子Boltzmann方法开展对称与非对称十字微通道内的液滴生成过程的数值模拟研究, 系统地分析了毛细数、黏度比及流道对称性的作用机制. 本文首先通过平板剪切流动下液滴变形和理想固体表面静止液滴这两个经典算例验证了数值模型的计算可靠性, 然后围绕对称十字微通道内水相流体“界面浸入-剪切断裂-液滴迁移和融合”三个流动阶段展开研究, 分析了毛细数和两相黏度比的协同作用机制. 在此基础上, 进一步量化了流道对称性对十字微通道内液滴生成过程的影响. 相关研究结果为微流道设计和液滴微流控的流体参数调控提供了理论依据, 并进一步推动液滴微流控技术的应用和发展.
    Droplet microfluidics technology possesses significant potential applications in chemical analysis, biological detection, and material preparation. Passive droplet generation method can rapidly achieve droplet formation by using the geometric characteristics of microchannels and shear flow. As a typical structure, the influences of fluid parameters and symmetry differences in cross microchannels on the droplet generation process have not been fully studied. Therefore, this paper uses the lattice Boltzmann method to numerically simulate droplet generation in symmetric and asymmetric cross microchannels, thereby systematically analyzing the action mechanisms of capillary number, viscosity ratio, and microchannel symmetry. First, this study verifies the computational reliability of the numerical model through two classic cases, i.e. the droplet deformation under planar shear flow and stationary droplets on ideal solid surfaces. Then, this work focuses on studying the three flow stages in symmetric cross microchannels, i.e. interface immersion stage, shear-induced breakup stage, and the droplet migration and coalescence stage, and analyzes the synergistic mechanism of capillary number and viscosity ratio. In the symmetric cross microchannel structure, the capillary number is the main factor determining the droplet size in the cross microchannel. With the increase of the capillary number, the surface tension gradually weakens, causing the liquid bridge at the droplet neck to break more easily and generate droplets. In contrast, the effect of the viscosity ratio on the droplet size is relatively small, but it can suppress the generation of sub-droplets and improve the uniformity of droplets by adjusting the viscous resistance of the continuous phase. On this basis, this study further quantifies the influence of microchannel symmetry on the droplet generation process in cross microchannels. In the asymmetric cross microchannel structure, the microchannel deviation breaks the flow symmetry and weakens the cooperative shearing effect of the oil-phase fluid on the immersion structure of the water-phase fluid. When the microchannel deviates within the centerline range of the water-phase microchannel, the droplet size increases significantly with the increase of the microchannel deviation. This is mainly because the oil-phase fluid on the side far from the deviation first squeezes the immersion structure of the water-phase fluid, and then the oil-phase fluid near the deviation side exerts a secondary squeeze on the immersion structure, causing the neck liquid bridge of the immersion structure to continuously elongate and the shear position to shift along the microchannel deviation direction. When the microchannel deviation exceeds the centerline position of the water-phase microchannel, the interface fracture of the water-phase immersion structure mainly relies on the double squeezing effect of the oil-phase fluid and the surface tension of water-phase fluid, and the droplet size tends to be stable. The relevant research results lay a theoretical foundation for microchannel design and fluid parameter regulation in droplet microfluidics and thus further promote the application and development of droplet microfluidic technology.
      通信作者: 余鹏, yup6@sustech.edu.cn
    • 基金项目: 深圳市科技创新委员会优秀科技创新人才培养项目(批准号: RCBS20221008093107026)、国家自然科学基金(批准号: 12302361, 12402328)、中国空气动力研究与发展中心结冰与防除冰重点实验室开放课题(批准号: IADL20220302)、深圳市自然科学基金(批准号: JCYJ20240813094221028)、广东省科技厅(批准号: 2025A1515010156, 2025A1515012960, 2023B1212060001)和深圳市航空航天复杂流动重点实验室(批准号: ZDSYS201802081843517)资助的课题.
      Corresponding author: YU Peng, yup6@sustech.edu.cn
    • Funds: Project supported by the Fund for Fostering Talents of the Shenzhen Science and Technology Innovation Commission, China (Grant No. RCBS20221008093107026), the National Natural Science Foundation of China (Grant Nos. 12302361, 12402328), the Open Fund Project of the Key Laboratory of Icing and Anti/De-icing of CARDC (Grant No. IADL20220302), the Shenzhen Natural Science Foundation, China (Grant No. JCYJ20240813094221028), the Department of Science and Technology of Guangdong Province, China (Grant Nos. 2025A1515010156, 2025A1515012960, 2023B1212060001), and the Shenzhen Key Laboratory of Complex Aerospace Flows, China (Grant No. ZDSYS201802081843517).
    [1]

    Zhu P, Wang L 2017 Lab Chip 17 34Google Scholar

    [2]

    Cybulski O, Garstecki P, Grzybowski B A 2019 Nat. Phys. 15 706Google Scholar

    [3]

    Chen P C, Wu M H, Wang Y N 2014 Microfluid. Nanofluid. 17 275Google Scholar

    [4]

    Li X, Li D, Liu X, Chang H 2016 Sens. Actuators, B 229 466Google Scholar

    [5]

    Theberge A B, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck W T S 2010 Angew. Chem. Int. Ed. 49 5846Google Scholar

    [6]

    Teo A J T, Tan S H, Nguyen N T 2020 Anal. Chem. 92 1147Google Scholar

    [7]

    Zhang Q, Li H, Zhu C, Fu T, Ma Y, Li H Z 2018 Colloids Surf. , A 537 572Google Scholar

    [8]

    Jin S, Wei X, Liu Z, Ren J, Jiang Z, Abell C, Yu Z 2019 Sens. Actuators, B 291 1

    [9]

    Zhang H, Palit P, Liu Y, Vaziri S, Sun Y 2020 ACS Appl. Mater. Interfaces 12 26936Google Scholar

    [10]

    Thorsen T, Roberts R W, Arnold F H, Quake S R 2001 Phys. Rev. Lett. 86 4163Google Scholar

    [11]

    Zhang Y Y, Xia H M, Wu J W, Zhang J, Wang Z P 2019 Appl. Phys. Lett. 114 073701Google Scholar

    [12]

    Zhang Y Y, Xia H M 2022 Sens. Actuators, B 368 132183Google Scholar

    [13]

    Dreyfus R, Tabeling P, Willaime H 2003 Phys. Rev. Lett. 90 144505Google Scholar

    [14]

    Tan Y C, Cristini V, Lee A P 2006 Sens. Actuators, B 114 350Google Scholar

    [15]

    Chae S K, Lee C H, Lee S H, Kim T S, Kang J Y 2009 Lab Chip 9 1957Google Scholar

    [16]

    Nisisako T, Hatsuzawa T 2010 Microfluid. Nanofluid. 9 427Google Scholar

    [17]

    Liu H, Zhang Y 2011 Commun. Comput. Phys. 9 1235Google Scholar

    [18]

    Rostami B, Morini G L 2019 Exp. Therm. Fluid Sci. 103 191Google Scholar

    [19]

    Yu W, Liu X, Zhao Y, Chen Y 2019 Chem. Eng. Sci. 203 259Google Scholar

    [20]

    Nozaki Y, Yoon D H, Furuya M, Fujita H, Sekiguchi T, Shoji S 2021 Sens. Actuators, A 331 112917Google Scholar

    [21]

    Liu Z, Ma Y, Wang X, Pang Y, Ren Y, Li D 2022 Exp. Therm. Fluid Sci. 139 110739Google Scholar

    [22]

    Umbanhowar P B, Prasad V, Weitz D A 2000 Langmuir 16 347Google Scholar

    [23]

    Utada A S, Lorenceau E, Link D R, Kaplan P D, Stone H A, Weitz D A 2005 Science 308 537Google Scholar

    [24]

    Garstecki P, Fuerstman M J, Whitesides G M 2005 Phys. Rev. Lett. 94 234502Google Scholar

    [25]

    Deng C, Wang H, Huang W, Cheng S 2017 Colloids Surf. , A 533 1Google Scholar

    [26]

    刘汉涛, 刘谋斌, 常建忠, 苏铁熊 2013 62 064705Google Scholar

    Liu H T, Liu M B, Chang J Z, Su T X 2013 Acta Phys. Sin. 62 064705Google Scholar

    [27]

    梁宏, 柴振华, 施保昌 2016 65 204701Google Scholar

    Liang H, Chai Z H, Shi B C 2016 Acta Phys. Sin. 65 204701Google Scholar

    [28]

    张晓林, 黄军杰 2023 72 024701Google Scholar

    Zhang X L, Huang J J 2023 Acta Phys. Sin. 72 024701Google Scholar

    [29]

    Wang W, Liu Z, Jin Y, Cheng Y 2011 Chem. Eng. J. 173 828Google Scholar

    [30]

    Ngo I L, Dang T D, Byon C, Joo S W 2015 Biomicrofluidics 9 024107Google Scholar

    [31]

    Liu H, Zhang Y 2011 Phys. Fluids 23 082101Google Scholar

    [32]

    Boruah M P, Sarker A, Randive P R, Pati S, Sahu K C 2021 Phys. Fluids 33 122101Google Scholar

    [33]

    Wang H, Yuan X, Liang H, Chai Z, Shi B 2019 Capillarity 2 32

    [34]

    Niu X D, Li Y, Ma Y R, Chen M F, Li X, Li Q Z 2018 Phys. Fluids 30 013302Google Scholar

    [35]

    Li X, Dong Z Q, Li Y, Wang L P, Niu X D, Yamaguchi H, Li D C, Yu P 2022 Int. J. Multiphase Flow 149 103982Google Scholar

    [36]

    Li X, Yu P, Niu X D, Li D C, Yamaguchi H 2021 Appl. Math. Comput. 393 125769

    [37]

    Qian Y H, Humières D D, Lallemand P 1992 Europhys. Lett. 17 479Google Scholar

    [38]

    van der Graaf S, Nisisako T, Schroën C G P H, van der Sman R G M, Boom R M 2006 Langmuir 22 4144Google Scholar

    [39]

    Ding H, Spelt P D M, Shu C 2007 J. Comput. Phys. 226 2078Google Scholar

    [40]

    Liang H, Liu H, Chai Z, Shi B 2019 Phys. Rev. E 99 063306Google Scholar

    [41]

    Shi Y, Tang G H, Xia H H 2014 Comput. Fluids 90 155Google Scholar

    [42]

    Yue P, Feng J J, Liu C, Shen J 2004 J. Fluid Mech. 515 293Google Scholar

    [43]

    Roths T, Friedrich C, Marth M, Honerkamp J 2002 Rheol. Acta 41 211Google Scholar

    [44]

    Wang Y, Shu C, Huang H B, Teo C J 2015 J. Comput. Phys. 280 404Google Scholar

    [45]

    Li X, Dong Z Q, Wang L P, Niu X D, Yamaguchi H, Li D C, Yu P 2023 Appl. Math. Modell. 117 219Google Scholar

  • 图 1  平板剪切流动下的液滴初始位置示意图

    Fig. 1.  A schematic diagram of the initial position of a droplet in a shear flow.

    图 2  剪切流动中不同Ca数下的液滴界面形状

    Fig. 2.  Interface profiles of droplet in shear flow under different Ca number.

    图 3  毛细数Ca与液滴变形参数D的关系

    Fig. 3.  Relation between Ca number and the deformation parameter of droplet.

    图 4  接触角的数值模拟结果与准确值和文献[44, 45]的对比

    Fig. 4.  Comparisons between numerical contact angle with exact contact angle and published data [44, 45]

    图 5  对称十字微通道结构示意图

    Fig. 5.  Schematic diagram of symmetric cross microchannel structure.

    图 6  不同毛细数Ca下十字微通道内的液滴生成过程

    Fig. 6.  Droplet generation process in cross microchannels under different capillary numbers Ca.

    图 7  不同黏度比下, t*= 7.2时的十字微通道内液滴状态

    Fig. 7.  Droplet shape in a cross microchannel at t*= 7.2 under different viscosity ratios.

    图 8  不同黏度比下, 十字微通道内液滴长度随着毛细数变化的关系

    Fig. 8.  The relationship between droplet size and capillary number in a cross microchannel under different viscosity ratios.

    图 9  非对称十字微通道结构示意图

    Fig. 9.  Schematic diagram of asymmetric cross microchannel structure.

    图 10  不同流道偏差下, t* = 7.2时的非对称十字微通道内液滴状态

    Fig. 10.  Droplet shape in a cross microchannel at t* = 7.2 under different eccentricity values.

    图 11  非对称十字微通道内液滴长度随着流道偏差变化的关系

    Fig. 11.  Relationship between droplet size and channel deviation in an asymmetric cross microchannel.

    Baidu
  • [1]

    Zhu P, Wang L 2017 Lab Chip 17 34Google Scholar

    [2]

    Cybulski O, Garstecki P, Grzybowski B A 2019 Nat. Phys. 15 706Google Scholar

    [3]

    Chen P C, Wu M H, Wang Y N 2014 Microfluid. Nanofluid. 17 275Google Scholar

    [4]

    Li X, Li D, Liu X, Chang H 2016 Sens. Actuators, B 229 466Google Scholar

    [5]

    Theberge A B, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck W T S 2010 Angew. Chem. Int. Ed. 49 5846Google Scholar

    [6]

    Teo A J T, Tan S H, Nguyen N T 2020 Anal. Chem. 92 1147Google Scholar

    [7]

    Zhang Q, Li H, Zhu C, Fu T, Ma Y, Li H Z 2018 Colloids Surf. , A 537 572Google Scholar

    [8]

    Jin S, Wei X, Liu Z, Ren J, Jiang Z, Abell C, Yu Z 2019 Sens. Actuators, B 291 1

    [9]

    Zhang H, Palit P, Liu Y, Vaziri S, Sun Y 2020 ACS Appl. Mater. Interfaces 12 26936Google Scholar

    [10]

    Thorsen T, Roberts R W, Arnold F H, Quake S R 2001 Phys. Rev. Lett. 86 4163Google Scholar

    [11]

    Zhang Y Y, Xia H M, Wu J W, Zhang J, Wang Z P 2019 Appl. Phys. Lett. 114 073701Google Scholar

    [12]

    Zhang Y Y, Xia H M 2022 Sens. Actuators, B 368 132183Google Scholar

    [13]

    Dreyfus R, Tabeling P, Willaime H 2003 Phys. Rev. Lett. 90 144505Google Scholar

    [14]

    Tan Y C, Cristini V, Lee A P 2006 Sens. Actuators, B 114 350Google Scholar

    [15]

    Chae S K, Lee C H, Lee S H, Kim T S, Kang J Y 2009 Lab Chip 9 1957Google Scholar

    [16]

    Nisisako T, Hatsuzawa T 2010 Microfluid. Nanofluid. 9 427Google Scholar

    [17]

    Liu H, Zhang Y 2011 Commun. Comput. Phys. 9 1235Google Scholar

    [18]

    Rostami B, Morini G L 2019 Exp. Therm. Fluid Sci. 103 191Google Scholar

    [19]

    Yu W, Liu X, Zhao Y, Chen Y 2019 Chem. Eng. Sci. 203 259Google Scholar

    [20]

    Nozaki Y, Yoon D H, Furuya M, Fujita H, Sekiguchi T, Shoji S 2021 Sens. Actuators, A 331 112917Google Scholar

    [21]

    Liu Z, Ma Y, Wang X, Pang Y, Ren Y, Li D 2022 Exp. Therm. Fluid Sci. 139 110739Google Scholar

    [22]

    Umbanhowar P B, Prasad V, Weitz D A 2000 Langmuir 16 347Google Scholar

    [23]

    Utada A S, Lorenceau E, Link D R, Kaplan P D, Stone H A, Weitz D A 2005 Science 308 537Google Scholar

    [24]

    Garstecki P, Fuerstman M J, Whitesides G M 2005 Phys. Rev. Lett. 94 234502Google Scholar

    [25]

    Deng C, Wang H, Huang W, Cheng S 2017 Colloids Surf. , A 533 1Google Scholar

    [26]

    刘汉涛, 刘谋斌, 常建忠, 苏铁熊 2013 62 064705Google Scholar

    Liu H T, Liu M B, Chang J Z, Su T X 2013 Acta Phys. Sin. 62 064705Google Scholar

    [27]

    梁宏, 柴振华, 施保昌 2016 65 204701Google Scholar

    Liang H, Chai Z H, Shi B C 2016 Acta Phys. Sin. 65 204701Google Scholar

    [28]

    张晓林, 黄军杰 2023 72 024701Google Scholar

    Zhang X L, Huang J J 2023 Acta Phys. Sin. 72 024701Google Scholar

    [29]

    Wang W, Liu Z, Jin Y, Cheng Y 2011 Chem. Eng. J. 173 828Google Scholar

    [30]

    Ngo I L, Dang T D, Byon C, Joo S W 2015 Biomicrofluidics 9 024107Google Scholar

    [31]

    Liu H, Zhang Y 2011 Phys. Fluids 23 082101Google Scholar

    [32]

    Boruah M P, Sarker A, Randive P R, Pati S, Sahu K C 2021 Phys. Fluids 33 122101Google Scholar

    [33]

    Wang H, Yuan X, Liang H, Chai Z, Shi B 2019 Capillarity 2 32

    [34]

    Niu X D, Li Y, Ma Y R, Chen M F, Li X, Li Q Z 2018 Phys. Fluids 30 013302Google Scholar

    [35]

    Li X, Dong Z Q, Li Y, Wang L P, Niu X D, Yamaguchi H, Li D C, Yu P 2022 Int. J. Multiphase Flow 149 103982Google Scholar

    [36]

    Li X, Yu P, Niu X D, Li D C, Yamaguchi H 2021 Appl. Math. Comput. 393 125769

    [37]

    Qian Y H, Humières D D, Lallemand P 1992 Europhys. Lett. 17 479Google Scholar

    [38]

    van der Graaf S, Nisisako T, Schroën C G P H, van der Sman R G M, Boom R M 2006 Langmuir 22 4144Google Scholar

    [39]

    Ding H, Spelt P D M, Shu C 2007 J. Comput. Phys. 226 2078Google Scholar

    [40]

    Liang H, Liu H, Chai Z, Shi B 2019 Phys. Rev. E 99 063306Google Scholar

    [41]

    Shi Y, Tang G H, Xia H H 2014 Comput. Fluids 90 155Google Scholar

    [42]

    Yue P, Feng J J, Liu C, Shen J 2004 J. Fluid Mech. 515 293Google Scholar

    [43]

    Roths T, Friedrich C, Marth M, Honerkamp J 2002 Rheol. Acta 41 211Google Scholar

    [44]

    Wang Y, Shu C, Huang H B, Teo C J 2015 J. Comput. Phys. 280 404Google Scholar

    [45]

    Li X, Dong Z Q, Wang L P, Niu X D, Yamaguchi H, Li D C, Yu P 2023 Appl. Math. Modell. 117 219Google Scholar

  • [1] 隋鹏翔. 颗粒尺寸对纳米流体自然对流模式影响的格子Boltzmann方法模拟.  , 2024, 73(23): 234702. doi: 10.7498/aps.73.20241332
    [2] 冯晶森, 闵敬春. 直通道内两相流动的格子玻尔兹曼方法模拟.  , 2023, 72(8): 084701. doi: 10.7498/aps.72.20222421
    [3] 张贝豪, 郑林. 倾斜多孔介质方腔内纳米流体自然对流的格子Boltzmann方法模拟.  , 2020, 69(16): 164401. doi: 10.7498/aps.69.20200308
    [4] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟.  , 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [5] 许昊, 王聪, 陆宏志, 黄文虎. 水下超声速气体射流诱导尾空泡实验研究.  , 2018, 67(1): 014703. doi: 10.7498/aps.67.20171617
    [6] 吴晓笛, 刘华坪, 陈浮. 基于浸入边界-多松弛时间格子玻尔兹曼通量求解法的流固耦合算法研究.  , 2017, 66(22): 224702. doi: 10.7498/aps.66.224702
    [7] 何郁波, 唐先华, 林晓艳. 基于格子玻尔兹曼方法的一类FitzHugh-Nagumo系统仿真研究.  , 2016, 65(15): 154701. doi: 10.7498/aps.65.154701
    [8] 冯黛丽, 冯妍卉, 石珺. 介孔复合材料声子输运的格子玻尔兹曼模拟.  , 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [9] 孙鹏楠, 李云波, 明付仁. 自由上浮气泡运动特性的光滑粒子流体动力学模拟.  , 2015, 64(17): 174701. doi: 10.7498/aps.64.174701
    [10] 宋保维, 任峰, 胡海豹, 郭云鹤. 表面张力对疏水微结构表面减阻的影响.  , 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [11] 胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋. 微流控技术制备ZnO纳米线阵列及其气敏特性.  , 2014, 63(20): 207102. doi: 10.7498/aps.63.207102
    [12] 刘汉涛, 刘谋斌, 常建忠, 苏铁熊. 介观尺度通道内多相流动的耗散粒子动力学模拟.  , 2013, 62(6): 064705. doi: 10.7498/aps.62.064705
    [13] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流.  , 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [14] 陈海楠, 孙东科, 戴挺, 朱鸣芳. 凝固前沿和气泡相互作用的大密度比格子玻尔兹曼方法模拟.  , 2013, 62(12): 120502. doi: 10.7498/aps.62.120502
    [15] 强洪夫, 石超, 陈福振, 韩亚伟. 基于大密度差多相流SPH方法的二维液滴碰撞数值模拟.  , 2013, 62(21): 214701. doi: 10.7498/aps.62.214701
    [16] 孙东科, 项楠, 陈科, 倪中华. 格子玻尔兹曼方法模拟弯流道中粒子的惯性迁移行为.  , 2013, 62(2): 024703. doi: 10.7498/aps.62.024703
    [17] 吴伟, 孙东科, 戴挺, 朱鸣芳. 枝晶生长和气泡形成的数值模拟.  , 2012, 61(15): 150501. doi: 10.7498/aps.61.150501
    [18] 周丰茂, 孙东科, 朱鸣芳. 偏晶合金液-液相分离的格子玻尔兹曼方法模拟.  , 2010, 59(5): 3394-3401. doi: 10.7498/aps.59.3394
    [19] 孙东科, 朱鸣芳, 杨朝蓉, 潘诗琰, 戴挺. 强制对流和自然对流作用下枝晶生长的数值模拟.  , 2009, 58(13): 285-S291. doi: 10.7498/aps.58.285
    [20] 常建忠, 刘谋斌, 刘汉涛. 微液滴动力学特性的耗散粒子动力学模拟.  , 2008, 57(7): 3954-3961. doi: 10.7498/aps.57.3954
计量
  • 文章访问数:  506
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-12
  • 修回日期:  2025-04-25
  • 上网日期:  2025-04-29

/

返回文章
返回
Baidu
map