搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应遗传算法的背向散射光场调控

段美刚 张晨龙 赵映 王建敏 左浩毅

引用本文:
Citation:

基于自适应遗传算法的背向散射光场调控

段美刚, 张晨龙, 赵映, 王建敏, 左浩毅

Backscattered light field control based on self-adaptive genetic algorithm

DUAN Meigang, ZHANG Chenlong, ZHAO Ying, WANG Jianmin, ZUO Haoyi
cstr: 32037.14.aps.74.20250455
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 调控经散射介质散射后的光场在生物组织成像、军事反恐和光信息传输等领域具有潜在的应用价值. 然而, 经散射介质反射后的光子传播方向变得无序, 导致携带光信息的波前被扰乱. 将一种新的波前振幅调制方法即自适应遗传算法(self-adaption genetic algorithm, SAGA)引入到背向散射光场调控中. 根据环境变化, 种群自适应的选择基因的突变或交叉, 极大地提高了寻找最优解的收敛速度. 通过实验研究验证了SAGA在背向散射光场调控方面的有效性, 并表明相较于遗传算法(genetic algorithm, GA), SAGA在调控速度和抗噪声方面都存在明显优势. 研究结果表明, SAGA在较少的迭代次数内即可获得高对比度的光聚焦和图像投影, 并收敛于最优解. 相较于GA, 其在进行散射聚焦和图像投影时的调控速度分别快8.3倍和14.38倍. 这种快速的散射光场调控技术为光信息传输领域的研究提供了新思路, 具有广泛的应用潜力.
    Modulating the light field scattered by scattering media has potential applications in biological tissue imaging, military anti-terrorism, and optical information transmission. However, light reflected by complex scattering media, such as biological tissues, clouds and fog, multi-mode fiber, and white paper, will produce disorderly scattering, and then disturb the wavefront of incident light. It has always been the main obstacle to optical imaging and effective information transmission. Therefore, the control of backscattered light field is also a research field worthy of attention, which is of great significance for the transmission of non-line-of-sight optical information. It is also very important to find a method of efficiently controlling backscattered light field for the breakthrough of related applications. It has been found that iterative wavefront shaping technology is an effective solution, which gradually modulates the amplitude or phase distribution of wavefront according to the feedback of the light intensity distribution in the target area of charge coupled device (CCD). An improved genetic algorithm, self-adaptation genetic algorithm (SAGA), is proposed, which can be used to rapidly modulate the backscattered light field. The amplitude distribution of wavefront is controlled, which makes it form the required pattern at the target position through the interference of light. During the implementation of the algorithm, the SAGA performs gene crossover and mutation separately, and selects gene crossover and mutation operations according to the number of iterations. At the beginning of evolution, the probability of selecting gene mutations is higher because the population needs to adapt to the environment, while at the end of evolution, the probability of selecting gene mutations is lower because it gradually adapts to the environment. In the experimental measurement, the effective modulation area of digital-micromirror device (DMD) is 1024×1024, which is divided into 64×64 modulation segments by pixel merging. Each segment number is assigned a value of 0 or 1. Focusing and image projection performance of scattered light field are evaluated based on peak-to-background ratio (PBR) and Pearson correlation coefficient (Cor), respectively. By comparing the scattered light focusing and image projection of SAGA and genetic algorithm (GA), it is found that SAGA can accurately control the backscattered light field and converge to the optimal value in a few iterations. After 1000 iterations, the GA still has a clear speckle background. With the increase of iteration times, GA will also show bright focus and clear projection image. Compared with GA, SAGA has a modulation speed that is 8.3 times faster in light focusing and 14.38 times faster in image projection, greatly improving the modulation speed of the scattered light field. The fast control technology for scattered light field can lead to numerous new optical communication applications and offer fresh insights into the study of optics and information science.
      通信作者: 段美刚, duanmg.sxu@foxmail.com ; 左浩毅, zuohaoyi@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62475176)、山西省基础研究计划(批准号: 202403021212259)、山西省高等学校科技创新项目(批准号: 2024L215)和山西省来晋工作优秀博士奖励资金项目(批准号: 20242077)资助的课题.
      Corresponding author: DUAN Meigang, duanmg.sxu@foxmail.com ; ZUO Haoyi, zuohaoyi@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62475176), the Fundamental Research Program of Shanxi Province, China (Grant No. 202403021212259), the Science and Technology Innovation Plan of Colleges and Universities in Shanxi Province, China (Grant No. 2024L215), and the Project of Award Fund for Excellent Doctoral Work in Shanxi Province, China (Grant No. 20242077).
    [1]

    Yaqoob Z, Psaltis D, Feld M S, Yang C 2008 Nat. Photonics 2 110Google Scholar

    [2]

    Ni F, Liu H, Zheng Y, Chen X 2023 Adv. Photonics 5 046010

    [3]

    Bian Y, Wang F, Wang Y, Fu Z, Liu H, Yuan H, Situ G 2024 Photonics Res. 12 134Google Scholar

    [4]

    段美刚, 赵映, 左浩毅 2024 73 124203Google Scholar

    Duan M G, Zhao Y, Zuo H Y 2024 Acta Phys. Sin. 73 124203Google Scholar

    [5]

    Zhang X, Gao J, Gan Y, Song C, Zhang D, Zhuang S, Han S, Lai P, Liu H 2023 PhotoniX 4 10Google Scholar

    [6]

    Mclntosh R, Goetschy A, Bender N, Yamilov A, Hsu C, Yılmaz H, Cao H 2024 Nat. Photonics 18 744Google Scholar

    [7]

    Wu C, Liu J, Huang X, Li Z P, Yu C, Ye J T, Zhang J, Zhang Q, Dou X, Goyal V K, Xu F, Pan J W 2021 Nat. Photonics 118 e2024468118

    [8]

    孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏 2021 70 224203Google Scholar

    Sun X Y, Liu F, Duan J B, Niu G T, Shao X P 2021 Acta Phys. Sin. 70 224203Google Scholar

    [9]

    张熙程, 方龙杰, 庞霖 2018 67 104202Google Scholar

    Zhang X C, Fang L J, Pang L 2018 Acta Phys. Sin. 67 104202Google Scholar

    [10]

    Ding C, Shao R, Qu Y, He Q, Liu L, Yang J 2023 Laser Photonics Rev. 17 2300104Google Scholar

    [11]

    相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏 2024 73 124202Google Scholar

    Xiang M, He P, Wang T Y, Yuan L, Deng K, Liu F, Shao X P 2024 Acta Phys. Sin. 73 124202Google Scholar

    [12]

    Shi A D, Wang Z Y, Duan C X, Wang Z, Zhang W L 2024 Chin. Phys. B 33 104202Google Scholar

    [13]

    沈乐成, 罗嘉伟, 张志凌, 张诗按 2024 光学学报 44 1026016Google Scholar

    Shen Y C, Luo J W, Zhang Z L, Zhang S A 2024 Acta Opt. Sin. 44 1026016Google Scholar

    [14]

    朱磊, 邵晓鹏 2020 光学学报 40 0111005Google Scholar

    Zhu L, Shao X P 2020 Acta Opt. Sin. 40 0111005Google Scholar

    [15]

    Cao Z Z, Zhang X B, Osnabrugge G, Li J H, Vellekoop I M, Koonen A M 2019 Light-Sci. Appl. 8 69Google Scholar

    [16]

    Tzang O, Caravaca-Aguirre A M, Wagner K, Piestun R 2018 Nat. Photonics 12 368Google Scholar

    [17]

    Teğin U, Rahmani B, Kakkava E, Borhani N, Moser C, Psaltis D 2020 APL Photonics 5 030804Google Scholar

    [18]

    Qiao Y Q, Peng Y J, Zheng Y L, Ye F, Chen X 2018 Opt. Lett. 43 787Google Scholar

    [19]

    倪枫超, 刘海港, 陈险峰 2024 光学学报 44 1026006Google Scholar

    Ni F C, Liu H G, Chen X F 2024 Acta Opt. Sin. 44 1026006Google Scholar

    [20]

    Vellekoop I M, Mosk A P 2007 Opt. Lett. 32 2309Google Scholar

    [21]

    Liu J, Feng Y, Li W, Xiang M, Xi T, Liu F, Li G, Shao X 2023 Opt. Lett. 48 4077Google Scholar

    [22]

    Wan L, Chen Z, Huang H, Pu J 2016 Appl. Phys. B 122 204

    [23]

    Peng T, Li R, An S, Yu X, Zhou M, Bai C, Liang Y, Lei M, Zhang G, Yao B, Zhang P 2019 Opt. Express 27 4858Google Scholar

    [24]

    Yang J, He Q, Liu L, Qu Y, Shao R, Song B, Zhao Y 2021 Light- Sci. Appl. 10 149Google Scholar

    [25]

    Wang X, Zhao W, Zhai A, Wang D 2023 Opt. Express 31 32287Google Scholar

    [26]

    Zhang C, Yao Z, Liu T, Sui X, Chen Q, Xie Z, Liu G 2024 Opt. Laser Technol. 169 110018Google Scholar

    [27]

    Woo C M, Zhao Q, Zhong T, Li H, Yu Z, Lai P 2022 APL Photonics 7 046109Google Scholar

    [28]

    Li W, He W, Dai Y, Zuo H, Pang L 2024 Opt. Laser Technol. 175 110740Google Scholar

    [29]

    Zhao Y, He Q, Li S, Yang J 2021 Opt. Lett. 46 1518Google Scholar

    [30]

    Li H H, Woo C M, Zhong T T, Yu Z P, Luo Y Q, Zheng Y J, Yang X, Hui H, Lai P X 2021 Photonics Res. 9 202Google Scholar

    [31]

    Yu H, Yao Z Y, Sui X B, Gu G H, Chen Q 2022 Optik 261 169129Google Scholar

    [32]

    Deb K, Beyer H G 2001 Evol. Comput. 9 197Google Scholar

    [33]

    Kivijärvi J, Fränti P, Nevalainen O 2003 J. Heuristics 9 113Google Scholar

    [34]

    Hinterding R, Michalewicz Z, Peachey T C 1996 International Conference on Evolutionary Computation—The 4th International Conference on Parallel Problem Solving from Nature, Berlin Germany, September 22–26, 1996 pp420–429

  • 图 1  背向散射光场调控原理图 (a)经散射介质反射的光场分布; (b)调制后的反射光场分布; (c) SAGA散射波前整形流程图

    Fig. 1.  Schematics of modulation of backscattering field: (a) Distribution of light field reflected by scattering medium; (b) distribution of the reflected light field after modulation; (c) flowchart of SAGA.

    图 2  实验装置图

    Fig. 2.  Experimental setup.

    图 3  SAGA和GA的背向散射聚焦实验结果 (a)迭代过程中的最佳聚焦模式; (b) 1000次迭代SAGA和GA的PBR值随迭代次数的变化; (c) 3000次迭代GA的PBR值随迭代次数的变化

    Fig. 3.  Experimental results of backscatter focusing: (a) Optimal focusing mode in iterative process; (b) variation curve of PBR of SAGA and GA with 1000 iteration times; (c) variation curve of PBR of GA with 3000 iteration times.

    图 4  SAGA和GA的图像投影实验结果 (a)目标图像; (b) SAGA在1000次迭代过程中的最佳投影结果; (c) GA在1000次迭代过程中的最佳投影结果; (d) GA在5000次迭代过程中的最佳投影结果; (e) 1000次迭代SAGA和GA的Cor值随迭代次数的变化; (f) 5000次迭代GA的Cor值随迭代次数的变化

    Fig. 4.  Experimental results of image projection: (a) Target images; (b) the optimal image projection of SAGA with 1000 iteration times; (c) the optimal image projection of GA with 1000 iteration times; (d) the optimal image projection of GA with 3000 iteration times; (e) variation curve of Cor of SAGA and GA with 1000 iteration times; (f) variation curve of Cor of GA with 5000 iteration times.

    Baidu
  • [1]

    Yaqoob Z, Psaltis D, Feld M S, Yang C 2008 Nat. Photonics 2 110Google Scholar

    [2]

    Ni F, Liu H, Zheng Y, Chen X 2023 Adv. Photonics 5 046010

    [3]

    Bian Y, Wang F, Wang Y, Fu Z, Liu H, Yuan H, Situ G 2024 Photonics Res. 12 134Google Scholar

    [4]

    段美刚, 赵映, 左浩毅 2024 73 124203Google Scholar

    Duan M G, Zhao Y, Zuo H Y 2024 Acta Phys. Sin. 73 124203Google Scholar

    [5]

    Zhang X, Gao J, Gan Y, Song C, Zhang D, Zhuang S, Han S, Lai P, Liu H 2023 PhotoniX 4 10Google Scholar

    [6]

    Mclntosh R, Goetschy A, Bender N, Yamilov A, Hsu C, Yılmaz H, Cao H 2024 Nat. Photonics 18 744Google Scholar

    [7]

    Wu C, Liu J, Huang X, Li Z P, Yu C, Ye J T, Zhang J, Zhang Q, Dou X, Goyal V K, Xu F, Pan J W 2021 Nat. Photonics 118 e2024468118

    [8]

    孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏 2021 70 224203Google Scholar

    Sun X Y, Liu F, Duan J B, Niu G T, Shao X P 2021 Acta Phys. Sin. 70 224203Google Scholar

    [9]

    张熙程, 方龙杰, 庞霖 2018 67 104202Google Scholar

    Zhang X C, Fang L J, Pang L 2018 Acta Phys. Sin. 67 104202Google Scholar

    [10]

    Ding C, Shao R, Qu Y, He Q, Liu L, Yang J 2023 Laser Photonics Rev. 17 2300104Google Scholar

    [11]

    相萌, 何飘, 王天宇, 袁琳, 邓凯, 刘飞, 邵晓鹏 2024 73 124202Google Scholar

    Xiang M, He P, Wang T Y, Yuan L, Deng K, Liu F, Shao X P 2024 Acta Phys. Sin. 73 124202Google Scholar

    [12]

    Shi A D, Wang Z Y, Duan C X, Wang Z, Zhang W L 2024 Chin. Phys. B 33 104202Google Scholar

    [13]

    沈乐成, 罗嘉伟, 张志凌, 张诗按 2024 光学学报 44 1026016Google Scholar

    Shen Y C, Luo J W, Zhang Z L, Zhang S A 2024 Acta Opt. Sin. 44 1026016Google Scholar

    [14]

    朱磊, 邵晓鹏 2020 光学学报 40 0111005Google Scholar

    Zhu L, Shao X P 2020 Acta Opt. Sin. 40 0111005Google Scholar

    [15]

    Cao Z Z, Zhang X B, Osnabrugge G, Li J H, Vellekoop I M, Koonen A M 2019 Light-Sci. Appl. 8 69Google Scholar

    [16]

    Tzang O, Caravaca-Aguirre A M, Wagner K, Piestun R 2018 Nat. Photonics 12 368Google Scholar

    [17]

    Teğin U, Rahmani B, Kakkava E, Borhani N, Moser C, Psaltis D 2020 APL Photonics 5 030804Google Scholar

    [18]

    Qiao Y Q, Peng Y J, Zheng Y L, Ye F, Chen X 2018 Opt. Lett. 43 787Google Scholar

    [19]

    倪枫超, 刘海港, 陈险峰 2024 光学学报 44 1026006Google Scholar

    Ni F C, Liu H G, Chen X F 2024 Acta Opt. Sin. 44 1026006Google Scholar

    [20]

    Vellekoop I M, Mosk A P 2007 Opt. Lett. 32 2309Google Scholar

    [21]

    Liu J, Feng Y, Li W, Xiang M, Xi T, Liu F, Li G, Shao X 2023 Opt. Lett. 48 4077Google Scholar

    [22]

    Wan L, Chen Z, Huang H, Pu J 2016 Appl. Phys. B 122 204

    [23]

    Peng T, Li R, An S, Yu X, Zhou M, Bai C, Liang Y, Lei M, Zhang G, Yao B, Zhang P 2019 Opt. Express 27 4858Google Scholar

    [24]

    Yang J, He Q, Liu L, Qu Y, Shao R, Song B, Zhao Y 2021 Light- Sci. Appl. 10 149Google Scholar

    [25]

    Wang X, Zhao W, Zhai A, Wang D 2023 Opt. Express 31 32287Google Scholar

    [26]

    Zhang C, Yao Z, Liu T, Sui X, Chen Q, Xie Z, Liu G 2024 Opt. Laser Technol. 169 110018Google Scholar

    [27]

    Woo C M, Zhao Q, Zhong T, Li H, Yu Z, Lai P 2022 APL Photonics 7 046109Google Scholar

    [28]

    Li W, He W, Dai Y, Zuo H, Pang L 2024 Opt. Laser Technol. 175 110740Google Scholar

    [29]

    Zhao Y, He Q, Li S, Yang J 2021 Opt. Lett. 46 1518Google Scholar

    [30]

    Li H H, Woo C M, Zhong T T, Yu Z P, Luo Y Q, Zheng Y J, Yang X, Hui H, Lai P X 2021 Photonics Res. 9 202Google Scholar

    [31]

    Yu H, Yao Z Y, Sui X B, Gu G H, Chen Q 2022 Optik 261 169129Google Scholar

    [32]

    Deb K, Beyer H G 2001 Evol. Comput. 9 197Google Scholar

    [33]

    Kivijärvi J, Fränti P, Nevalainen O 2003 J. Heuristics 9 113Google Scholar

    [34]

    Hinterding R, Michalewicz Z, Peachey T C 1996 International Conference on Evolutionary Computation—The 4th International Conference on Parallel Problem Solving from Nature, Berlin Germany, September 22–26, 1996 pp420–429

  • [1] 段美刚, 赵映, 左浩毅. 基于迭代算法的不同状态散射光场聚焦.  , 2024, 73(12): 124203. doi: 10.7498/aps.73.20231991
    [2] 廖涌泉, 张晓雪, 刘卉, 朱香渝, 陈旭东, 林志立. 基于数字微镜器件超像素法实现散射介质传输矩阵的自参考干涉测量.  , 2023, 72(22): 224201. doi: 10.7498/aps.72.20230660
    [3] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦.  , 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [4] 刘康, 何韬, 刘涛, 李国卿, 田博, 王佳怡, 杨树明. 激光照明条件对超振荡平面透镜聚焦性能的影响.  , 2020, 69(18): 184215. doi: 10.7498/aps.69.20200577
    [5] 张克瑾, 刘磊, 曾庆伟, 高太长, 胡帅, 陈鸣. 不同散射介质对飞秒脉冲激光传输特性影响研究.  , 2019, 68(19): 194207. doi: 10.7498/aps.68.20190430
    [6] 张熙程, 方龙杰, 庞霖. 强散射过程中基于奇异值分解的光学传输矩阵优化方法.  , 2018, 67(10): 104202. doi: 10.7498/aps.67.20172688
    [7] 张洪波, 张希仁. 用于实现散射介质中时间反演的数字相位共轭的相干性.  , 2018, 67(5): 054201. doi: 10.7498/aps.67.20172308
    [8] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计.  , 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [9] 张诚, 方龙杰, 朱建华, 左浩毅, 高福华, 庞霖. 四元裂解位相调制实现相干光通过散射介质聚焦.  , 2017, 66(11): 114202. doi: 10.7498/aps.66.114202
    [10] 谷文浩, 常胜江, 范飞, 张选洲. 基于锑化铟亚波长阵列结构的太赫兹聚焦器件.  , 2016, 65(1): 010701. doi: 10.7498/aps.65.010701
    [11] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用.  , 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [12] 蒋忠君, 刘建军. 超振荡及其远场聚焦成像研究进展.  , 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [13] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦.  , 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [14] 陈直, 许良, 陈荣昌, 杜国浩, 邓彪, 谢红兰, 肖体乔. Kinoform单透镜的硬X射线聚焦性能.  , 2015, 64(16): 164104. doi: 10.7498/aps.64.164104
    [15] 王铮, 高春清, 辛璟焘. 高阶矢量光束高数值孔径聚焦特性的研究.  , 2012, 61(12): 124209. doi: 10.7498/aps.61.124209
    [16] 孙芳, 曾周末, 王晓媛, 靳世久, 詹湘琳. 界面条件下线型超声相控阵声场特性研究.  , 2011, 60(9): 094301. doi: 10.7498/aps.60.094301
    [17] 于永江, 陈建农, 闫金良, 王菲菲. 聚焦径向调制Bessel-Gaussian光束实现亚波长尺寸纵向偏振光束.  , 2011, 60(4): 044205. doi: 10.7498/aps.60.044205
    [18] 李敏, 张志友, 石莎, 杜惊雷. 亚波长金属聚焦透镜结构参数的优化与分析.  , 2010, 59(2): 958-963. doi: 10.7498/aps.59.958
    [19] 周飞, 丁天怀. 散射介质中层间杂质检测效率的影响因素及分析.  , 2010, 59(12): 8451-8458. doi: 10.7498/aps.59.8451
    [20] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用.  , 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
计量
  • 文章访问数:  397
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-08
  • 修回日期:  2025-05-16
  • 上网日期:  2025-06-18
  • 刊出日期:  2025-08-20

/

返回文章
返回
Baidu
map