搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扩展混合训练物理信息神经网络的非线性薛定谔方程求解和参数发现

王宇铎 陈嘉鑫 李彪

引用本文:
Citation:

基于扩展混合训练物理信息神经网络的非线性薛定谔方程求解和参数发现

王宇铎, 陈嘉鑫, 李彪

Solving nonlinear Schrödinger equations and parameter discovery via extended mixed-training physics-informed neural networks

WANG Yuduo, CHEN Jiaxin, LI Biao
cstr: 32037.14.aps.74.20250422
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 提出了扩展混合训练物理信息神经网络(X-MTPINNs), 该模型通过整合扩展物理信息神经网络(X-PINNs)的域分解技术与混合训练物理信息神经网络(MTPINNs)框架, 有效提升了非线性波动问题的求解能力. 相较于经典物理信息神经网络(PINNs)模型, 新模型具有双重优势: 1)混合训练框架通过优化初边值条件的处理机制, 显著改善了模型收敛特性, 在提升非线性波解拟合精度的同时, 将计算时间降低约40%; 2) X-PINNs的域分解技术增强了模型对复杂动力学行为的表征能力. 基于非线性薛定谔方程(NLSE)的数值实验表明, X-MTPINNs在亮双孤子解及三阶怪波求解以及参数反演等任务中均表现优异, 其预测精度较传统PINNs提升一至两个数量级. 对于逆问题, X-MTPINNs算法在有噪声和无噪声条件下都能准确识别NLSE中的未知参数, 解决了经典PINNs在本研究条件下NLSE参数识别中完全失效的问题, 表现出很强的鲁棒性.
    In recent years, physics-informed neural networks (PINNs) have provided effcient data-driven methods for solving forward and inverse problems of partial differential equations (PDEs). However, when addressing complex PDEs, PINNs face significant challenges in computational efficiency and accuracy. In this study, we propose the extended mixed-training physics-informed neural networks (X-MTPINNs) as illustrated in the following figure, which effectively enhance the ability to solve nonlinear wave problems by integrating the domain decomposition technique of extended physics-informed neural networks (X-PINNs) in a mixed-training physics-informed neural networks (MTPINNs) framework. Compared with the classical PINNs model, the new model exhibits dual advantages: The first advantage is that the mixed-training framework significantly improves convergence properties by optimizing the handling mechanism of initial and boundary conditions, achieving higher fitting accuracy for nonlinear wave solutions while reducing the computation time by approximately 40%. And the second advantage is that the domain decomposition technique from X-PINNs strengthens the ability of the model to represent complex dynamical behaviors. Numerical experiments based on the nonlinear Schrödinger equation (NLSE) demonstrate that X-MTPINNs excel perform well in solving two bright solitons, third-order rogue waves, and parameter inversion tasks, with prediction accuracy improved by one to two orders of magnitude over traditional PINN. For inverse problems, the X-MTPINNs algorithm accurately identifies unknown parameters in the NLSE under noise-free, 2%, and 5% noisy conditions, solving the complete failure problem of NSLE parameter identification in classical PINNs in the studied scenario, thus demonstrating strong robustness.
      通信作者: 李彪, libiao@nbu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12175111, 12235007, 12275144)和宁波大学王宽诚幸福基金资助的课题.
      Corresponding author: LI Biao, libiao@nbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175111, 12235007, 12275144) and the K.C. Wong Magna Fund in Ningbo University, China.
    [1]

    Dissanayake M, Phan-Thien N 1994 Commun. Numer. Methods Eng. 10 195Google Scholar

    [2]

    Lagaris I E, Likas A 1998 IEEE Trans. Neural Networks 9 987Google Scholar

    [3]

    Eymard R, Gallouët T, Herbin R 2000 Handb. Numer. Anal. 7 713

    [4]

    Zhang Y 2009 Appl. Math. Comput. 215 524

    [5]

    Taylor C A, Hughes T J R, Zarins C K 1998 Comput. Methods Appl. Mech. Eng. 158 155Google Scholar

    [6]

    He K M, Zhang X Y, Ren S Q, Sun J 2016 CPRV 2016-December 770

    [7]

    Ding Y, Li J T, Zhang J X, Li P P, Bai H, Fang B, Fang H X, Huang K, Wang G Y, Nowell C J, Voelcker N H, Peng B, Li L, Huang W 2025 Nat. Commun. 16 743Google Scholar

    [8]

    Liu J, Chen Y B, Liu K, Zhao J 2018 32nd AAAI Conference on Artificial Intelligence New Orleans, Louisiana, USA, February 2–7, 2018 p4865

    [9]

    Raissi M, Perdikaris P, Karniadakis G E 2019 J. Comput. Phys. 378 686Google Scholar

    [10]

    Wang F J, Zhai Z, Zhao Z B, Di Y, Chen X F 2024 Nat. Commun. 15 4332Google Scholar

    [11]

    James D, Alireza D, Soroush A 2019 Sci. Total Environ. 912 168814

    [12]

    Xu S F, Sun Z X, Huang R F, Guo D L, Yang G W, Ju S J 2023 AMS 39 322302

    [13]

    Chiu P H, Wong J C, Ooi C C, Dao H 2022 Comput. Methods Appl. Mech. Eng. 395 114909Google Scholar

    [14]

    Yang L, Meng X H, Karniadakis G E 2021 J. Comput. Phys. 425 109913Google Scholar

    [15]

    Mojgani R, Balajewicz M, Hassanzadeh P 2023 Comput. Methods Appl. Mech. Eng. 404 115810Google Scholar

    [16]

    Jagtap A D, Karniadakis G E 2021 CEUR Workshop Proc. 296 4

    [17]

    Che W J, Chen S C, Liu C, Zhao L C, Akhmediev N 2022 Phys. Rev. A 105 043526Google Scholar

    [18]

    Liu C, Chen S C, Yao X K, Akhmediev N 2022 Physica D 433 133192Google Scholar

    [19]

    Fang Y, Bo W B, Wang R R, Wang Y Y, Dai C Q 2022 Chaos, Solitons Fractals 165 112908Google Scholar

    [20]

    Li W T, Chen Y P, Zhang Z, Yang X Y, Li B 2025 Chin. Phys. Lett. 42 010202Google Scholar

    [21]

    Chen M, Wang Z 2023 Chin. Phys. B 32 090504Google Scholar

    [22]

    Li J, Chen Y 2020 Commun. Theor. Phys. 72 105005Google Scholar

    [23]

    Li J, Chen Y 2020 Commun. Theor. Phys. 72 115003Google Scholar

    [24]

    Song J, Zhong M, Karniadakis G E, Yan Z Y 2024 J. Comput. Phys. 505 112917Google Scholar

    [25]

    Wang X L, Wu Z K, Song J, Han W J, Yan Z Y 2024 Chaos, Solitons Fractals 180 114509Google Scholar

    [26]

    Qiu T W, Wei G M, Song Y X, Wang Z 2025 Appl. Math. Mech. 46 105Google Scholar

    [27]

    田十方, 李彪 2023 72 100202Google Scholar

    Tian S F, Li B 2023 Acta Phys. Sin. 72 100202Google Scholar

    [28]

    Li J H, Li B 2022 Chaos, Solitons Fractals 164 112712Google Scholar

    [29]

    Tian S F, Li B, Zhang Z 2024 Chin. Phys. Lett. 41 030201Google Scholar

    [30]

    Zhou H J, Pu J C, Chen Y 2023 Nonlinear Dyn. 111 14667Google Scholar

    [31]

    Qiu W X, Si Z Z, Mou D S, Dai C Q, Li J T, Liu W 2025 Nonlinear Dyn. 113 4063Google Scholar

    [32]

    Liu X M, Zhang Z Y, Liu W J 2023 Chin. Phys. Lett. 40 070501Google Scholar

    [33]

    Liu H Y, Zhang Y B, Wang L 2024 J. Syst. Sci. 37 494Google Scholar

    [34]

    Zhang W X, Chen Y 2025 Nonlinear Dyn. 113 10211Google Scholar

    [35]

    Pu J C, Chen Y 2024 J. Comput. Phys. 510 113090Google Scholar

    [36]

    张解放, 戴朝卿, 王悦悦 2016 基于非线性薛定谔方程的畸形波理论及其应用(北京: 科学出版社) 第44—63页

    Zhang J F, Dai C Q, Wang Y Y 2016 Rogue Wave Theory and Its Applications Based on the Nonlinear Schrödinger Equation (Beijing: Science Press) pp44–63

  • 图 1  区域分解示意图

    Fig. 1.  Domain decomposition schematic diagram.

    图 2  扩展混合训练物理信息神经网络(X-MTPINNs)

    Fig. 2.  Extended mixed-training physics-informed neural networks (X-MTPINNs).

    图 3  NLSE亮双孤子解的真实值和不同模型的预测误差

    Fig. 3.  Exact values of two bright solitons in the NLSE and prediction errors from different models.

    图 4  NLSE三阶怪波的真实值和不同模型的预测误差

    Fig. 4.  Exact values of third-order rogue waves in the NLSE and prediction errors from different models.

    表 1  两种模型对NLSE亮双孤子解的数值预测结果

    Table 1.  Numerical prediction results of two models for two bright solitons in the NLSE

    亮双孤子 子域 隐藏
    层数
    神经
    元数
    L2误差 训练时间/s
    X-
    MTPINNs
    [–5.00, –3.30] 4 50 4.52×10–2 2531.88
    [–3.30, –2.50] 4 50 2.63×10–2 2459.23
    [–2.50, –1.40] 4 50 3.03×10–2 2347.56
    [–1.40, 2.00] 4 50 5.73×10–2 2489.87
    [2.00, 5.00] 4 50 1.70×10–2 2489.87
    Global [–5, 5] 4 50 3.38×10–2 2531.88
    PINNs [–5, 5] 4 50 2.51×10–1 4176.69
    下载: 导出CSV

    表 2  两种模型对非线性薛定谔方程三阶怪波的数值预测结果

    Table 2.  Numerical prediction results of third-order rogue waves in the NLSE

    三阶怪波 子域 隐藏
    层数
    神经
    元数
    L2误差 训练时间/s
    X-
    MTPINNs
    [–2.00, –0.60] 4 50 1.25×10–3 3065.07
    [–0.60, –0.15] 4 50 1.22×10–3 2228.26
    [–0.15, 0.15] 4 50 3.89×10–3 2018.29
    [0.15, 0.60] 4 50 1.31×10–3 2438.84
    [0.60, 2.00] 4 50 1.84×10–3 2339.57
    Global [–2, 2] 4 50 2.25×10–3 3065.07
    PINNs [–2, 2] 4 50 4.94×10–1 5538.17
    下载: 导出CSV

    表 3  通过学习所得的$ \lambda_1 $和$ \lambda_2 $及其误差

    Table 3.  Learned $ \lambda_1 $ and $ \lambda_2 $ and their associated errors

    NPDEs 噪声 非线性演化方程 相对误差$ [\lambda_1, \lambda_2] $/%
    Correct $ {\rm{i}}\hat{h}_t + 0.5\hat{h}_{xx} + |\hat{h}|^2\hat{h} = 0 $ $ [0, 0] $
    [–2.00, –0.60] 0% $ \lambda_1 = 0.4999224, \lambda_2 = 0.9999491 $ $ [0.01553, 0.00509] $
    2% $ \lambda_1 = 0.5006779, \lambda_2 = 1.0010909 $ $ [0.13558, 0.10909] $
    5% $ \lambda_1 = 0.5017547, \lambda_2 = 1.0026274 $ $ [0.35094, 0.26274] $
    [–0.60, –0.08] 0% $ \lambda_1 = 0.4995355, \lambda_2 = 0.9997470 $ $ [0.09289, 0.02530] $
    2% $ \lambda_1 = 0.4990919, \lambda_2 = 0.9979020 $ $ [0.18162, 0.20980] $
    5% $ \lambda_1 = 0.4983062, \lambda_2 = 0.9952767 $ $ [0.33876, 0.47233] $
    [–0.08, 0.00] 0% $ \lambda_1 = 0.4907891, \lambda_2 = 0.9970491 $ $ [1.84218, 0.29509] $
    2% $ \lambda_1 = 0.4856022, \lambda_2 = 0.9931418 $ $ [2.87955, 0.68582] $
    5% $ \lambda_1 = 0.4838027, \lambda_2 = 0.9913622 $ $ [3.23946, 0.86378] $
    [0.00, 0.08] 0% $ \lambda_1 = 0.4978686, \lambda_2 = 0.9941696 $ $ [0.42627, 0.58304] $
    2% $ \lambda_1 = 0.4953954, \lambda_2 = 0.9936743 $ $ [0.92092, 0.63257] $
    5% $ \lambda_1 = 0.4909737, \lambda_2 = 0.9887489 $ $ [1.80527, 1.12511] $
    [0.08, 0.60] 0% $ \lambda_1 = 0.4999007, \lambda_2 = 0.9997627 $ $ [0.01987, 0.02373] $
    2% $ \lambda_1 = 0.4997132, \lambda_2 = 0.9992683 $ $ [0.05737, 0.07317] $
    5% $ \lambda_1 = 0.4974256, \lambda_2 = 0.9973150 $ $ [0.51489, 0.26850] $
    [0.60, 2.00] 0% $ \lambda_1 = 0.5002598, \lambda_2 = 1.0001861 $ $ [0.05195, 0.01861] $
    2% $ \lambda_1 = 0.4997032, \lambda_2 = 0.9999705 $ $ [0.05936, 0.00295] $
    5% $ \lambda_1 = 0.4995049, \lambda_2 = 0.9998789 $ $ [0.09903, 0.01211] $
    Global 0% $ \lambda_1 = 0.972926, \lambda_2 = 0.9987469 $ $ [0.54148, 0.12531] $
    2% $ \lambda_1 = 0.5035173, \lambda_2 = 0.9971460 $ $ [0.70345, 0.28540] $
    5% $ \lambda_1 = 4.9470665, \lambda_2 = 1.0050076 $ $ [1.05867, 0.50076] $
    下载: 导出CSV
    Baidu
  • [1]

    Dissanayake M, Phan-Thien N 1994 Commun. Numer. Methods Eng. 10 195Google Scholar

    [2]

    Lagaris I E, Likas A 1998 IEEE Trans. Neural Networks 9 987Google Scholar

    [3]

    Eymard R, Gallouët T, Herbin R 2000 Handb. Numer. Anal. 7 713

    [4]

    Zhang Y 2009 Appl. Math. Comput. 215 524

    [5]

    Taylor C A, Hughes T J R, Zarins C K 1998 Comput. Methods Appl. Mech. Eng. 158 155Google Scholar

    [6]

    He K M, Zhang X Y, Ren S Q, Sun J 2016 CPRV 2016-December 770

    [7]

    Ding Y, Li J T, Zhang J X, Li P P, Bai H, Fang B, Fang H X, Huang K, Wang G Y, Nowell C J, Voelcker N H, Peng B, Li L, Huang W 2025 Nat. Commun. 16 743Google Scholar

    [8]

    Liu J, Chen Y B, Liu K, Zhao J 2018 32nd AAAI Conference on Artificial Intelligence New Orleans, Louisiana, USA, February 2–7, 2018 p4865

    [9]

    Raissi M, Perdikaris P, Karniadakis G E 2019 J. Comput. Phys. 378 686Google Scholar

    [10]

    Wang F J, Zhai Z, Zhao Z B, Di Y, Chen X F 2024 Nat. Commun. 15 4332Google Scholar

    [11]

    James D, Alireza D, Soroush A 2019 Sci. Total Environ. 912 168814

    [12]

    Xu S F, Sun Z X, Huang R F, Guo D L, Yang G W, Ju S J 2023 AMS 39 322302

    [13]

    Chiu P H, Wong J C, Ooi C C, Dao H 2022 Comput. Methods Appl. Mech. Eng. 395 114909Google Scholar

    [14]

    Yang L, Meng X H, Karniadakis G E 2021 J. Comput. Phys. 425 109913Google Scholar

    [15]

    Mojgani R, Balajewicz M, Hassanzadeh P 2023 Comput. Methods Appl. Mech. Eng. 404 115810Google Scholar

    [16]

    Jagtap A D, Karniadakis G E 2021 CEUR Workshop Proc. 296 4

    [17]

    Che W J, Chen S C, Liu C, Zhao L C, Akhmediev N 2022 Phys. Rev. A 105 043526Google Scholar

    [18]

    Liu C, Chen S C, Yao X K, Akhmediev N 2022 Physica D 433 133192Google Scholar

    [19]

    Fang Y, Bo W B, Wang R R, Wang Y Y, Dai C Q 2022 Chaos, Solitons Fractals 165 112908Google Scholar

    [20]

    Li W T, Chen Y P, Zhang Z, Yang X Y, Li B 2025 Chin. Phys. Lett. 42 010202Google Scholar

    [21]

    Chen M, Wang Z 2023 Chin. Phys. B 32 090504Google Scholar

    [22]

    Li J, Chen Y 2020 Commun. Theor. Phys. 72 105005Google Scholar

    [23]

    Li J, Chen Y 2020 Commun. Theor. Phys. 72 115003Google Scholar

    [24]

    Song J, Zhong M, Karniadakis G E, Yan Z Y 2024 J. Comput. Phys. 505 112917Google Scholar

    [25]

    Wang X L, Wu Z K, Song J, Han W J, Yan Z Y 2024 Chaos, Solitons Fractals 180 114509Google Scholar

    [26]

    Qiu T W, Wei G M, Song Y X, Wang Z 2025 Appl. Math. Mech. 46 105Google Scholar

    [27]

    田十方, 李彪 2023 72 100202Google Scholar

    Tian S F, Li B 2023 Acta Phys. Sin. 72 100202Google Scholar

    [28]

    Li J H, Li B 2022 Chaos, Solitons Fractals 164 112712Google Scholar

    [29]

    Tian S F, Li B, Zhang Z 2024 Chin. Phys. Lett. 41 030201Google Scholar

    [30]

    Zhou H J, Pu J C, Chen Y 2023 Nonlinear Dyn. 111 14667Google Scholar

    [31]

    Qiu W X, Si Z Z, Mou D S, Dai C Q, Li J T, Liu W 2025 Nonlinear Dyn. 113 4063Google Scholar

    [32]

    Liu X M, Zhang Z Y, Liu W J 2023 Chin. Phys. Lett. 40 070501Google Scholar

    [33]

    Liu H Y, Zhang Y B, Wang L 2024 J. Syst. Sci. 37 494Google Scholar

    [34]

    Zhang W X, Chen Y 2025 Nonlinear Dyn. 113 10211Google Scholar

    [35]

    Pu J C, Chen Y 2024 J. Comput. Phys. 510 113090Google Scholar

    [36]

    张解放, 戴朝卿, 王悦悦 2016 基于非线性薛定谔方程的畸形波理论及其应用(北京: 科学出版社) 第44—63页

    Zhang J F, Dai C Q, Wang Y Y 2016 Rogue Wave Theory and Its Applications Based on the Nonlinear Schrödinger Equation (Beijing: Science Press) pp44–63

  • [1] 李君, 苏进, 韩小祥, 朱伟杰, 杨瑞霞, 张海洋, 严祥安, 张云婕, 王斐然. 基于智能算法对脉冲在光纤中传输动力学的研究.  , 2025, 74(6): 060201. doi: 10.7498/aps.74.20241473
    [2] 刘明, 张斯淇, 李宏. 基于物理信息神经网络的绝热捷径动力学分析.  , 2025, 74(11): 114204. doi: 10.7498/aps.74.20250147
    [3] 张照阳, 王青旺. 信息表征-损失优化改进的物理信息神经网络求解偏微分方程.  , 2025, 74(18): . doi: 10.7498/aps.74.20250707
    [4] 方波浪, 武俊杰, 王晟, 吴振杰, 李天植, 张洋, 杨鹏翎, 王建国. 基于物理信息神经网络的金属表面吸收率测量方法.  , 2024, 73(9): 094301. doi: 10.7498/aps.73.20231453
    [5] 方泽, 潘泳全, 戴栋, 张俊勃. 基于源项解耦的物理信息神经网络方法及其在放电等离子体模拟中的应用.  , 2024, 73(14): 145201. doi: 10.7498/aps.73.20240343
    [6] 田十方, 李彪. 基于梯度优化物理信息神经网络求解复杂非线性问题.  , 2023, 72(10): 100202. doi: 10.7498/aps.72.20222381
    [7] 方波浪, 王建国, 冯国斌. 基于物理信息神经网络的光斑质心计算.  , 2022, 71(20): 200601. doi: 10.7498/aps.71.20220670
    [8] 蒋涛, 黄金晶, 陆林广, 任金莲. 非线性薛定谔方程的高阶分裂改进光滑粒子动力学算法.  , 2019, 68(9): 090203. doi: 10.7498/aps.68.20190169
    [9] 崔少燕, 吕欣欣, 辛杰. 广义非线性薛定谔方程描述的波坍缩及其演变.  , 2016, 65(4): 040201. doi: 10.7498/aps.65.040201
    [10] 李欢, 王友国. 一类非线性神经网络中噪声改善信息传输.  , 2014, 63(12): 120506. doi: 10.7498/aps.63.120506
    [11] 王晶, 马瑞玲, 王龙, 孟俊敏. 采用混合模型数值模拟从深海到浅海内波的传播.  , 2012, 61(6): 064701. doi: 10.7498/aps.61.064701
    [12] 宋诗艳, 王晶, 王建步, 宋莎莎, 孟俊敏. 应用非线性薛定谔方程模拟深海内波的传播.  , 2010, 59(9): 6339-6344. doi: 10.7498/aps.59.6339
    [13] 栾仕霞, 张秋菊, 武慧春, 盛政明. 激光脉冲在等离子体中的压缩分裂.  , 2008, 57(6): 3646-3652. doi: 10.7498/aps.57.3646
    [14] 张冠茂, 张晓萍. 光脉冲传输模拟的快速数值差分递推算法及其应用研究.  , 2007, 56(5): 2678-2683. doi: 10.7498/aps.56.2678
    [15] 雷 霆, 涂成厚, 李恩邦, 李勇男, 郭文刚, 魏 岱, 朱 辉, 吕福云. 高能量无波分裂超短脉冲自相似传输的理论研究和数值模拟.  , 2007, 56(5): 2769-2775. doi: 10.7498/aps.56.2769
    [16] 任学藻, 廖 旭, 刘 涛, 汪克林. 电子与双声子相互作用对Holstein极化子的影响.  , 2006, 55(6): 2865-2870. doi: 10.7498/aps.55.2865
    [17] 龚伦训. 非线性薛定谔方程的Jacobi椭圆函数解.  , 2006, 55(9): 4414-4419. doi: 10.7498/aps.55.4414
    [18] 陈宏平, 王 箭, 何国光. 光脉冲传输数值模拟的分步小波方法.  , 2005, 54(6): 2779-2783. doi: 10.7498/aps.54.2779
    [19] 阮航宇, 李慧军. 用推广的李群约化法求解非线性薛定谔方程.  , 2005, 54(3): 996-1001. doi: 10.7498/aps.54.996
    [20] 阮航宇, 陈一新. (2+1)维非线性薛定谔方程的环孤子,dromion,呼吸子和瞬子.  , 2001, 50(4): 586-592. doi: 10.7498/aps.50.586
计量
  • 文章访问数:  514
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-01
  • 修回日期:  2025-05-26
  • 上网日期:  2025-06-19
  • 刊出日期:  2025-08-20

/

返回文章
返回
Baidu
map