搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于智能算法对脉冲在光纤中传输动力学的研究

李君 苏进 韩小祥 朱伟杰 杨瑞霞 张海洋 严祥安 张云婕 王斐然

引用本文:
Citation:

基于智能算法对脉冲在光纤中传输动力学的研究

李君, 苏进, 韩小祥, 朱伟杰, 杨瑞霞, 张海洋, 严祥安, 张云婕, 王斐然

Research on pulse transmission dynamics in optical fiber based on intelligence algorithms

LI Jun, SU Jin, HAN Xiaoxiang, ZHU Weijie, YANG Ruixia, ZHANG Haiyang, YAN Xiang'an, ZHANG Yunjie, WANG Feiran
PDF
导出引用
  • 非线性薛定谔方程(NLSE)在量子力学、非线性光学、等离子体物理、凝聚态物理、光纤通信和激光系统设计等多个领域中都具有重要的应用,其精确求解对于理解复杂物理现象至关重要。本文深入研究了传统的有限差分法(FDM)、分步傅里叶法(SSF)与智能算法中的物理信息神经网络(PINN)方法,旨在高效且准确地求解光纤中的复杂NLSE。这里首先介绍了PINN方法对NLSE的求解方法、步骤和结果,并对比了FDM、SSF、PINN方法对复杂NLSE求解与脉冲远距离脉冲传输的误差。然后,讨论了PINN不同网络结构和网络参数对NLSE求解精度的影响,还验证了集成学习策略的有效性,即通过结合传统数值方法与PINN的优势,提高NLSE求解的准确度。最后,采用上述算法研究了不同啁啾的艾里脉冲在光纤中的演化过程与保偏光纤对应的矢量非线性薛定谔方程求解过程。本研究通过对比FDM、SSF、PINN在求解NLSE时的特点,提出的集成学习方案在脉冲传输动力学研究和数据驱动仿真方面具有重要的应用。
    Nonlinear Schrodinger equation (NLSE) has important applications in quantum mechanics, nonlinear optics, plasma physics, condensed matter physics, optical fiber communication and laser system design, and its accurate solution is very important for understanding complex physical phenomena. Here, the traditional Finite Difference Method (FDM), the Split-Step Fourier Method (SSF) and the Physics-Informed Neural Network (PINN) method are studied, aiming to deeply analyze the solving mechanism of various algorithms, and then realize the efficient and accurate solution of complex nonlinear Schrodinger equation (NLSE) in optical fiber. Initially, the steps, process and results of PINN in solving the NLSE for pulse under short-distance transmission are described, and these methods’ errors are quantitatively evaluated by comparing with PINN, FDM and SSF. On this basis, the key factors affecting the accuracy of NLSE solution for pulse under long-distance transmission are further discussed. Then, the effects of different networks, activation functions, hidden layers and the number of neurons in PINN on the NLSE solution’s accuracy are discussed. It is found that selecting a suitable combination of activation functions and network types can significantly reduce the error, and the combination of FNN and tanh activation functions is particularly good. The effectiveness of Ensemble Learning strategy is also verified, that is, by combining the advantages of traditional numerical methods and PINN, the accuracy of NLSE solution is improved. Finally, the evolution characteristics of Airy pulse with different chirps in fiber and the solution of vector NLSE corresponding to polarization-maintaining fiber are studied by using the above algorithm. This study explores the solving mechanism of FDM, SSF and PINN in complex NLSE, compares and analyzes the error characteristics of those methods in various transmission scenarios, proposes and verifies the Ensemble Learning strategy. It provides a solid theoretical basis for the research of pulse transmission dynamics and data-driven simulation.
  • [1]

    Govind P.Agrawal,阿戈沃,Agrawal(translated by Jia D F, Yu z H)2010 Principles and Applications of Nonlinear Fibre Optics (Beijing: Electronic Industry Press) pp18—109(in Chinese) [Govind P.Agrawal,阿戈沃,Agrawal著(贾东方,余震虹译)2010非线性光纤光学原理及应用(北京:电子工业出版社)第18—109页]

    [2]

    Ngo N Q 2018 Ultra-fast fiber lasers: principles and applications with MATLAB® models (Boca Raton: CRC Press) pp139—157(in America)

    [3]

    Chang Q, Jia E, Sun W 1999J. Comput. Phys. 148 2

    [4]

    Wang H 2005Appl. Math. Comput. 1701

    [5]

    Zhao L, Sui Z, Zhu Q H, Zhang Y, Zuo Y L 2009Acta Phys. Sin. 58 07(in Chinese) [赵磊,隋展,朱启华,张颖,左言磊2009 58 07]

    [6]

    Li G X, Yi S 2009Comput. Methods Appl. Mech. Eng. 198 9

    [7]

    Wu L 2012Numer Methods Partial Differ Equ. 28 1

    [8]

    Caplan R M 2013Appl Numer Math. 71 24

    [9]

    Cui S Y, Lv X X, Xin J 2016Acta Phys. Sin. 65 04(in Chinese) [崔少燕,吕欣欣,辛杰2016 65 04]

    [10]

    Feng X, Li B, Ma S 2021SIAM J. Numer. Anal. 59 3

    [11]

    Ibarra-Villalón H E, Pottiez O, Gómez-Vieyra A, Lauterio-Cruz J P, Bracamontes- Rodriguez Y E 2023Phys. Scr. 98 6

    [12]

    Zhang L, Liu K, Zhong H, Zhang J, Li Y, Fan D 2015Opt. Express. 23 3

    [13]

    Yu Y, Zhang Y, Song X, Zhang H, Cao M, Che Y, Zhang H, Yao J 2017IEEE Photonics J. 9 3

    [14]

    Wang Xin, Yan Wang, Zhigang Xin, Lu Li 2021Opt. Commun. 489126889

    [15]

    Luo M, Zhang Y Z, Chen N M, Liu M, Luo A P, Xu W C, Luo Z C 2023Acta Phys. Sin. 72 20(in Chinese) [罗民,张泽贤,陈乃妙,刘萌,罗爱平,徐文成,罗智超2023 72 20]

    [16]

    Lawal Z K, Yassin H, Lai D T, Che-Idris A 2022Big Data Cogn. Comput. 6 4

    [17]

    Karniadakis G E, Kevrekidis I G, Lu L, Perdikaris P, Wang S, Yang L 2021Nat. Rev. Phys. 3 6

    [18]

    Li Y, Chen S C 2022CS. 49 04(in Chinese) [李野,陈松灿2022计算机科学49 04]

    [19]

    Raissi M, Perdikaris P, Karniadakis G E 2019J. Comput. Phys. 378 686

    [20]

    Pu J, Peng W, Chen Y 2021Wave Motion. 107 102823

    [21]

    Pu J, Li J, Chen Y 2021Nonlinear Dyn. 105 1723

    [22]

    Wang L, Yan Z 2021Phys. Lett. 404 127408.

    [23]

    Zang Y, Yu Z, Xu K, Chen M, Yang S, Chen H 2021J. Lightwave Technol. 40404

    [24]

    Jiang X, Wang D, Chen X, Zhang M 2022J. Lightwave Technol. 4021

    [25]

    Jiang X, Wang D, Fan Q, Zhang M, Lu C, Lau A P 2021Laser Photonics Rev. 16 9

    [26]

    Fang Y, Bo W B, Wang R R, Wang W W, Chao Q D 2022 Chaos Solitons Fractals. 165 112908

    [27]

    Tian S F, Li B 2023Acta Phys. Sin. 7210(in Chinese) [田十方,李彪2023 72 10]

    [28]

    Luo X, Zhang M, Jiang X T, Song X M, Zhang X M, Wang D S 2023Infrared and Laser Engineering. 52 12(in Chinese) [罗霄,张民,蒋啸天,宋裕琛,张希萌,王丹石2023红外与激光工程52 12]

    [29]

    Thulasidharan K, Sinthuja N, Priya N V, Senthilvelan M 2024Commun. Theor. Phys. 76 115801

    [30]

    Psaros A F, Kawaguchi K, Karniadakis G E 2022J. Comput. Phys. 458 111121

    [31]

    Uduagbomen J, Leeson M S, Liu Z, Lakshminarayana S, Xu T H 2024 Appl. Opt. 63 3794

    [32]

    Cuomo S, Di Cola V S, Giampaolo F, Rozza G, Raissi M, Piccialli F 2022J. Sci. Comput. 92 88

    [33]

    Lu L, Meng X, Mao Z, Karniadakis G E 2019SIAM Rev. 63 1

    [34]

    Yu J, Lu L, Meng X, Karniadakis G E 2022Comput Methods Appl Mech Eng. 393 114823

    [35]

    Wang T M, Cai L J, Xia C J, Song H, Li L B 2024Adv. Sci. 11.422406476

    [36]

    Gong K W, Li L B, Yu W Z 2023 Mater. Des. 228 111848

    [37]

    Ding B B, Li L B, Gong K W 2023Appl. Surf. Sci. 22 156944

    [38]

    Mao D, He Z W, Zhang Y S, Du Y Q, Zeng C, Yun L, Luo Z C, Li T J, Sun Z P, Zhao J L 2022 Light Sci. Appl. 1125

    [39]

    Mao D, Wang H, Zhang H, Zeng C, Du Y, He Z,Sun Z, and Zhao J 2021Nat. Commun. 12 6712.

    [40]

    Mao D, Gao Q, Li J, He Z, Du Y, Zeng C, Sun Z, Zhao J 2022Phys. Rev. Appl. 18 044044

    [41]

    Rao C, Ren P, Wang Q, Buyukozturk O, Sun H, Liu Y 2023Nat. Mach. Intell. 5 765

    [42]

    Cao R, Su J, Feng J, Guo Q 2024 Electron. Res. Arch. 32 6641

    [43]

    Ismail M S, Alamri S Z 2004Int. J. Comput. Math. 81333

    [44]

    Wang T 2011J. Comput. Appl. Math. 2354237

    [45]

    Wu G Z, Fang Y, Wang Y Y, Wu G C, Dai C Q 2021 Chaos Solitons Fractals 152 111393

    [46]

    Zang Y, Yu Z, Xu K, Lan X, Chen M, Yang S, Chen H 2021 J. Lightwave Technol. 40 404

  • [1] 温嘉美, 薄文博, 温学坤, 戴朝卿. 耦合饱和非线性薛定谔方程的多极矢量孤子.  , doi: 10.7498/aps.72.20222284
    [2] 田十方, 李彪. 基于梯度优化物理信息神经网络求解复杂非线性问题.  , doi: 10.7498/aps.72.20222381
    [3] 康志伟, 刘拓, 刘劲, 马辛, 陈晓. 基于自归一化神经网络的脉冲星候选体选择.  , doi: 10.7498/aps.69.20191582
    [4] 李敏, 王博婷, 许韬, 水涓涓. 四阶色散非线性薛定谔方程的明暗孤立波和怪波的形成机制.  , doi: 10.7498/aps.69.20191384
    [5] 蒋涛, 黄金晶, 陆林广, 任金莲. 非线性薛定谔方程的高阶分裂改进光滑粒子动力学算法.  , doi: 10.7498/aps.68.20190169
    [6] 崔少燕, 吕欣欣, 辛杰. 广义非线性薛定谔方程描述的波坍缩及其演变.  , doi: 10.7498/aps.65.040201
    [7] 郭业才, 周林锋. 基于脉冲耦合神经网络和图像熵的各向异性扩散模型研究.  , doi: 10.7498/aps.64.194204
    [8] 李欢, 王友国. 一类非线性神经网络中噪声改善信息传输.  , doi: 10.7498/aps.63.120506
    [9] 李磐, 时雷, 毛庆和. 耦合广义非线性薛定谔方程的相互作用表象龙格库塔算法及其误差分析.  , doi: 10.7498/aps.62.154205
    [10] 王灿华, 章礼富, 傅喜泉, 文双春. 宽带啁啾脉冲激光非线性传输过程中的时空微扰研究.  , doi: 10.7498/aps.59.6224
    [11] 宋诗艳, 王晶, 王建步, 宋莎莎, 孟俊敏. 应用非线性薛定谔方程模拟深海内波的传播.  , doi: 10.7498/aps.59.6339
    [12] 宋诗艳, 王晶, 孟俊敏, 王建步, 扈培信. 深海内波非线性薛定谔方程的研究.  , doi: 10.7498/aps.59.1123
    [13] 赵磊, 隋展, 朱启华, 张颖, 左言磊. 分步傅里叶法求解广义非线性薛定谔方程的改进及精度分析.  , doi: 10.7498/aps.58.4731
    [14] 程雪苹, 林 机, 王志平. 微扰的耦合非线性薛定谔方程的近似求解.  , doi: 10.7498/aps.56.3031
    [15] 龚伦训. 非线性薛定谔方程的Jacobi椭圆函数解.  , doi: 10.7498/aps.55.4414
    [16] 阮航宇, 李慧军. 用推广的李群约化法求解非线性薛定谔方程.  , doi: 10.7498/aps.54.996
    [17] 张解放, 徐昌智, 何宝钢. 变量分离法与变系数非线性薛定谔方程的求解探索.  , doi: 10.7498/aps.53.3652
    [18] 阮航宇, 陈一新. (2+1)维非线性薛定谔方程的环孤子,dromion,呼吸子和瞬子.  , doi: 10.7498/aps.50.586
    [19] 闫珂柱, 谭维翰. 简谐势阱中中性原子非线性薛定谔方程的定态解.  , doi: 10.7498/aps.48.1185
    [20] 田 强, 马本堃. 用非线性薛定谔方程讨论超晶格中畴的运动.  , doi: 10.7498/aps.48.2125
计量
  • 文章访问数:  222
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-24

/

返回文章
返回
Baidu
map