搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

托卡马克中新经典对流对钨杂质聚芯影响的模拟研究

骆雨辰 桑超峰 王艺霖 吴亦晗 周庆瑞 李佳鲜 薛淼 薛雷 郑国尧 杜海龙 王德真

引用本文:
Citation:

托卡马克中新经典对流对钨杂质聚芯影响的模拟研究

骆雨辰, 桑超峰, 王艺霖, 吴亦晗, 周庆瑞, 李佳鲜, 薛淼, 薛雷, 郑国尧, 杜海龙, 王德真

Simulation of effect of neoclassical convection on tungsten impurity core accumulation in tokamak

LUO Yuchen, SANG Chaofeng, WANG Yilin, WU Yihan, ZHOU Qingrui, LI Jiaxian, XUE Miao, XUE Lei, ZHENG Guoyao, DU Hailong, WANG Dezhen
cstr: 32037.14.aps.74.20250384
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 钨杂质聚芯控制对于托卡马克的稳态运行十分重要, 本文主要采用杂质输运程序STRAHL模拟研究了新经典输运对钨杂质在芯部聚集的影响. 针对HL-3装置未来采用钨偏滤器、在氩气注入放电情况开展研究, 其中边缘和芯部背景等离子体参数分别由SOLPS-ITER及OMFIT模拟获得. 边界区域的钨杂质输运使用IMPEDGE程序进行模拟, 并同STRAHL的结果进行对比, 以确保芯边杂质分布的一致性和模拟结果的准确性, 从而得到钨杂质从边界区域至芯部的完整分布. 在此基础上, 分别模拟了有无新经典对流情况下钨杂质的输运. 模拟结果表明, 无新经典对流时, 湍流输运主导杂质输运, 其方向指向内, 会导致杂质在芯部聚集. 加入新经典对流后, 其方向指向外, 其在一定程度上抵消了向内的湍流对流, 从而显著降低芯部钨杂质密度. 其中区域$ \rho =0.72—0.90 $的新经典对流对芯部杂质密度下降起到更为重要的作用. 进一步分析新经典对流各分量, 研究表明Pfirsche-Schlüter (PS)分量主导新经典对流项, 其主要是由离子温度梯度项驱动. 因此, 实验上可以通过加热等方式, 增强离子温度梯度, 抑制杂质聚芯.
    Controlling of tungsten (W) impurity core accumulation is of great significance for the steady-state operation of tokamaks. This work mainly investigates the effect of neoclassical transport on the core accumulation of W impurities by using STRAHL code. The study focuses on the HL-3 device, which will use tungsten divertor and conduct research under argon gas injection discharge conditions. In the simulation, the edge and core background plasma parameters are obtained by SOLPS-ITER and OMFIT simulations, respectively. The distribution of tungsten impurities in the boundary region is simulated using the IMPEDGE code. The edge anomalous transport coefficient in STRAHL is adjusted accordingly, and the simulation results are compared with those from the IMPEDGE to ensure consistency in impurity distribution between the core and edge. In the core region, a numerical scan is performed to adjust the simulation results so that the energy radiation matches the setting values, thereby determining the specific turbulence convection velocity. By setting the coefficients for both the core region and the boundary region, a complete distribution of W impurities from boundary to the core is obtained. To account for the neoclassical transport effects, the neoclassical transport coefficients are calculated using the subroutine NEOART and applied to the impurity transport simulation, and the simulation region is set from $ \rho =0 $ to 0.9. On this basis, the transport of W impurities with and without neoclassical convection is simulated. The simulation results show that without neoclassical convection, anomalous transport dominates the impurity transport, which is inward and enhances impurity accumulation in the core, and the core impurity density reaches $ 1.1\times {10}^{16}\;{{\mathrm{m}}}^{-3} $. After introducing neoclassical convection which is outward, it can offset the inward anomalous convection and significantly reduces the W impurity density in the core, thereby significantly reducing the core tungsten impurity density to $ 4.0\times {10}^{15}\;{{\mathrm{m}}}^{-3} $. In addition, the neoclassical convection in the region of $ \rho$ = 0.72–0.90 plays a more important role in reducing the core impurity density. Further analysis of the components of neoclassical convection shows that the Pfirsche-Schlüter (PS) component dominates the neoclassical convection term, which is mainly driven by the ion temperature gradient term. Therefore, experimentally, plasma heating can be used to enhance the temperature gradient and suppress impurity core accumulation.
      通信作者: 桑超峰, sang@dlut.edu.cn
    • 基金项目: 国家磁约束核聚变能研究专项(批准号: 2024YFE03160001)、国家自然科学基金(批准号: 12235002, 12261131496)、大连市科技人才创新项目(批准号: 2022RJ11)和兴辽英才计划(批准号: XLYC2203182)资助的课题.
      Corresponding author: SANG Chaofeng, sang@dlut.edu.cn
    • Funds: Project supported by the National Magnetic Confinement Fusion Energy Program (Grant No. 2024YFE03160001), the National Natural Science Foundation of China (Grant Nos. 12235002, 12261131496), the Science & Technology Talents of Dalian, China (Grant No. 2022RJ11), and the Revitalization Talents Program of Liaoning Province, China (Grant No. XLYC2203182).
    [1]

    Neu R, Dux R, Geier A, Kallenbach A, Pugno R, Rohde V, Bolshukhin D, Fuchs J C, Gehre O, Gruber O, Hobirk J, Kaufmann M, Krieger K, Laux M, Maggi C, Murmann H, Neuhauser J, Ryter F, Sips A C C, Stäbler A, Stober J, Suttrop W, Zohm H 2002 Plasma Phys. Control. Fusion 44 811Google Scholar

    [2]

    Sang C F, Zhou Q R, Xu G S, Wang L, Wang Y L, Zhao X L, Zhang C, Ding R, Jia G Z, Yao D M, Liu X J, Si H, Wang D Z, the EAST Team 2021 Nucl. Fusion 61 066004Google Scholar

    [3]

    Liu B, Dai S Y, Yang X D, Chan V S, Ding R, Zhang H M, Feng Y, Wang D Z 2022 Nucl. Fusion 62 126040Google Scholar

    [4]

    Pitts R A, Bonnin X, Escourbiac F, Frerichs H, Gunn J P, Hirai T, Kukushkin A S, Kaveeva E, Miller M A, Moulton D, Rozhansky V, Senichenkov I, Sytova E, Schmitz O, Stangeby P C, De Temmerman G, Veselova I, Wiesen S 2019 Nucl. Mater. Energy 20 100696Google Scholar

    [5]

    Gruber O, Sips A C C, Dux R, Eich T, Fuchs J C, Herrmann A, Kallenbach A, Maggi C F, Neu R, Pütterich T, Schweinzer J, Stober J 2009 Nucl. Fusion 49 115014Google Scholar

    [6]

    Sun Z C, Lian Z W, Qiao W N, Yu J G, Han W J, Fu Q W, Zhu K G 2017 Chin. Phys. Lett. 34 030205Google Scholar

    [7]

    张启凡, 乐文成, 张羽昊, 葛忠昕, 邝志强, 萧声扬, 王璐 2024 73 185201Google Scholar

    Zhang Q F, Le W C, Zhang Y H, Ge Z X, Kuang Z Q, Xiao S Y, Wang L 2024 Acta Phys. Sin. 73 185201Google Scholar

    [8]

    Angioni C 2021 Plasma Phys. Control. Fusion 63 073001Google Scholar

    [9]

    Guirlet R, Giroud C, Parisot T, Puiatti M E, Bourdelle C, Carraro L, Dubuit N, Garbet X, Thomas P R 2006 Plasma Phys. Control. Fusion 48 B63Google Scholar

    [10]

    Donnel P 2018 Ph. D. Dissertation (Aix-Marseille: Aix Marseille Université

    [11]

    Shi S Y, Chen J L, Bourdelle C, Jian X, Odstrčil T, Garofalo A M, Cheng Y X, Chao Y, Zhang L, Duan Y M, Wu M Q, Ding F, Li Y Y, Huang J, Qian J P, Gao X, Wan Y X 2022 Nucl. Fusion 62 066031Google Scholar

    [12]

    Shi S, Chen J, Jian X, Odstrčil T, Clarrisse B, Wu M, Wu M, Duan Y, Chao Y, Zhang L, Cheng Y, Qian J, Garofalo A M, Gong X, Gao X, Wan Y 2022 Nucl. Fusion 62 066040Google Scholar

    [13]

    Pütterich T, Dux R, Neu R, Bernert M, Beurskens M N A, Bobkov V, Brezinsek S, Challis C, Coenen J W, Coffey I, Czarnecka A, Giroud C, Jacquet P, Joffrin E, Kallenbach A, Lehnen M, Lerche E, de la Luna E, Marsen S, Matthews G, Mayoral M L, McDermott R M, Meigs A, Mlynar J, Sertoli M, van Rooij G 2013 Plasma Phys. Control. Fusion 55 124036Google Scholar

    [14]

    Lee H, Lee H, Han Y S, Song J, Belli E A, Choe W, Kang J, Lee J, Candy J, Lee J 2022 Phys. Plasmas 29 022504Google Scholar

    [15]

    赵伟宽, 张凌, 程云鑫, 周呈熙, 张文敏, 段艳敏, 胡爱兰, 王守信, 张丰玲, 李政伟, 曹一鸣, 刘海庆 2024 73 035201Google Scholar

    Zhao W K, Zhang L, Cheng Y X, Zhou C X, Zhang W M, Duan Y M, Hu A L, Wang S X, Zhang F L, Li Z W, Cao Y M, Liu H Q 2024 Acta Phys. Sin. 73 035201Google Scholar

    [16]

    Mochinaga S, Kasuya N, Fukuyama A, Yagi M 2024 Nucl. Fusion 64 066002Google Scholar

    [17]

    Lim K, Garbet X, Sarazin Y, Gravier E, Lesur M, Lo-Cascio G, Rouyer T 2023 Phys. Plasmas 30 082501Google Scholar

    [18]

    Zheng G Y, Cai L Z, Duan X R, Xu X Q, Ryutov D D, Cai L J, Liu X, Li J X, Pan Y D 2016 Nucl. Fusion 56 126013Google Scholar

    [19]

    Cao C Z, Huang X M, Hu Y, Xie Y F, Zhou J, Qiao T, Gao J M, Cai L Z, Cao Z, HL-2A and HL-3 team 2025 Nucl. Mater. Energy 42 101852Google Scholar

    [20]

    Han J Y, He Y X, Zhao D Y, Cai L Z, Wang Y Q, Qian W, Huang W Y, Lu Y, Cai L J, Zhong W L 2025 Nucl. Mater. Energy 42 101861Google Scholar

    [21]

    Zhang X L, He Z Y H, Cheng Z F, Yan W, Dong Y B, Liu Y, Deng W, Fu B Z, Shi Z B, Zhang Y P, Shi Y J 2024 Fusion Eng. Des. 208 114674Google Scholar

    [22]

    Zhou Q R, Zhang Y J, Sang C F, Li J X, Zheng G Y, Wang Y L, Wu Y H, Wang D Z 2024 Plasma Sci. Technol. 26 104003Google Scholar

    [23]

    Zhang Y J, Sang C F, Li J X, Zheng G Y, Senichenkov I Y, Rozhansky V A, Zhang C, Wang Y L, Zhao X L, Wang D Z 2022 Nucl. Fusion 62 106006Google Scholar

    [24]

    Dux R 2006 STRAHL User Manual Report

    [25]

    Wu Y H, Zhou Q R, Sang C F, Zhang Y J, Wang Y L, Wang D Z 2022 Nucl. Mater. Energy 33 101297Google Scholar

    [26]

    Zhou Y, Zheng G Y, Du H L, Li J X, Xue L 2022 Fusion Eng. Des. 182 113222Google Scholar

    [27]

    Jirakova K, Kovanda O, Adamek J, Komm M, Seidl J 2019 J. Instrum. 14 C11020Google Scholar

    [28]

    Wang J F, Wu B, Wang J, Hu C D 2013 J. Fusion Energy 33 20Google Scholar

    [29]

    Candy J, Holland C, Waltz R E, Fahey M R, Belli E 2009 Phys. Plasmas 16 060704Google Scholar

    [30]

    Logan N C, Grierson B A, Haskey S R, Smith S P, Meneghini O, Eldon D 2018 Fusion Sci. Technol. 74 125Google Scholar

    [31]

    Dux R, Loarte A, Angioni C, Coster D, Fable E, Kallenbach A 2017 Nucl. Mater. Energy 12 28Google Scholar

    [32]

    Dubuit N, Garbet X, Parisot T, Guirlet R, Bourdelle C 2007 Phys. Plasmas 14 042301Google Scholar

    [33]

    Dux R 2004 Ph. D. Dissertation (Garching: Max Planck Institut für Plasmaphysik

    [34]

    Wang Y L, Sang C F, Zhao X L, Wu Y H, Zhou Q R, Zhang Y J, Wang D Z 2023 Nucl. Fusion 63 096024Google Scholar

    [35]

    杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真 2013 62 245206Google Scholar

    Du H L, Sang C F, Wang L, Sun J Z, Liu S C, Wang H Q, Zhang L, Guo H Y, Wang D Z 2013 Acta Phys. Sin. 62 245206Google Scholar

    [36]

    Wang Y L, Sang C F, Zhang C, Zhao X L, Zhang Y J, Jia G Z, Senichenkov I Y, Wang L, Zhou Q R, Wang D Z 2021 Plasma Phys. Control. Fusion 63 085002Google Scholar

    [37]

    Sang C F, Ding R, Bonnin X, Wang L, Wang D Z, EAST Team 2018 Phys. Plasmas 25 072511Google Scholar

    [38]

    Zhao X L, Sang C F, Zhou Q R, Zhang C, Zhang Y J, Ding R, Ding F, Wang D Z 2020 Plasma Phys. Control. Fusion 62 055015Google Scholar

    [39]

    Zhou Q R, Sang C F, Xu G L, Ding R, Zhao X L, Wang Y L, Wang D Z 2020 Nucl. Mater. Energy 25 100849Google Scholar

    [40]

    Shi S Y, Chen J L, Bourdelle C, Jian X, Odstrčil T, Garofalo A M, Cheng Y X, Chao Y, Zhang L, Duan Y M, Wu M F, Ding F, Qian J P, Gao X 2022 Nucl. Fusion 62 066032Google Scholar

    [41]

    Shi S Y, Jian X, Chan V S, Gao X, Liu X J, Shi N, Chen J L, Liu L, Wu M Q, Zhu Y R, CFETR Physics Team 2018 Nucl. Fusion 58 126020Google Scholar

    [42]

    Wesson J 2011 Tokamaks (Oxford: Oxford University Press) pp153–161

  • 图 1  模拟方法及程序耦合流程图

    Fig. 1.  Simulation method and program coupling flowchart.

    图 2  $ \rho $= 0—1.01区域参数的径向剖面 (a)电子密度ne; (b)电子温度 Te; 和(c)离子温度Ti; 其中红线代表芯部$ \rho $= 0—0.98区域参数(OMFIT提供), 蓝线代表边缘$ \rho $= 0.98—1.01区域参数(SOLPS-ITER模拟), 虚线代表$ \rho $= 0.98位置

    Fig. 2.  Radial profiles in the region $ \rho $= 0–1.01: (a) Electron density ne; (b) electron temperature Te; (c) ion temperature Ti. The red line represents the core $ \rho $= 0–0.98 region parameter (provided by OMFIT), the blue line represents the edge $ \rho $= 0.98–1.01 region parameters (provided by SOLPS-ITER), and the dashed line represents the $ \rho $= 0.98 location.

    图 3  (a) $ \rho $= 0.98—1.01区域的杂质分布, 其中蓝线为IMPEDGE模拟分布, 蓝点为STRAHL模拟分布; (b) $ \rho $= 0.98—1.01区域湍流扩散系数$ {D}^{{\mathrm{A}}{\mathrm{N}}{\mathrm{O}}} $与对流速度$ {v}^{{\mathrm{A}}{\mathrm{N}}{\mathrm{O}}} $分布; (c) $ \rho = $0—0.98区域湍流扩散系数$ {D}^{{\mathrm{A}}{\mathrm{N}}{\mathrm{O}}} $与对流速度$ {v}^{{\mathrm{A}}{\mathrm{N}}{\mathrm{O}}} $分布

    Fig. 3.  (a) Impurity distribution in the region $ \rho $= 0.98–1.01, the blue line represents the IMPEDGE simulation distribution, and the blue dots represent the STRAHL simulation distribution; (b) anomalous diffusion coefficient $ {D}^{{\mathrm{A}}{\mathrm{N}}{\mathrm{O}}} $and convective velocity $ {v}^{{\mathrm{A}}{\mathrm{N}}{\mathrm{O}}} $distributions in the region $ \rho $= 0.98–1.01; (c) anomalous diffusion coefficient $ {D}^{{\mathrm{A}}{\mathrm{N}}{\mathrm{O}}} $and convective velocity $ {v}^{{\mathrm{A}}{\mathrm{N}}{\mathrm{O}}} $ distributions in the region in the region $ \rho = $0–0.98.

    图 4  区域$ \rho =0—0.9 $ (a) $ {v}^{{\mathrm{N}}{\mathrm{E}}{\mathrm{O}}} $, $ {v}^{{\mathrm{A}}{\mathrm{N}}{\mathrm{O}}} $和$ {v}^{{\mathrm{T}}{\mathrm{O}}{\mathrm{T}}{\mathrm{A}}{\mathrm{L}}} $径向分布; (b) 3种情况下$ {v}^{{\mathrm{N}}{\mathrm{E}}{\mathrm{O}}} $分布设置; (c) 区域$ \rho =0—1.01 $三种情况下模拟得到的钨杂质密度$ {n}_{{\mathrm{W}}}^{{\mathrm{t}}{\mathrm{o}}{\mathrm{t}}} $径向分布, 其中杂质边缘分布均与IMPEDGE一致, 虚线分别表示$ \rho $= 0.72和$ \rho $= 0.98所在位置

    Fig. 4.  (a) The radial distributions of $ {v}^{{\mathrm{N}}{\mathrm{E}}{\mathrm{O}}} $, $ {v}^{{\mathrm{A}}{\mathrm{N}}{\mathrm{O}}} $, and $ {v}^{{\mathrm{T}}{\mathrm{O}}{\mathrm{T}}{\mathrm{A}}{\mathrm{L}}} $; (b) the setup of $ {v}^{{\mathrm{N}}{\mathrm{E}}{\mathrm{O}}} $ distribution for three different cases in the region $ \rho$ = 0–0.9; (c) radial distribution of tungsten impurity density $ {n}_{{\mathrm{W}}}^{{\mathrm{t}}{\mathrm{o}}{\mathrm{t}}} $ of different cases in the region $ \rho$ = 0–1.01, the $ {n}_{{\mathrm{W}}}^{{\mathrm{t}}{\mathrm{o}}{\mathrm{t}}} $ distributions in the edge region are consistent with those from IMPEDGE. The dashed lines represent the $ \rho =0.72 $ and $ \rho =0.98 $ location.

    图 5  区域$ \rho =0—0.9 $ (a)新经典对流速度的3个分量; (b)新经典对流PS分量$ {v}_{{\mathrm{P}}{\mathrm{S}}}^{{\mathrm{N}}{\mathrm{E}}{\mathrm{O}}} $及离子温度梯度项$ {v}_{{\mathrm{P}}{\mathrm{S}}\_{\mathrm{T}}}^{{\mathrm{N}}{\mathrm{E}}{\mathrm{O}}} $和密度梯度项$ {v}_{{\mathrm{P}}{\mathrm{S}}\_{\mathrm{n}}}^{{\mathrm{N}}{\mathrm{E}}{\mathrm{O}}} $, 虚线位置为$ \rho =0.55 $

    Fig. 5.  (a) Three components of the neoclassical convective velocity; (b) the neoclassical convective PS component $ {v}_{{\mathrm{P}}{\mathrm{S}}}^{{\mathrm{N}}{\mathrm{E}}{\mathrm{O}}} $ along with its temperature gradient term $ {v}_{{\mathrm{P}}{\mathrm{S}}\_{\mathrm{T}}}^{{\mathrm{N}}{\mathrm{E}}{\mathrm{O}}} $ and density gradient term $ {v}_{{\mathrm{P}}{\mathrm{S}}\_{\mathrm{n}}}^{{\mathrm{N}}{\mathrm{E}}{\mathrm{O}}} $ in region $ \rho =0$–0.9, the dashed line represents the $ \rho =0.55 $ location.

    图 6  区域$ \rho =0—0.9 $杂质碰撞率$ {\nu }_{{\mathrm{I}}}^{{\mathrm{*}}} $分布, 虚线位置为$ \rho =0.55 $

    Fig. 6.  Impurity collision rate $ {\nu }_{{\mathrm{I}}}^{{\mathrm{*}}} $ distribution in the region $ \rho$ = 0–0.9 , the dashed line represents the $ \rho =0.55 $ location.

    表 1  不同$ {v}^{{\mathrm{N}}{\mathrm{E}}{\mathrm{O}}} $使用区域情况下的$ \rho =0 $和$ \rho =0.72 $处钨密度, $ \rho =0 $处钨浓度, $ \rho =0 $处钨杂质引起的总辐射损失密度

    Table 1.  In different $ {v}^{{\mathrm{N}}{\mathrm{E}}{\mathrm{O}}} $ applied region cases, the tungsten density at $ \rho =0 $ and $ \rho =0.72 $, the tungsten concentration at $ \rho =0 $ and total power radiation loss density by tungsten at $ \rho =0 $.

    使用区域 W/O NEO With NEO
    $ \rho $= 0.72—0.90
    With NEO
    $ \rho $= 0—0.9
    $ {n}_{{\mathrm{w}}}^{\rho =0.72} $(1015 m–3) $ 6.00 $ $ 3.80 $ $ 3.80 $
    $ {n}_{{\mathrm{w}}}^{\rho =0} $(1016 m–3) $ 1.10 $ $ 0.58 $ $ 0.40 $
    $ {C}_{{\mathrm{w}}}^{\rho =0} $(10–5) 7.70 4.20 2.50
    $ {P}_{{\mathrm{r}}{\mathrm{a}}{\mathrm{d}}}^{\rho =0} $(MW·m–3) 0.26 0.15 0.11
    下载: 导出CSV
    Baidu
  • [1]

    Neu R, Dux R, Geier A, Kallenbach A, Pugno R, Rohde V, Bolshukhin D, Fuchs J C, Gehre O, Gruber O, Hobirk J, Kaufmann M, Krieger K, Laux M, Maggi C, Murmann H, Neuhauser J, Ryter F, Sips A C C, Stäbler A, Stober J, Suttrop W, Zohm H 2002 Plasma Phys. Control. Fusion 44 811Google Scholar

    [2]

    Sang C F, Zhou Q R, Xu G S, Wang L, Wang Y L, Zhao X L, Zhang C, Ding R, Jia G Z, Yao D M, Liu X J, Si H, Wang D Z, the EAST Team 2021 Nucl. Fusion 61 066004Google Scholar

    [3]

    Liu B, Dai S Y, Yang X D, Chan V S, Ding R, Zhang H M, Feng Y, Wang D Z 2022 Nucl. Fusion 62 126040Google Scholar

    [4]

    Pitts R A, Bonnin X, Escourbiac F, Frerichs H, Gunn J P, Hirai T, Kukushkin A S, Kaveeva E, Miller M A, Moulton D, Rozhansky V, Senichenkov I, Sytova E, Schmitz O, Stangeby P C, De Temmerman G, Veselova I, Wiesen S 2019 Nucl. Mater. Energy 20 100696Google Scholar

    [5]

    Gruber O, Sips A C C, Dux R, Eich T, Fuchs J C, Herrmann A, Kallenbach A, Maggi C F, Neu R, Pütterich T, Schweinzer J, Stober J 2009 Nucl. Fusion 49 115014Google Scholar

    [6]

    Sun Z C, Lian Z W, Qiao W N, Yu J G, Han W J, Fu Q W, Zhu K G 2017 Chin. Phys. Lett. 34 030205Google Scholar

    [7]

    张启凡, 乐文成, 张羽昊, 葛忠昕, 邝志强, 萧声扬, 王璐 2024 73 185201Google Scholar

    Zhang Q F, Le W C, Zhang Y H, Ge Z X, Kuang Z Q, Xiao S Y, Wang L 2024 Acta Phys. Sin. 73 185201Google Scholar

    [8]

    Angioni C 2021 Plasma Phys. Control. Fusion 63 073001Google Scholar

    [9]

    Guirlet R, Giroud C, Parisot T, Puiatti M E, Bourdelle C, Carraro L, Dubuit N, Garbet X, Thomas P R 2006 Plasma Phys. Control. Fusion 48 B63Google Scholar

    [10]

    Donnel P 2018 Ph. D. Dissertation (Aix-Marseille: Aix Marseille Université

    [11]

    Shi S Y, Chen J L, Bourdelle C, Jian X, Odstrčil T, Garofalo A M, Cheng Y X, Chao Y, Zhang L, Duan Y M, Wu M Q, Ding F, Li Y Y, Huang J, Qian J P, Gao X, Wan Y X 2022 Nucl. Fusion 62 066031Google Scholar

    [12]

    Shi S, Chen J, Jian X, Odstrčil T, Clarrisse B, Wu M, Wu M, Duan Y, Chao Y, Zhang L, Cheng Y, Qian J, Garofalo A M, Gong X, Gao X, Wan Y 2022 Nucl. Fusion 62 066040Google Scholar

    [13]

    Pütterich T, Dux R, Neu R, Bernert M, Beurskens M N A, Bobkov V, Brezinsek S, Challis C, Coenen J W, Coffey I, Czarnecka A, Giroud C, Jacquet P, Joffrin E, Kallenbach A, Lehnen M, Lerche E, de la Luna E, Marsen S, Matthews G, Mayoral M L, McDermott R M, Meigs A, Mlynar J, Sertoli M, van Rooij G 2013 Plasma Phys. Control. Fusion 55 124036Google Scholar

    [14]

    Lee H, Lee H, Han Y S, Song J, Belli E A, Choe W, Kang J, Lee J, Candy J, Lee J 2022 Phys. Plasmas 29 022504Google Scholar

    [15]

    赵伟宽, 张凌, 程云鑫, 周呈熙, 张文敏, 段艳敏, 胡爱兰, 王守信, 张丰玲, 李政伟, 曹一鸣, 刘海庆 2024 73 035201Google Scholar

    Zhao W K, Zhang L, Cheng Y X, Zhou C X, Zhang W M, Duan Y M, Hu A L, Wang S X, Zhang F L, Li Z W, Cao Y M, Liu H Q 2024 Acta Phys. Sin. 73 035201Google Scholar

    [16]

    Mochinaga S, Kasuya N, Fukuyama A, Yagi M 2024 Nucl. Fusion 64 066002Google Scholar

    [17]

    Lim K, Garbet X, Sarazin Y, Gravier E, Lesur M, Lo-Cascio G, Rouyer T 2023 Phys. Plasmas 30 082501Google Scholar

    [18]

    Zheng G Y, Cai L Z, Duan X R, Xu X Q, Ryutov D D, Cai L J, Liu X, Li J X, Pan Y D 2016 Nucl. Fusion 56 126013Google Scholar

    [19]

    Cao C Z, Huang X M, Hu Y, Xie Y F, Zhou J, Qiao T, Gao J M, Cai L Z, Cao Z, HL-2A and HL-3 team 2025 Nucl. Mater. Energy 42 101852Google Scholar

    [20]

    Han J Y, He Y X, Zhao D Y, Cai L Z, Wang Y Q, Qian W, Huang W Y, Lu Y, Cai L J, Zhong W L 2025 Nucl. Mater. Energy 42 101861Google Scholar

    [21]

    Zhang X L, He Z Y H, Cheng Z F, Yan W, Dong Y B, Liu Y, Deng W, Fu B Z, Shi Z B, Zhang Y P, Shi Y J 2024 Fusion Eng. Des. 208 114674Google Scholar

    [22]

    Zhou Q R, Zhang Y J, Sang C F, Li J X, Zheng G Y, Wang Y L, Wu Y H, Wang D Z 2024 Plasma Sci. Technol. 26 104003Google Scholar

    [23]

    Zhang Y J, Sang C F, Li J X, Zheng G Y, Senichenkov I Y, Rozhansky V A, Zhang C, Wang Y L, Zhao X L, Wang D Z 2022 Nucl. Fusion 62 106006Google Scholar

    [24]

    Dux R 2006 STRAHL User Manual Report

    [25]

    Wu Y H, Zhou Q R, Sang C F, Zhang Y J, Wang Y L, Wang D Z 2022 Nucl. Mater. Energy 33 101297Google Scholar

    [26]

    Zhou Y, Zheng G Y, Du H L, Li J X, Xue L 2022 Fusion Eng. Des. 182 113222Google Scholar

    [27]

    Jirakova K, Kovanda O, Adamek J, Komm M, Seidl J 2019 J. Instrum. 14 C11020Google Scholar

    [28]

    Wang J F, Wu B, Wang J, Hu C D 2013 J. Fusion Energy 33 20Google Scholar

    [29]

    Candy J, Holland C, Waltz R E, Fahey M R, Belli E 2009 Phys. Plasmas 16 060704Google Scholar

    [30]

    Logan N C, Grierson B A, Haskey S R, Smith S P, Meneghini O, Eldon D 2018 Fusion Sci. Technol. 74 125Google Scholar

    [31]

    Dux R, Loarte A, Angioni C, Coster D, Fable E, Kallenbach A 2017 Nucl. Mater. Energy 12 28Google Scholar

    [32]

    Dubuit N, Garbet X, Parisot T, Guirlet R, Bourdelle C 2007 Phys. Plasmas 14 042301Google Scholar

    [33]

    Dux R 2004 Ph. D. Dissertation (Garching: Max Planck Institut für Plasmaphysik

    [34]

    Wang Y L, Sang C F, Zhao X L, Wu Y H, Zhou Q R, Zhang Y J, Wang D Z 2023 Nucl. Fusion 63 096024Google Scholar

    [35]

    杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真 2013 62 245206Google Scholar

    Du H L, Sang C F, Wang L, Sun J Z, Liu S C, Wang H Q, Zhang L, Guo H Y, Wang D Z 2013 Acta Phys. Sin. 62 245206Google Scholar

    [36]

    Wang Y L, Sang C F, Zhang C, Zhao X L, Zhang Y J, Jia G Z, Senichenkov I Y, Wang L, Zhou Q R, Wang D Z 2021 Plasma Phys. Control. Fusion 63 085002Google Scholar

    [37]

    Sang C F, Ding R, Bonnin X, Wang L, Wang D Z, EAST Team 2018 Phys. Plasmas 25 072511Google Scholar

    [38]

    Zhao X L, Sang C F, Zhou Q R, Zhang C, Zhang Y J, Ding R, Ding F, Wang D Z 2020 Plasma Phys. Control. Fusion 62 055015Google Scholar

    [39]

    Zhou Q R, Sang C F, Xu G L, Ding R, Zhao X L, Wang Y L, Wang D Z 2020 Nucl. Mater. Energy 25 100849Google Scholar

    [40]

    Shi S Y, Chen J L, Bourdelle C, Jian X, Odstrčil T, Garofalo A M, Cheng Y X, Chao Y, Zhang L, Duan Y M, Wu M F, Ding F, Qian J P, Gao X 2022 Nucl. Fusion 62 066032Google Scholar

    [41]

    Shi S Y, Jian X, Chan V S, Gao X, Liu X J, Shi N, Chen J L, Liu L, Wu M Q, Zhu Y R, CFETR Physics Team 2018 Nucl. Fusion 58 126020Google Scholar

    [42]

    Wesson J 2011 Tokamaks (Oxford: Oxford University Press) pp153–161

  • [1] 孙有文, 仇志勇, 万宝年. 磁约束燃烧等离子体物理的现状与展望.  , 2024, 73(17): 175202. doi: 10.7498/aps.73.20240831
    [2] 王福琼, 徐颖峰, 查学军, 钟方川. 托卡马克边界等离子体中钨杂质输运的多流体及动力学模拟.  , 2023, 72(21): 215213. doi: 10.7498/aps.72.20230991
    [3] 郝保龙, 李颖颖, 陈伟, 郝广周, 顾翔, 孙恬恬, 王嵎民, 董家齐, 袁保山, 彭元凯, 石跃江, 谢华生, 刘敏胜, ENN TEAM. EXL-50U球形环中快离子磁场波纹损失的优化模拟研究.  , 2023, 72(21): 215215. doi: 10.7498/aps.72.20230749
    [4] 罗一鸣, 王占辉, 陈佳乐, 吴雪科, 付彩龙, 何小雪, 刘亮, 杨曾辰, 李永高, 高金明, 杜华荣, 昆仑集成模拟设计组. HL-2A上NBI加热H模实验的集成模拟分析.  , 2022, 71(7): 075201. doi: 10.7498/aps.71.20211941
    [5] 邹雄, 漆小波, 张涛先, 高章帆, 黄卫星. 惯性约束聚变靶丸内杂质气体抽空流洗过程的数值模拟.  , 2021, 70(7): 075207. doi: 10.7498/aps.70.20201491
    [6] 郝保龙, 陈伟, 李国强, 王晓静, 王兆亮, 吴斌, 臧庆, 揭银先, 林晓东, 高翔, CFETRTEAM. 中国聚变工程试验堆上新经典撕裂模和纵场波纹扰动叠加效应对alpha粒子损失影响的数值模拟.  , 2021, 70(11): 115201. doi: 10.7498/aps.70.20201972
    [7] 杨钧兰, 钟哲强, 翁小凤, 张彬. 惯性约束聚变装置中靶面光场特性的统计表征方法.  , 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [8] 唐熊忻, 邱基斯, 樊仲维, 王昊成, 刘悦亮, 刘昊, 苏良碧. 用于惯性约束核聚变激光驱动器的激光二极管抽运Nd,Y:CaF2激光放大器的实验研究.  , 2016, 65(20): 204206. doi: 10.7498/aps.65.204206
    [9] 李振武. Kondo效应对磁杂质碳纳米管电输运特性的影响.  , 2013, 62(9): 096101. doi: 10.7498/aps.62.096101
    [10] 张占文, 漆小波, 李波. 惯性约束聚变点火靶候选靶丸特点及制备研究进展.  , 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [11] 陈大鹏, 曾智, 张存林, 金学元, 张峥. 热核聚变实验堆中超导母线绝缘层的红外热波检测.  , 2012, 61(9): 094207. doi: 10.7498/aps.61.094207
    [12] 晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. X射线相衬成像应用于惯性约束核聚变多层球壳靶丸检测.  , 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [13] 余波, 应阳君, 许海波. 惯性约束聚变的中子半影成像诊断系统的优化研究.  , 2010, 59(6): 4100-4109. doi: 10.7498/aps.59.4100
    [14] 石春花, 邱锡钧, 安伟科, 李儒新. μ-子催化核聚变中强脉冲激光对介原子μ3He的电离.  , 2005, 54(9): 4087-4091. doi: 10.7498/aps.54.4087
    [15] 安伟科, 邱锡钧, 朱志远. 飞秒激光氘团簇库仑爆炸引发核聚变的机理研究.  , 2004, 53(7): 2250-2253. doi: 10.7498/aps.53.2250
    [16] 王铁山, 落合谦太郎, 丸田胜彦, 饭田敏行, 高桥亮人. 低能氘团簇离子(d+3)诱发固体靶内D-D核聚变过程中的团簇效应研究.  , 1998, 47(12): 1957-1962. doi: 10.7498/aps.47.1957
    [17] 李军, 许强华, 陈清明. 磁约束环境下气体激光介质中电子能量分布与电子输运系数的理论研究.  , 1994, 43(1): 30-36. doi: 10.7498/aps.43.30
    [18] 周海麟. 多组元等离子体的新经典输运理论.  , 1984, 33(3): 309-320. doi: 10.7498/aps.33.309
    [19] 徐至展, 张文琦, 潘仲雄, 王翼飞. 激光核聚变的一维三温度计算.  , 1982, 31(9): 1267-1273. doi: 10.7498/aps.31.1267
    [20] 林中衡;殷光裕. 激光核聚变模拟计算.  , 1979, 28(4): 455-469. doi: 10.7498/aps.28.455
计量
  • 文章访问数:  365
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-25
  • 修回日期:  2025-04-19
  • 上网日期:  2025-04-29

/

返回文章
返回
Baidu
map