搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大口径锥型玻璃管X射线透镜的设计与模拟

华陆 周泽贤 钟玉川 张金福 袁天语 史路林 王昭 陈宇鹏 王国东 陈燕红 金雪剑 雷瑜 吴晓霞 王瑜玉 孙天希 程锐 杨杰

引用本文:
Citation:

大口径锥型玻璃管X射线透镜的设计与模拟

华陆, 周泽贤, 钟玉川, 张金福, 袁天语, 史路林, 王昭, 陈宇鹏, 王国东, 陈燕红, 金雪剑, 雷瑜, 吴晓霞, 王瑜玉, 孙天希, 程锐, 杨杰

Design and simulation of X-ray lens with large diameter conical glass tube

HUA Lu, ZHOU Zexian, ZHONG Yuchuan, ZHANG Jinfu, YUAN Tianyu, SHI Lulin, WANG Zhao, CHEN Yupeng, WANG Guodong, CHEN Yanhong, JIN Xuejian, LEI Yu, WU Xiaoxia, WANG Yuyu, SUN Tianxi, CHENG Rui, YANG Jie
cstr: 32037.14.aps.74.20250369
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 高能量密度物理实验诊断中, 采用晶体谱仪等X射线分光元件可实现靶物质中心区温度和密度等参数的高谱线分辨要求, 通过优化靶点光源到探测器间的光输运效率, 可极大地提升在低光源发射度下实验诊断精度. 本文介绍了一种大口径锥型玻璃管的X光传输部件, 构建了对应的数学模型, 基于光线追迹法, 用MATLAB软件对其X射线的传输图像进行了数值模拟. 结果显示: 新设计的大口径锥型玻璃管传输部件对面型误差要求较低, 其焦斑范围可控; 可以有效提升光源的利用率, 其平均增益约为3.1. 另外, 本文还介绍了该大口径锥型玻璃管传输部件系统性的性能模拟和分析结果, 为实验室高能量密度物理研究中的低发射度X射线诊断技术升级提供了新的思路和参考.
    In high-energy density physics (HEDP) experiments, accurate diagnostics of physical parameters such as electron temperature, plasma density, and ionization state are essential for understanding matter behavior under extreme conditions. In these cases, X-ray spectroscopic technique, especially those using crystal spectrometers, is widely used to achieve high spectral resolution. However, a common challenge in such experiments lies in the inherent low brightness and poor spatial coherence of laboratory-based X-ray sources, which limit photon throughput, thus the diagnostic accuracy. Therefore, improving the X-ray optical transmission efficiency between the source and the detector is a key step to improve the performance of the whole system. Capillary X-ray optics, which function based on the principle of total internal reflection within hollow glass structures, provides a promising avenue for beam shaping, collimation, and focusing in the soft-to-hard X-ray range. These optical devices are usually divided into polycapillary type and monocapillary type. While polycapillary optics are composed of numerous micro-channels and used primarily for collimating or focusing divergent X-rays, monocapillary lenses—consisting of single curved channels—provide more precise beam control and are particularly suitable for customized X-ray pathways. Depending on the curvature of the inner reflective surface, monocapillaries are classified into conical, parabolic, and ellipsoidal geometries. In this study, we propose and analyze a novel design of a large-caliber conical glass tube, specifically tailored to address the issue of low light utilization in multi-channel focusing spectrographs with spatial resolution (FSSR). The proposed conical glass tube is made of a single large-diameter capillary structure, simplifying alignment requirements and reducing the surface manufacturing precision typically required by complex aspheric lenses. Its geometric configuration enables X-rays from extended or weak sources to be redirected and controlled to convergef, thereby improving photon collection without significantly altering beam divergence. To quantify the performance of this optical system, we develop a detailed mathematical ray-tracing model and implement it in MATLAB. The model combines physical parameters such as capillary inner diameter, taper angle, reflection loss, and source-detector geometry. Numerical simulations show that compared with traditional flat or slit based systems, the new conical design improves source utilization efficiency by 3.1 times. Furthermore, the lens exhibits a ring-shaped enhancement region in the output intensity profile, which can be regulated by adjusting the capillary geometry and source positioning. This feature enables the spatial customization of the beam profile, thereby facilitating optimized coupling with downstream spectroscopic components or imaging systems. In conclusion, the proposed large-aperture conical monocapillary X-ray lens provides a practical and efficient solution for enhancing X-ray optical transport in low-brightness source environments. Its simple construction, tunable focusing characteristics, and compatibility with diverse X-ray source types make it a compelling candidate for integration into a high-resolution X-ray diagnostic system, particularly in HEDP and laboratory-scale X-ray spectroscopy. This work not only introduces a novel optical approach but also provides a robust theoretical and simulation framework for guiding future experimental design and application of capillary-based X-ray optics.
      通信作者: 孙天希, stx@bnu.edu.cn ; 程锐, chengrui@impcas.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2022YFA1602500)、深圳市科技计划 (批准号: KJZD20230923114219040)和国家自然科学基金(批准号:12120101005, U2430208)资助的课题.
      Corresponding author: SUN Tianxi, stx@bnu.edu.cn ; CHENG Rui, chengrui@impcas.ac.cn
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2022YFA1602500), the Shenzhen Science and Technology Program, China (Grant No. KJZD20230923114219040), and the National Natural Science Foundation of China (Grant Nos. 12120101005, U2430208).
    [1]

    Reverdin C, Thais F, Loisel G, Bougeard M 2010 Rev. Sci. Instrum. 81 10E327Google Scholar

    [2]

    Varentsov D, Ternovoi V Y, Kulish M, Fernengel D, Fertman A, Hug A, Menzel J, Ni P, Nikolaev D N, Shilkin N, Turtikov V, Udrea S, Fortov V E, Golubev A A, Gryaznov V K, Hoffmann D H H, Kim V, Lomonosov I V, Mintsev V, Sharkov By, Shutov A, Spiller P, Tahir N A, Wahl H 2007 Nucl. Instrum. Methods Phys. Res. , Sect. A 577 262Google Scholar

    [3]

    Ryazantsev S N, Skobelev I Y, Filippov E D, Martynenko A S, Mishchenko M D, Krůs M, Renner O, Pikuz S A 2021 Matter Radiat. Extremes 6 014402Google Scholar

    [4]

    Glenzer S H, Landen O L, Neumayer P, Lee R W, Widmann K, Pollaine S W, Wallace R J, Gregori G, Höll A, Bornath T, Thiele R, Schwarz V, Kraeft W D, Redmer R 2007 Phys. Rev. Lett. 98 065002Google Scholar

    [5]

    Regan S P, Falk K, Gregori G, Radha P B, Hu S X, Boehly T R, Crowley B J B, Glenzer S H, Landen O L, Gericke D O, Döppner T, Meyerhofer D D, Murphy C D, Sangster T C, Vorberger J 2012 Phys. Rev. Lett. 109 265003Google Scholar

    [6]

    Vinko S M, Ciricosta O, Cho B I, Engelhorn K, Chung H K, Brown C R D, Burian T, Chalupský J, Falcone R W, Graves C, Hájková V, Higginbotham A, Juha L, Krzywinski J, Lee H J, Messerschmidt M, Murphy C D, Ping Y, Scherz A, Schlotter W, Toleikis S, Turner J J, Vysin L, Wang T, Wu B, Zastrau U, Zhu D, Lee R W, Heimann P A, Nagler B, Wark J S 2012 Nature 482 59Google Scholar

    [7]

    Yi S Z, Du H Y, Si H X, Zhou Z X, Jiang L, Wang Z S, Cheng R 2023 Nucl. Instrum. Methods Phys. Res. , Sect. A 1057 168722Google Scholar

    [8]

    Yi Q, Meng S J, Ye F, Lu J, Yan X S, Yang R H, Jiang S Q, Ning J M, Zhou L, Chen F X, Yang J L, Xu Z P, Li Z H 2023 AIP Adv. 13 035216Google Scholar

    [9]

    Renner O, Šmíd M, Batani D, Antonelli L 2016 Plasma Phys. Controlled Fusion 58 75007Google Scholar

    [10]

    Eftekhari-Zadeh E, Loetzsch R, Manganelli L, Blümcke M S, Tauschwitz A, Uschmann I, Pukhov A, Rosmej O, Spielmann C, Kartashov D 2023 Phys. Scr. 98 115615Google Scholar

    [11]

    Hurricane O A, Herrmann M C 2017 Annu. Rev. Nucl. Part. Sci. 67 213Google Scholar

    [12]

    Zhao Y, Yang J M, Zhang J Y, Liu J S, Yuan X, Jin F T 2009 Rev. Sci. Instrum. 80 043505Google Scholar

    [13]

    Kumakhov M A, Komarov F F 1990 Phys. Rep. 191 289Google Scholar

    [14]

    Balaic D X, Nugent K A, Barnea Z, Garrett R, Wilkins W 1995 J. Synchrotron Radiat. 2 296Google Scholar

    [15]

    Yokomae S, Motoyama H, Mimura H 2018 Precis. Eng. 53 248Google Scholar

    [16]

    MacDonald C A 2010 X-Ray Opt. Instrum. 2010 867049

    [17]

    Gibson W M, Kumakhov M 1993 Proc. SPIE. 172

    [18]

    Bilderback D H, Hoffman S A, Thiel D J 1994 Science 263 201Google Scholar

    [19]

    Sowa K M, Jany B R, Korecki P 2018 Optica 5 577Google Scholar

    [20]

    Korecki P, Sowa K M, Jany B R, Krok F 2016 Phys. Rev. Lett. 116 233902Google Scholar

    [21]

    Szwedowski-Rammert V, Baumann J, Schlesiger C, Waldschläger U, Gross A, Kanngießer B, Mantouvalou I 2019 J. Anal. At. Spectrom. 34 922Google Scholar

    [22]

    Matsuyama T, Tanaka Y, Taniguchi N, Oh J S, Tsuji K 2024 J. Anal. At. Spectrom. 39 76Google Scholar

    [23]

    Matsuyama T, Tanaka Y, Mori Y, Tsuji K 2023 Talanta 265 124808Google Scholar

    [24]

    Peng S, Liu Z G, Sun T X, Ma Y Z, Ding X L 2014 Anal. Chem. 86 362Google Scholar

    [25]

    Fittschen U E A, Falkenberg G 2011 Spectrochim. Acta, Part B 66 567Google Scholar

    [26]

    Wallen S L, Pfund D M, Fulton J L, Yonker C R, Newville M, Ma Y 1996 Rev. Sci. Instrum. 67 2843Google Scholar

    [27]

    Alexandre B J, Gomes M G, Real S 2015 Mater. Struct. 48 2869Google Scholar

    [28]

    Lin X Y, Li Y D, Sun T X, Pan Q L 2010 Chin. Phys. B 19 070205

    [29]

    Liu A D, Lin Y Z 2004 Math. Comput. Simul. 66 577Google Scholar

    [30]

    Peng S Q, Liu Z G, Sun T X, Wang K, Yi L T, Yang K, Chen M, Wang J B 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 795 186Google Scholar

    [31]

    Sun T X, Ding X L 2015 Rev. Anal. Chem. 34 45

    [32]

    Stern E A, Kalman Z, Lewis A, Lieberman K 1988 Appl. Opt. 27 5135Google Scholar

    [33]

    Wen H, Zhou M, Wu Y M, Yuan T Y, Liu Z G 2022 Appl. Opt. 61 3656Google Scholar

    [34]

    Motoyama H, Sato T, Iwasaki A, Takei Y, Kume T, Egawa S, Hiraguri K, Hashizume H, Yamanouchi K, Mimura H 2016 Rev. Sci. Instrum. 87 051803Google Scholar

    [35]

    Koch R J, Jozwiak C, Bostwick A, Stripe B, Cordier M, Hussain Z, Yun W, Rotenberg E 2018 J. Synchrotron Radiat. 31 50Google Scholar

    [36]

    邵尚坤, 袁天语, 李惠泉, 孙学鹏, 华陆, 刘志国, 孙天希 2022 北京师范大学学报(自然科学版) 58 681

    Shao S K, Yuan T Y, Li H Q, Sun X P, Hua L, Liu Z G, Sun T X 2022 J. Beijing Norm. Univ. (Nat. Sci.) 58 681

    [37]

    Jiang B W, Liu Z G, Sun X P, Sun T X, Deng B, Li F Z, Yi L T, Yuan M N, Zhu Y, Zhang F S, Xiao T Q, Wang J, Tai R Z 2017 Opt. Commun. 398 91Google Scholar

    [38]

    Balaic D X, Barnea Z, Nugent K A, Garrett R F, Varghese J N, Wilkins S W 1996 J. Synchrotron Radiat. 3 289Google Scholar

    [39]

    Wang Y B, Li Y L, Shao S K, Zhang X Y, Li Y F, Sun X P, Tao F, Deng B, Sun T X 2020 Opt. Commun. 464 125544Google Scholar

    [40]

    Wang X Y, Li Y D, Luo H, Ye L, Zhou M, Duan J Y, Lin X Y 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 947 162762Google Scholar

    [41]

    Sun X P, Zhang X Y, Zhu Y, Wang Y B, Shang H Z, Zhang F S, Liu Z G, Sun T X 2018 Nucl. Instrum. Methods Phys. Res. , Sect. A 888 13Google Scholar

    [42]

    Zhou Z X, Cheng R, Du H Y, Yi S Z, Fu F, Wang G D, Shi L L, Wang Z, Jin X J, Chen Y H, Zhang Y S, Chen L W, Yang J, Su M G 2024 J. Anal. At. Spectrom. 39 31

    [43]

    孙天希 2022 光学学报 42 1134002Google Scholar

    Sun T X 2022 Acta Opt. Sin. 42 1134002Google Scholar

    [44]

    Shao S K, Li H Q, Yuan T Y, Zhang X Y, Hua L, Sun X P, Liu Z G, Sun T X 2022 Front. Phys. 10 816981Google Scholar

    [45]

    Zymierska D 1996 Acta. Phys. Pol. A 89 347Google Scholar

  • 图 1  锥型玻璃管使用对比图 (a)锥管逆向使用的光路图; (b)锥管正向使用的光路图

    Fig. 1.  Comparison of conical glass tube usage: (a) Light path with reverse use of the tube; (b) light path with forward use of the tube.

    图 2  LCGTXL的光路传输图

    Fig. 2.  Light path transmission diagram of LCGTXL.

    图 3  LCGTXL的数学模型设计图

    Fig. 3.  Mathematical model design of LCGTXL.

    图 4  LCGTXL的光路模拟示意图

    Fig. 4.  Schematic of the optical path simulation for LCGTXL.

    图 5  LCGTXL X射线传输的可视化 (a) X射线传输的整体剖面图; (b)直通光的部分传输图; (c)反射光的部分传输图; (d)—(f)在图(a)中红色虚线的三维强度分布图; (g)—(i)在图(a)中红色虚线的二维分布; (j)—(l)分别沿着图(g)—(i)中的红色虚线的强度分布

    Fig. 5.  Visualization of X-ray transmission in LCGTXL: (a) Overall profile of X-ray transmission; (b) partial transmission diagram of straight light; (c) partial transmission diagram of reflected light; (d)–(f) three-dimensional intensity distribution of the red dotted line in Figure (a); (g)–(i) two-dimensional distribution of the red dotted line in Figure (a); (j)–(l) intensity distribution along red dotted lines in Figure(g)–(i), respectively.

    图 6  焦斑处功率密度对比图

    Fig. 6.  Contrast diagram of power density at focal spot.

    图 7  未镀膜处理的焦斑形状对比

    Fig. 7.  Comparison of the shape of focal spot without coated.

    图 8  光线传输示意图

    Fig. 8.  Schematic diagram of ray transmission.

    图 9  斜率$ a $ 和出口半径$ {R}_{{\mathrm{o}}} $随入口半径$ {R}_{{\mathrm{i}}} $的变化关系

    Fig. 9.  Relationship between slope $ a $ and outlet radius $ {R}_{{\mathrm{o}}} $ with inlet radius $ {R}_{{\mathrm{i}}} $.

    图 10  LCGTXL传输性能与入口半径的关系

    Fig. 10.  Relationship between LCGTXL transmission performance and inlet radius.

    图 11  LCGTXL传输性能与斜率误差的关系

    Fig. 11.  Relationship between LCGTXL transmission performance and slope error.

    图 12  LCGTXL传输性能与表面粗糙度的关系 (a)光源利用率和总平均增益随表面粗糙度的变化关系; (b)表面粗糙度对反射率的影响

    Fig. 12.  Relationship between LCGTXL transmission performance and surface roughness: (a) Variation of source utilization and total average gain with surface roughness; (b) effect of surface roughness on reflectivity.

    图 13  LCGTXL传输性能与光源尺寸的关系 (a)光源尺寸对光源利用率和总平均增益的影响; (b) 光源尺寸对反射率的影响

    Fig. 13.  Relationship between LCGTXL transmission performance and source size: (a) Effect of source size on source utilization and total average gain; (b) effect of source size on reflectivity.

    表 1  LCGTXL中的几何仿真参数

    Table 1.  Geometric simulation parameters in LCGTXL.

    参数$ {f}_{1} $$ L $$ {f}_{2} $$ {R}_{{\mathrm{i}}} $$ {R}_{{\mathrm{o}}} $$ {R}_{{\mathrm{f}}} $
    单位/mm21002980.86.8825
    下载: 导出CSV

    表 2  不同条件下的传输性能

    Table 2.  Transmission performance under different conditions.

    种类X射线能量/keV光源利用率增益
    不加透镜1.501.0001.000
    玻璃管1.501.5881.599
    镀铱玻璃管1.503.1553.118
    下载: 导出CSV
    Baidu
  • [1]

    Reverdin C, Thais F, Loisel G, Bougeard M 2010 Rev. Sci. Instrum. 81 10E327Google Scholar

    [2]

    Varentsov D, Ternovoi V Y, Kulish M, Fernengel D, Fertman A, Hug A, Menzel J, Ni P, Nikolaev D N, Shilkin N, Turtikov V, Udrea S, Fortov V E, Golubev A A, Gryaznov V K, Hoffmann D H H, Kim V, Lomonosov I V, Mintsev V, Sharkov By, Shutov A, Spiller P, Tahir N A, Wahl H 2007 Nucl. Instrum. Methods Phys. Res. , Sect. A 577 262Google Scholar

    [3]

    Ryazantsev S N, Skobelev I Y, Filippov E D, Martynenko A S, Mishchenko M D, Krůs M, Renner O, Pikuz S A 2021 Matter Radiat. Extremes 6 014402Google Scholar

    [4]

    Glenzer S H, Landen O L, Neumayer P, Lee R W, Widmann K, Pollaine S W, Wallace R J, Gregori G, Höll A, Bornath T, Thiele R, Schwarz V, Kraeft W D, Redmer R 2007 Phys. Rev. Lett. 98 065002Google Scholar

    [5]

    Regan S P, Falk K, Gregori G, Radha P B, Hu S X, Boehly T R, Crowley B J B, Glenzer S H, Landen O L, Gericke D O, Döppner T, Meyerhofer D D, Murphy C D, Sangster T C, Vorberger J 2012 Phys. Rev. Lett. 109 265003Google Scholar

    [6]

    Vinko S M, Ciricosta O, Cho B I, Engelhorn K, Chung H K, Brown C R D, Burian T, Chalupský J, Falcone R W, Graves C, Hájková V, Higginbotham A, Juha L, Krzywinski J, Lee H J, Messerschmidt M, Murphy C D, Ping Y, Scherz A, Schlotter W, Toleikis S, Turner J J, Vysin L, Wang T, Wu B, Zastrau U, Zhu D, Lee R W, Heimann P A, Nagler B, Wark J S 2012 Nature 482 59Google Scholar

    [7]

    Yi S Z, Du H Y, Si H X, Zhou Z X, Jiang L, Wang Z S, Cheng R 2023 Nucl. Instrum. Methods Phys. Res. , Sect. A 1057 168722Google Scholar

    [8]

    Yi Q, Meng S J, Ye F, Lu J, Yan X S, Yang R H, Jiang S Q, Ning J M, Zhou L, Chen F X, Yang J L, Xu Z P, Li Z H 2023 AIP Adv. 13 035216Google Scholar

    [9]

    Renner O, Šmíd M, Batani D, Antonelli L 2016 Plasma Phys. Controlled Fusion 58 75007Google Scholar

    [10]

    Eftekhari-Zadeh E, Loetzsch R, Manganelli L, Blümcke M S, Tauschwitz A, Uschmann I, Pukhov A, Rosmej O, Spielmann C, Kartashov D 2023 Phys. Scr. 98 115615Google Scholar

    [11]

    Hurricane O A, Herrmann M C 2017 Annu. Rev. Nucl. Part. Sci. 67 213Google Scholar

    [12]

    Zhao Y, Yang J M, Zhang J Y, Liu J S, Yuan X, Jin F T 2009 Rev. Sci. Instrum. 80 043505Google Scholar

    [13]

    Kumakhov M A, Komarov F F 1990 Phys. Rep. 191 289Google Scholar

    [14]

    Balaic D X, Nugent K A, Barnea Z, Garrett R, Wilkins W 1995 J. Synchrotron Radiat. 2 296Google Scholar

    [15]

    Yokomae S, Motoyama H, Mimura H 2018 Precis. Eng. 53 248Google Scholar

    [16]

    MacDonald C A 2010 X-Ray Opt. Instrum. 2010 867049

    [17]

    Gibson W M, Kumakhov M 1993 Proc. SPIE. 172

    [18]

    Bilderback D H, Hoffman S A, Thiel D J 1994 Science 263 201Google Scholar

    [19]

    Sowa K M, Jany B R, Korecki P 2018 Optica 5 577Google Scholar

    [20]

    Korecki P, Sowa K M, Jany B R, Krok F 2016 Phys. Rev. Lett. 116 233902Google Scholar

    [21]

    Szwedowski-Rammert V, Baumann J, Schlesiger C, Waldschläger U, Gross A, Kanngießer B, Mantouvalou I 2019 J. Anal. At. Spectrom. 34 922Google Scholar

    [22]

    Matsuyama T, Tanaka Y, Taniguchi N, Oh J S, Tsuji K 2024 J. Anal. At. Spectrom. 39 76Google Scholar

    [23]

    Matsuyama T, Tanaka Y, Mori Y, Tsuji K 2023 Talanta 265 124808Google Scholar

    [24]

    Peng S, Liu Z G, Sun T X, Ma Y Z, Ding X L 2014 Anal. Chem. 86 362Google Scholar

    [25]

    Fittschen U E A, Falkenberg G 2011 Spectrochim. Acta, Part B 66 567Google Scholar

    [26]

    Wallen S L, Pfund D M, Fulton J L, Yonker C R, Newville M, Ma Y 1996 Rev. Sci. Instrum. 67 2843Google Scholar

    [27]

    Alexandre B J, Gomes M G, Real S 2015 Mater. Struct. 48 2869Google Scholar

    [28]

    Lin X Y, Li Y D, Sun T X, Pan Q L 2010 Chin. Phys. B 19 070205

    [29]

    Liu A D, Lin Y Z 2004 Math. Comput. Simul. 66 577Google Scholar

    [30]

    Peng S Q, Liu Z G, Sun T X, Wang K, Yi L T, Yang K, Chen M, Wang J B 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 795 186Google Scholar

    [31]

    Sun T X, Ding X L 2015 Rev. Anal. Chem. 34 45

    [32]

    Stern E A, Kalman Z, Lewis A, Lieberman K 1988 Appl. Opt. 27 5135Google Scholar

    [33]

    Wen H, Zhou M, Wu Y M, Yuan T Y, Liu Z G 2022 Appl. Opt. 61 3656Google Scholar

    [34]

    Motoyama H, Sato T, Iwasaki A, Takei Y, Kume T, Egawa S, Hiraguri K, Hashizume H, Yamanouchi K, Mimura H 2016 Rev. Sci. Instrum. 87 051803Google Scholar

    [35]

    Koch R J, Jozwiak C, Bostwick A, Stripe B, Cordier M, Hussain Z, Yun W, Rotenberg E 2018 J. Synchrotron Radiat. 31 50Google Scholar

    [36]

    邵尚坤, 袁天语, 李惠泉, 孙学鹏, 华陆, 刘志国, 孙天希 2022 北京师范大学学报(自然科学版) 58 681

    Shao S K, Yuan T Y, Li H Q, Sun X P, Hua L, Liu Z G, Sun T X 2022 J. Beijing Norm. Univ. (Nat. Sci.) 58 681

    [37]

    Jiang B W, Liu Z G, Sun X P, Sun T X, Deng B, Li F Z, Yi L T, Yuan M N, Zhu Y, Zhang F S, Xiao T Q, Wang J, Tai R Z 2017 Opt. Commun. 398 91Google Scholar

    [38]

    Balaic D X, Barnea Z, Nugent K A, Garrett R F, Varghese J N, Wilkins S W 1996 J. Synchrotron Radiat. 3 289Google Scholar

    [39]

    Wang Y B, Li Y L, Shao S K, Zhang X Y, Li Y F, Sun X P, Tao F, Deng B, Sun T X 2020 Opt. Commun. 464 125544Google Scholar

    [40]

    Wang X Y, Li Y D, Luo H, Ye L, Zhou M, Duan J Y, Lin X Y 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 947 162762Google Scholar

    [41]

    Sun X P, Zhang X Y, Zhu Y, Wang Y B, Shang H Z, Zhang F S, Liu Z G, Sun T X 2018 Nucl. Instrum. Methods Phys. Res. , Sect. A 888 13Google Scholar

    [42]

    Zhou Z X, Cheng R, Du H Y, Yi S Z, Fu F, Wang G D, Shi L L, Wang Z, Jin X J, Chen Y H, Zhang Y S, Chen L W, Yang J, Su M G 2024 J. Anal. At. Spectrom. 39 31

    [43]

    孙天希 2022 光学学报 42 1134002Google Scholar

    Sun T X 2022 Acta Opt. Sin. 42 1134002Google Scholar

    [44]

    Shao S K, Li H Q, Yuan T Y, Zhang X Y, Hua L, Sun X P, Liu Z G, Sun T X 2022 Front. Phys. 10 816981Google Scholar

    [45]

    Zymierska D 1996 Acta. Phys. Pol. A 89 347Google Scholar

  • [1] 袁天语, 邵尚坤, 孙学鹏, 李惠泉, 华陆, 孙天希. 一种用于软X射线激光去相干的单玻璃管光学透镜设计.  , 2023, 72(3): 034203. doi: 10.7498/aps.72.20221917
    [2] 周腊珍, 夏文静, 许倩倩, 陈赞, 李坊佐, 刘志国, 孙天希. 一种基于毛细管X光透镜的微型锥束CT扫描仪.  , 2022, 71(9): 090701. doi: 10.7498/aps.71.20212195
    [3] 孙伟, 安维明, 仲佳勇. 磁场对激光驱动Kelvin-Helmholtz不稳定性影响的二维数值研究.  , 2020, 69(24): 244701. doi: 10.7498/aps.69.20201167
    [4] 姜其立, 段泽明, 帅麒麟, 李融武, 潘秋丽, 程琳. 一种毛细管聚焦的微束X射线衍射仪.  , 2019, 68(24): 240701. doi: 10.7498/aps.68.20190497
    [5] 陈直, 许良, 陈荣昌, 杜国浩, 邓彪, 谢红兰, 肖体乔. Kinoform单透镜的硬X射线聚焦性能.  , 2015, 64(16): 164104. doi: 10.7498/aps.64.164104
    [6] 陈灿, 佟亚军, 谢红兰, 肖体乔. Laue弯晶聚焦特性的光线追迹研究.  , 2012, 61(10): 104102. doi: 10.7498/aps.61.104102
    [7] 邬融, 华能, 张晓波, 曹国威, 赵东峰, 周申蕾. 高能量效率的大口径多台阶衍射光学元件.  , 2012, 61(22): 224202. doi: 10.7498/aps.61.224202
    [8] 晏骥, 郑建华, 陈黎, 林稚伟, 江少恩. X射线相衬成像技术应用于高能量密度物理条件下内爆靶丸诊断.  , 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [9] 董克攻, 吴玉迟, 郑无敌, 朱斌, 曹磊峰, 何颖玲, 马占南, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 魏来, 臧华平, 余金清, 谷渝秋, 张保汉, 王晓方. 充气型放电毛细管的密度测量及磁流体模拟.  , 2011, 60(9): 095202. doi: 10.7498/aps.60.095202
    [10] 苏兆锋, 杨海亮, 邱爱慈, 孙剑锋, 丛培天, 王亮平, 雷天时, 韩娟娟. 高能脉冲X射线能谱测量.  , 2010, 59(11): 7729-7735. doi: 10.7498/aps.59.7729
    [11] 王擂然, 刘雪明, 宫永康. 基于高能量耗散型脉冲掺铒光纤激光器的实验研究.  , 2010, 59(9): 6200-6204. doi: 10.7498/aps.59.6200
    [12] 朱艳青, 梁静秋, 梁中翥, 黄鑫华, 乐孜纯, 伊福廷, 侯凤杰, 黄万霞, 董文, 王维彪, 王志立, 崔乃迪. 背面曝光技术制作沙漏状X射线组合折射透镜.  , 2009, 58(3): 1526-1530. doi: 10.7498/aps.58.1526
    [13] 雷 霆, 涂成厚, 李恩邦, 李勇男, 郭文刚, 魏 岱, 朱 辉, 吕福云. 高能量无波分裂超短脉冲自相似传输的理论研究和数值模拟.  , 2007, 56(5): 2769-2775. doi: 10.7498/aps.56.2769
    [14] 陈宝振, 黄祖洽. 飞秒强激光在充气毛细管中产生三次谐波的效率.  , 2005, 54(1): 113-116. doi: 10.7498/aps.54.113
    [15] 邬鹏举, 李玉德, 林晓燕, 刘安东, 孙天希. x射线在毛细导管中传输的模拟计算.  , 2005, 54(10): 4478-4482. doi: 10.7498/aps.54.4478
    [16] 赵永蓬, 程元丽, 王 骐, 林 靖, 崛田荣喜. 毛细管放电激励软x射线激光的产生时间.  , 2005, 54(6): 2731-2734. doi: 10.7498/aps.54.2731
    [17] 程元丽, 栾伯含, 吴寅初, 赵永蓬, 王 骐, 郑无敌, 彭惠民, 杨大为. 预脉冲在毛细管快放电软x射线激光中的作用.  , 2005, 54(10): 4979-4984. doi: 10.7498/aps.54.4979
    [18] 刘政威, 阳效良, 肖思国. 提高能量上转换效率的实验探讨.  , 2001, 50(9): 1795-1779. doi: 10.7498/aps.50.1795
    [19] 江少恩, 郑志坚, 成金秀, 孙可煦, 杨家敏, 王红斌. X射线沿柱腔轴向能量传输实验测量.  , 2000, 49(7): 1303-1306. doi: 10.7498/aps.49.1303
    [20] 陈宝振. X射线在毛细导管中传输的理论研究.  , 2000, 49(10): 1933-1937. doi: 10.7498/aps.49.1933
计量
  • 文章访问数:  350
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-21
  • 修回日期:  2025-04-25
  • 上网日期:  2025-05-10

/

返回文章
返回
Baidu
map