搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大面积容性耦合放电驻波效应对驱动电势分布均匀性的影响

张逸凡 贾文柱 田罡煜 屈庆源 王登志 曹新民 周剑 宋远红

引用本文:
Citation:

大面积容性耦合放电驻波效应对驱动电势分布均匀性的影响

张逸凡, 贾文柱, 田罡煜, 屈庆源, 王登志, 曹新民, 周剑, 宋远红

Influence of standing wave effect on uniformity of potential distribution between electrodes in large-area capacitively coupled discharges

ZHANG Yifan, JIA Wenzhu, TIAN Gangyu, QU Qingyuan, WANG Dengzhi, CAO Xinmin, ZHOU Jian, SONG Yuanhong
cstr: 32037.14.aps.74.20250279
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 在光伏和平板显示等领域, 通常采用大面积容性耦合腔室进行等离子体增强化学气相沉积. 随着腔室尺寸增大和驱动频率提高, 受驻波效应影响, 驱动电极电势幅值分布不均匀, 从而导致沉积薄膜不均匀的问题日益凸显. 针对此问题, 本文通过流体模型与传输线模型耦合, 以光伏硅基薄膜沉积中常用的硅烷氢气混合气体为研究对象, 考虑电子-中性粒子弹性碰撞, 研究了气压、气体比例和功率等参数对表面波传播以及驱动电极电势幅值分布的影响. 模拟结果与实际工艺腔室中薄膜沉积实验结果进行了对照, 验证了驱动电极电势幅值分布与薄膜厚度分布之间的对应关系. 研究表明, 在功率较低硅烷含量较高时, 表面波的径向衰减十分显著, 从而成为影响驱动电势幅值分布不均匀的主导因素. 本文还研究了调整电源馈入位置和采用多个电源馈入点来优化电势幅值分布均匀性的方法, 受表面波波长限制, 这两种方法效果有限. 而采用曲面电极能显著提升电势幅值分布的均匀性, 然而对参数设定和加工精度要求较高. 本研究不仅深化了对驻波效应作用机制的理解, 还为工业生产中解决驻波效应对薄膜均匀性的影响提供理论支撑与指导, 有望推动相关产业技术革新.
    Large-area capacitively coupled discharges are widely used in plasma enhanced chemical vapor deposition (PECVD) processes for solar cell and display manufacturing. With the increase of the chamber size and driving frequency for improving production efficiency, the non-uniformity of deposited film induced by standing wave effects becomes more serious, which deserves more attention and in-depth research. Based on a fluid model coupled with a transmission line model, the potential amplitude distribution on the powered 2 m2 electrode and the plasma characteristics in a capacitive plasma sustained in a silane/hydrogen discharge driven at 27.12 MHz are investigated. This work identifies three key control parameters: pressure, silane content, and input power, with particular emphasis on radial wave attenuation caused by electron-neutral elastic collisions. The simulation results are validated by industrial experimental results, confirming the relationship between the distributions of potential amplitude on the powered electrode and the film thickness.Two different mechanisms emerge from the analysis. Under the conditions of low silane content and high power, the surface wave radial attenuation is not significant and the surface wave wavelength variations dominate the potential amplitude distribution on the powered electrode. Conversely, in the case of high silane content and low power, significant radial attenuation of the surface wave leads to the noticeable weakening of the standing wave effect due to higher electron-neutral collision frequency. Neglecting the radial attenuation of the surface wave will result in significant deviations in the potential amplitude distribution on the powered electrode as shown in the following figure.Strategies such as adjusting power input positions or using multiple power input are studied to improve uniformity, but the improvements are still limited. Although it requires strict parameter control and machining precision, the shaped electrode demonstrates remarkable uniformity improvement of the potential distribution. In the future work, it is necessary to further analyze the influence of the standing wave effects on the radial distributions of electron, ions, and neutral radicals under complex conditions, such as different chamber structures, gas flows, and temperature distributions, as well as the influence on the quality of deposited films. This will enable a more comprehensive and accurate study of standing wave effects, providing support and guidance for solving real industrial problems.
      通信作者: 宋远红, songyh@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12020101005, 12475202)资助的课题.
      Corresponding author: SONG Yuanhong, songyh@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12020101005, 12475202).
    [1]

    Yu C, Gao K, Peng C W, He C R, Wang S B, Shi W, Allen V, Zhang J T, Wang D Z, Tian G Y, Zhang Y F, Jia W Z, Song Y H, Hu Y Z, Colwell J, Xing C F, Ma Q, Wu H T, Guo L Y, Dong G Q, Jiang H, Wu H H, Wang X Y, Xu D C, Li K, Peng J, Liu W Z, Chen D, Lennon A, Cao X M, De Wolf S, Zhou J, Yang X B, Zhang X H 2023 Nat. Energy 8 1375Google Scholar

    [2]

    Crose M, Kwon J S I, Tran A, Christofides P D 2017 Renewable Energy 100 129Google Scholar

    [3]

    Crose M, Sang Il Kwon J, Nayhouse M, Ni D, Christofides P D 2015 Chem. Eng. Sci. 136 50Google Scholar

    [4]

    Schmidt H 2006 Ph. D Dissertation (Lausanne: EPFL

    [5]

    Schmitt J P M 1989 Thin Solid Films 174 193Google Scholar

    [6]

    Meyyappan M, Colgan M J 1996 J. Vac. Sci. Technol. A 14 2790Google Scholar

    [7]

    Surendra M, Graves D B 1991 Appl. Phys. Lett 59 2091Google Scholar

    [8]

    Curtins H, Wyrsch N, Favre M, Shah A V 1987 Plasma Chem Plasma P 7 267Google Scholar

    [9]

    Liu Y X, Zhang Q Z, Zhao K, Zhang Y R, Gao F, Song Y H, Wang Y N 2022 Chin. Phys. B 31 085202Google Scholar

    [10]

    Kim H J, Lee H J 2017 J. Phys. D: Appl. Phys. 122 053301Google Scholar

    [11]

    Kim H J, Lee H J 2017 Plasma Sources Sci. Technol. 26 085003Google Scholar

    [12]

    Kim H J 2021 Vacuum 187 110104Google Scholar

    [13]

    Kim H J, Lee H J 2016 Plasma Sources Sci. Technol. 25 065006Google Scholar

    [14]

    Schmidt H, Sansonnens L, Howling A A, Hollenstein Ch, Elyaakoubi M, Schmitt J P M 2004 J. Appl. Phys. 95 4559Google Scholar

    [15]

    Sansonnens L, Pletzer A, Magni D, Howling A A, Hollenstein C, Schmitt J P M 1997 Plasma Sources Sci. Technol. 6 170Google Scholar

    [16]

    Lieberman M A, Booth J P, Chabert P, Rax J M, Turner M M 2002 Plasma Sources Sci. Technol. 11 283Google Scholar

    [17]

    Chabert P, Raimbault J L, Rax J M, Lieberman M A 2004 Phys. Plasmas 11 1775Google Scholar

    [18]

    Lee I, Graves D B, Lieberman M A 2008 Plasma Sources Sci. Technol. 17 015018Google Scholar

    [19]

    Lieberman M A, Lichtenberg A J, Kawamura E, Marakhtanov A M 2015 Plasma Sources Sci. Technol. 24 055011Google Scholar

    [20]

    Wen D Q, Kawamura E, Lieberman M A, Lichtenberg A J, Wang Y N 2017 J. Phys. D: Appl. Phys. 50 495201Google Scholar

    [21]

    Zhao K, Liu Y X, Kawamura E, Wen D Q, Lieberman M A, Wang Y N 2018 Plasma Sources Sci. Technol. 27 055017Google Scholar

    [22]

    Lieberman M A, Kawamura E, Chabert P 2022 Plasma Sources Sci. Technol. 31 114007Google Scholar

    [23]

    Liu J K, Zhang Y R, Zhao K, Wen D Q, Wang Y N 2021 Plasma Sci. Technol. 23 035401Google Scholar

    [24]

    Liu Y X, Gao F, Liu J, Wang Y N 2014 J. Appl. Phys. 116 043303Google Scholar

    [25]

    Han D M, Liu Y X, Gao F, Wang X Y, Li A, Xu J, Jing Z G, Wang Y N 2018 J. Appl. Phys. 123 223304Google Scholar

    [26]

    Han D M, Su Z X, Zhao K, Liu Y X, Gao F, Wang Y N 2021 Plasma Sci. Technol. 23 055402Google Scholar

    [27]

    Sansonnens L, Schmidt H, Howling A A, Hollenstein Ch, Ellert Ch, Buechel A 2006 J. Vac. Sci. Technol. A 24 1425Google Scholar

    [28]

    Chen Z, Rauf S, Collins K 2010 J. Appl. Phys. 108 073301Google Scholar

    [29]

    Faraz T, Arts K, Karwal S, Knoops H C M, Kessels W M M 2019 Plasma Sources Sci. Technol. 28 024002Google Scholar

    [30]

    Kuboi N 2023 J. Micro/Nanopattern. Mats. Metro. 22 041502Google Scholar

    [31]

    Oehrlein G S, Brandstadter S M, Bruce R L, et al. 2024 J. Vac. Sci. Technol. B 42 041501Google Scholar

    [32]

    Chang J, Chang J P 2017 J. Phys. D: Appl. Phys. 50 253001Google Scholar

    [33]

    邱华檀, 王友年, 马腾才 2002 51 1332Google Scholar

    Qiu H T, Wang Y N, Ma T C 2002 Acta Phys. Sin. 51 1332Google Scholar

    [34]

    Tinck S, Bogaerts A 2012 Plasma Processes & Polym. 9 522Google Scholar

    [35]

    Kessels W M M, Hoefnagels J P M, Boogaarts M G H, Schram D C, Van De Sanden M C M 2001 J. Appl. Phys. 89 2065Google Scholar

    [36]

    刘建凯 2022 博士学位论文(大连: 大连理工大学)

    Liu J K 2022 Ph. D Dissertation (Dalian: Dalian University of Technology

    [37]

    Sansonnens L 2005 J. Appl. Phys. 97 063304Google Scholar

    [38]

    Jia W Z, Wang X F, Song Y H, Wang Y N 2017 J. Phys. D: Appl. Phys. 50 165206Google Scholar

    [39]

    Jia W Z, Liu R Q, Wang X F, Liu X M, Song Y H, Wang Y N 2018 Phys. Plasmas 25 093501Google Scholar

    [40]

    Bleecker K D, Bogaerts A, Gijbels R, Goedheer W 2004 Phys. Rev. E 69 056409Google Scholar

    [41]

    Brinkmann R P 2007 J. Appl. Phys. 102 093303Google Scholar

  • 图 1  腔室结构示意图

    Fig. 1.  Diagram of chamber structure.

    图 2  不同气压下的考虑(a1)—(a4)和忽略(b1)—(b4)表面波径向衰减情况下的驱动电极电势幅值的二维分布(以下简称电势分布)以及每种情况下的电势分布不均匀度$ \alpha $和表面波波数$ {k}_{{\mathrm{p}}} $, 电极尺寸为2 m × 2 m, 其他放电条件与表2相同

    Fig. 2.  Two-dimensional distributions of the potential amplitude on the powered electrode with (a1)–(a4) or without (b1)–(b4) the consideration of the surface wave radial attenuation under different pressures, with the potential nonuniformity factor $ \alpha $ and surface wave number $ {k}_{{\mathrm{p}}} $ for each case. Electrode size: 2 m × 2 m; other discharge conditions are the same as in Table 2.

    图 3  不同气压下的考虑(a1)—(a4)和忽略(b1)—(b4)表面波径向衰减情况下的电势分布以及每种情况下的电势分布不均匀度$ \alpha $和表面波波数$ {k}_{{\mathrm{p}}} $. 电极尺寸为2 m × 2 m; 其他放电条件与表3相同

    Fig. 3.  Distributions of the potential with (a1)–(a4) or without (b1)–(b4) the consideration of the surface wave radial attenuation under different pressures, with the potential nonuniformity factor $ \alpha $ and surface wave number $ {k}_{{\mathrm{p}}} $ for each case. Electrode size is 2 m × 2 m; other discharge conditions are the same as in Table 3.

    图 4  不同气压下考虑表面波径向衰减时归一化的电势分布的实部(a1)—(a4)和虚部(b1)—(b4). 电极尺寸为2 m × 2 m; 其他放电条件与表3相同

    Fig. 4.  Distributions of the real part (a1)–(a4) and imaginary part (b1)–(b4) of the normalized potential with the consideration of the surface wave radial attenuation. Electrode size is 2 m × 2 m; other discharge conditions are the same as in Table 3.

    图 5  不同案例下电源馈入位置示意图(a1)—(a4)和对应的电势分布(b1)—(b4)以及电势分布不均匀度$ \alpha $. 电极尺寸为2 m × 2 m; 放电气压为3 Torr; 其他放电条件与表2相同

    Fig. 5.  Distributions of power input positions (a1)–(a4) under different cases, and the potential (b1)–(b4), as well as the potential nonuniformity factor α. Electrode size is 2 m × 2 m; pressure is 3 Torr; other discharge conditions are the same as in Table 2.

    图 6  不同气压下采用图5(a1)馈入方式模拟计算的电势分布(a), (c)和相同条件下实验观测的沉积薄膜厚度分布(b), (d). 模拟与实验放电参数相同, 电极尺寸为2 m × 2 m; 其他放电条件与表2相同

    Fig. 6.  Distributions of the potential from simulation (a), (c) and the deposited film thickness from experiment (b), (d) under different pressures with the case of power input in Fig. 5(a1). Discharge parameters of simulation and experiment are consistent, electrode size is 2 m × 2 m; other discharge conditions are the same as in Table 2.

    图 7  不同气压下采用图5(a3)馈入方式模拟计算的电势分布(a), (c)和相同条件下实验观测的沉积薄膜厚度分布(b), (d). 模拟与实验放电参数相同, 电极尺寸为2 m × 2 m; 其他放电条件与表2相同

    Fig. 7.  Distributions of the potential from simulation (a), (c) and the deposited film thickness from experiment (b), (d) under different pressures with the case of power input in Fig. 5(a1). Discharge parameters of simulation and experiment are consistent, electrode size is 2 m × 2 m; other discharge conditions are the same as in Table 2.

    图 8  采用曲面电极和图5(a3)馈入方式情况下放电区域归一化的电势分布. 电极尺寸为2 m × 2 m; 放电气压为 4 Torr; 其他放电条件与表2相同

    Fig. 8.  Distributions of the normalized potential with the shaped electrode and the case of power input in Fig. 5(a3). Electrode size is 2 m × 2 m; pressure is 4 Torr; other discharge conditions are the same as in Table 2.

    图 9  采用曲面电极和图5(a3)馈入方式情况下, 当右上角电源偏离理想位置(a)和电源电流幅值偏离理想值(b)时归一化的电势分布(c), (d). 电极尺寸为2 m × 2 m; 放电气压为 4 Torr; 其他放电条件与表2相同

    Fig. 9.  Distributions of the normalized potential (c), (d) when the power input position deviates from the ideal position (a) or the current amplitude deviates from the ideal value (b) with the shaped electrode and the case of power input in Fig. 5(a3). Electrode size is 2 m × 2 m; pressure is 4 Torr; other discharge conditions are the same as in Table 2.

    表 1  流体模型中计算硅烷氢气放电的反应及其系数

    Table 1.  Reactions and corresponding coefficients in fluid models for silane/hydrogen discharges.

    序号 反应 阈值能/eV 系数[38,39]
    /(cm3·s–1)
    R1 SiH4+e→SiH4+e cal
    R2 SiH4+e→$ {{\mathrm{S}}{\mathrm{i}}{\mathrm{H}}}_{3}^{+} $+H+2e 11.9 cal
    R3 SiH4+e→$ {{\mathrm{S}}{\mathrm{i}}{\mathrm{H}}}_{3}^{-} $+H 5.7 cal
    R4 SiH4+e→$ {{\mathrm{S}}{\mathrm{i}}{\mathrm{H}}}_{2}^{-} $+2H 5.7 cal
    R5 SiH4+e→SiH3+H+e 8.3 cal
    R6 SiH4+e→SiH2+2H+e 8.3 cal
    R7 H2+e→H2+e cal
    R8 H2+e→2H+e 8.9 cal
    R9 H2+e→$ {{\mathrm{H}}}_{2}^{+} $+2e 15.4 cal
    R10 Si2H6+e→Si2$ {{\mathrm{H}}}_{4}^{+} $+2H+2e 10.2 cal
    R11 Si2H6+e→SiH3+SiH2+H+e 7.0 cal
    R12 $ {{\mathrm{S}}{\mathrm{i}}{\mathrm{H}}}_{3}^{+} $+ $ {{\mathrm{S}}{\mathrm{i}}{\mathrm{H}}}_{3}^{-} $→2SiH3 1.0×10–8
    R13 $ {{\mathrm{S}}{\mathrm{i}}{\mathrm{H}}}_{3}^{+} $+$ {{\mathrm{S}}{\mathrm{i}}{\mathrm{H}}}_{2}^{-} $→SiH3+SiH2 1.0×10–8
    R14 $ {{\mathrm{H}}}_{2}^{+} $+$ {{\mathrm{S}}{\mathrm{i}}{\mathrm{H}}}_{3}^{-} $→SiH3+H2 1.0×10–8
    R15 $ {{\mathrm{H}}}_{2}^{+} $+$ {{\mathrm{S}}{\mathrm{i}}{\mathrm{H}}}_{2}^{-} $→SiH2+H2 1.0×10–8
    R16 Si2$ {{\mathrm{H}}}_{4}^{+} $+$ {{\mathrm{S}}{\mathrm{i}}{\mathrm{H}}}_{3}^{-} $→SiH3+H2 1.0×10–8
    R17 Si2$ {{\mathrm{H}}}_{4}^{+} $+$ {{\mathrm{S}}{\mathrm{i}}{\mathrm{H}}}_{2}^{-} $→3SiH2 1.0×10–8
    R18 SiH4+$ {{\mathrm{H}}}_{2}^{+} $→$ {{\mathrm{S}}{\mathrm{i}}{\mathrm{H}}}_{3}^{+} $+H2+H 1.0×10–8
    R19 SiH4+H→SiH3+H2 1.2×10–12
    R20 Si2H6+H→H2+Si2H5 7.0×10–12
    R21 Si2H6+H→SiH3+SiH4 3.5×10–12
    R22 SiH3+SiH3→SiH4+SiH2 1.5×10–10
    R23 SiH2+H2→SiH4 2.7×10–14
    R24 SiH2+SiH4→Si2H6 2.3×10–11
    下载: 导出CSV

    表 2  不同气压下周期和空间平均的电子密度($ {n}_{{\mathrm{e}}} $)、鞘层厚度($ {d}_{{\mathrm{s}}{\mathrm{h}}} $)、趋肤深度($ \delta $)、电子-中性粒子弹性碰撞频率($ {\upsilon }_{{\mathrm{e}}{\mathrm{n}}} $)和电极间有效相对介电常数($ {\varepsilon }_{{\mathrm{e}}{\mathrm{f}}{\mathrm{f}}} $); 放电条件为电压幅值100 V, 间距1.6 cm, 功率范围8—12 kW, SiH4/SiH4+H2 = 1%

    Table 2.  Periodically and spatially averaged electron density ($ {n}_{{\mathrm{e}}} $), sheath thickness ($ {d}_{{\mathrm{s}}{\mathrm{h}}} $), skin depth ($ \delta $), electron-neutral elastic collision frequency ($ {\upsilon }_{{\mathrm{e}}{\mathrm{n}}} $), and effective relative permittivity ($ {\varepsilon }_{{\mathrm{e}}{\mathrm{f}}{\mathrm{f}}} $) under different pressures; discharge conditions: voltage 100 V, gap 1.6 cm, power range 8–12 kW, SiH4/SiH4+H2 = 1%.

    p/Torr $ {n}_{{\mathrm{e}}} $/(1015 m–3) $ {d}_{{\mathrm{s}}{\mathrm{h}}} $/cm $ \boldsymbol{\delta } $/cm $ {\upsilon }_{{\mathrm{e}}{\mathrm{n}}} $/(1010Hz) $ {\varepsilon }_{{\mathrm{e}}{\mathrm{f}}{\mathrm{f}}} $
    1 5.98 0.20 6.88 0.36 4.02+0.46i
    2 19.56 0.13 3.80 0.72 6.08+0.68i
    3 37.57 0.08 2.74 1.08 9.30+1.29i
    4 55.81 0.06 2.25 1.44 12.65+2.20i
    下载: 导出CSV

    表 3  不同气压下周期和空间平均的电子密度($ {n}_{{\mathrm{e}}} $)、鞘层厚度($ {d}_{{\mathrm{s}}{\mathrm{h}}} $)、趋肤深度($ \delta $)、电子-中性粒子弹性碰撞频率($ {\upsilon }_{{\mathrm{e}}{\mathrm{n}}} $)和电极间相对介电常数($ {\varepsilon }_{{\mathrm{e}}{\mathrm{f}}{\mathrm{f}}} $), 放电条件为电压幅值50 V, 间距2 cm, 功率大致2—5 kW, SiH4/SiH4+H2 = 90%

    Table 3.  Periodically and spatially electron density ($ {n}_{{\mathrm{e}}} $), sheath thickness ($ {d}_{{\mathrm{s}}{\mathrm{h}}} $), skin depth ($ \delta $), electron-neutral elastic collision frequency ($ {\upsilon }_{{\mathrm{e}}{\mathrm{n}}} $), and effective relative permittivity ($ {\varepsilon }_{{\mathrm{e}}{\mathrm{f}}{\mathrm{f}}} $) under different pressures, discharge conditions: voltage 50 V, gap 2 cm, power range 2–5 kW, SiH4/SiH4+H2 = 90%.

    p/Torr $ {n}_{{\mathrm{e}}} $/(1015 m–3) $ {d}_{{\mathrm{s}}{\mathrm{h}}} $/cm ${\delta } $/cm $ {\upsilon }_{{\mathrm{e}}{\mathrm{n}}} $/(1010 Hz) $ {\varepsilon }_{{\mathrm{e}}{\mathrm{f}}{\mathrm{f}}} $
    1 2.40 0.15 10.86 0.59 3.99+3.02i
    3 7.72 0.10 6.06 1.77 4.33+4.53i
    5 9.12 0.08 5.57 2.94 2.88+4.25i
    7 8.70 0.08 5.70 4.12 1.94+3.18i
    下载: 导出CSV
    Baidu
  • [1]

    Yu C, Gao K, Peng C W, He C R, Wang S B, Shi W, Allen V, Zhang J T, Wang D Z, Tian G Y, Zhang Y F, Jia W Z, Song Y H, Hu Y Z, Colwell J, Xing C F, Ma Q, Wu H T, Guo L Y, Dong G Q, Jiang H, Wu H H, Wang X Y, Xu D C, Li K, Peng J, Liu W Z, Chen D, Lennon A, Cao X M, De Wolf S, Zhou J, Yang X B, Zhang X H 2023 Nat. Energy 8 1375Google Scholar

    [2]

    Crose M, Kwon J S I, Tran A, Christofides P D 2017 Renewable Energy 100 129Google Scholar

    [3]

    Crose M, Sang Il Kwon J, Nayhouse M, Ni D, Christofides P D 2015 Chem. Eng. Sci. 136 50Google Scholar

    [4]

    Schmidt H 2006 Ph. D Dissertation (Lausanne: EPFL

    [5]

    Schmitt J P M 1989 Thin Solid Films 174 193Google Scholar

    [6]

    Meyyappan M, Colgan M J 1996 J. Vac. Sci. Technol. A 14 2790Google Scholar

    [7]

    Surendra M, Graves D B 1991 Appl. Phys. Lett 59 2091Google Scholar

    [8]

    Curtins H, Wyrsch N, Favre M, Shah A V 1987 Plasma Chem Plasma P 7 267Google Scholar

    [9]

    Liu Y X, Zhang Q Z, Zhao K, Zhang Y R, Gao F, Song Y H, Wang Y N 2022 Chin. Phys. B 31 085202Google Scholar

    [10]

    Kim H J, Lee H J 2017 J. Phys. D: Appl. Phys. 122 053301Google Scholar

    [11]

    Kim H J, Lee H J 2017 Plasma Sources Sci. Technol. 26 085003Google Scholar

    [12]

    Kim H J 2021 Vacuum 187 110104Google Scholar

    [13]

    Kim H J, Lee H J 2016 Plasma Sources Sci. Technol. 25 065006Google Scholar

    [14]

    Schmidt H, Sansonnens L, Howling A A, Hollenstein Ch, Elyaakoubi M, Schmitt J P M 2004 J. Appl. Phys. 95 4559Google Scholar

    [15]

    Sansonnens L, Pletzer A, Magni D, Howling A A, Hollenstein C, Schmitt J P M 1997 Plasma Sources Sci. Technol. 6 170Google Scholar

    [16]

    Lieberman M A, Booth J P, Chabert P, Rax J M, Turner M M 2002 Plasma Sources Sci. Technol. 11 283Google Scholar

    [17]

    Chabert P, Raimbault J L, Rax J M, Lieberman M A 2004 Phys. Plasmas 11 1775Google Scholar

    [18]

    Lee I, Graves D B, Lieberman M A 2008 Plasma Sources Sci. Technol. 17 015018Google Scholar

    [19]

    Lieberman M A, Lichtenberg A J, Kawamura E, Marakhtanov A M 2015 Plasma Sources Sci. Technol. 24 055011Google Scholar

    [20]

    Wen D Q, Kawamura E, Lieberman M A, Lichtenberg A J, Wang Y N 2017 J. Phys. D: Appl. Phys. 50 495201Google Scholar

    [21]

    Zhao K, Liu Y X, Kawamura E, Wen D Q, Lieberman M A, Wang Y N 2018 Plasma Sources Sci. Technol. 27 055017Google Scholar

    [22]

    Lieberman M A, Kawamura E, Chabert P 2022 Plasma Sources Sci. Technol. 31 114007Google Scholar

    [23]

    Liu J K, Zhang Y R, Zhao K, Wen D Q, Wang Y N 2021 Plasma Sci. Technol. 23 035401Google Scholar

    [24]

    Liu Y X, Gao F, Liu J, Wang Y N 2014 J. Appl. Phys. 116 043303Google Scholar

    [25]

    Han D M, Liu Y X, Gao F, Wang X Y, Li A, Xu J, Jing Z G, Wang Y N 2018 J. Appl. Phys. 123 223304Google Scholar

    [26]

    Han D M, Su Z X, Zhao K, Liu Y X, Gao F, Wang Y N 2021 Plasma Sci. Technol. 23 055402Google Scholar

    [27]

    Sansonnens L, Schmidt H, Howling A A, Hollenstein Ch, Ellert Ch, Buechel A 2006 J. Vac. Sci. Technol. A 24 1425Google Scholar

    [28]

    Chen Z, Rauf S, Collins K 2010 J. Appl. Phys. 108 073301Google Scholar

    [29]

    Faraz T, Arts K, Karwal S, Knoops H C M, Kessels W M M 2019 Plasma Sources Sci. Technol. 28 024002Google Scholar

    [30]

    Kuboi N 2023 J. Micro/Nanopattern. Mats. Metro. 22 041502Google Scholar

    [31]

    Oehrlein G S, Brandstadter S M, Bruce R L, et al. 2024 J. Vac. Sci. Technol. B 42 041501Google Scholar

    [32]

    Chang J, Chang J P 2017 J. Phys. D: Appl. Phys. 50 253001Google Scholar

    [33]

    邱华檀, 王友年, 马腾才 2002 51 1332Google Scholar

    Qiu H T, Wang Y N, Ma T C 2002 Acta Phys. Sin. 51 1332Google Scholar

    [34]

    Tinck S, Bogaerts A 2012 Plasma Processes & Polym. 9 522Google Scholar

    [35]

    Kessels W M M, Hoefnagels J P M, Boogaarts M G H, Schram D C, Van De Sanden M C M 2001 J. Appl. Phys. 89 2065Google Scholar

    [36]

    刘建凯 2022 博士学位论文(大连: 大连理工大学)

    Liu J K 2022 Ph. D Dissertation (Dalian: Dalian University of Technology

    [37]

    Sansonnens L 2005 J. Appl. Phys. 97 063304Google Scholar

    [38]

    Jia W Z, Wang X F, Song Y H, Wang Y N 2017 J. Phys. D: Appl. Phys. 50 165206Google Scholar

    [39]

    Jia W Z, Liu R Q, Wang X F, Liu X M, Song Y H, Wang Y N 2018 Phys. Plasmas 25 093501Google Scholar

    [40]

    Bleecker K D, Bogaerts A, Gijbels R, Goedheer W 2004 Phys. Rev. E 69 056409Google Scholar

    [41]

    Brinkmann R P 2007 J. Appl. Phys. 102 093303Google Scholar

  • [1] 殷桂琴, 张蕾蕾, 脱升. 双频磁化容性耦合氩/甲烷等离子体放电特性.  , 2025, 74(14): 145201. doi: 10.7498/aps.74.20250244
    [2] 宋柳琴, 贾文柱, 董婉, 张逸凡, 戴忠玲, 宋远红. 容性耦合放电等离子体增强氧化硅薄膜沉积模拟研究.  , 2022, 71(17): 170201. doi: 10.7498/aps.71.20220493
    [3] 王丽, 温德奇, 田崇彪, 宋远红, 王友年. 容性耦合等离子体中电子加热过程及放电参数控制.  , 2021, 70(9): 095214. doi: 10.7498/aps.70.20210473
    [4] 曹宇, 薛磊, 周静, 王义军, 倪牮, 张建军. 微晶硅锗薄膜作为近红外光吸收层在硅基薄膜太阳电池中的应用.  , 2016, 65(14): 146801. doi: 10.7498/aps.65.146801
    [5] 谭再上, 吴小蒙, 范仲勇, 丁士进. 热退火对等离子体增强化学气相沉积SiCOH薄膜结构与性能的影响.  , 2015, 64(10): 107701. doi: 10.7498/aps.64.107701
    [6] 郝莹莹, 孟秀兰, 姚福宝, 赵国明, 王敬, 张连珠. N2-H2容性耦合等离子体电非对称效应的particle-in-cell/Monte Carlo模拟.  , 2014, 63(18): 185205. doi: 10.7498/aps.63.185205
    [7] 何素明, 戴珊珊, 罗向东, 张波, 王金斌. 等离子体增强化学气相沉积工艺制备SiON膜及对硅的钝化.  , 2014, 63(12): 128102. doi: 10.7498/aps.63.128102
    [8] 丁艳丽, 朱志立, 谷锦华, 史新伟, 杨仕娥, 郜小勇, 陈永生, 卢景霄. 沉积速率对甚高频等离子体增强化学气相沉积制备微晶硅薄膜生长标度行为的影响.  , 2010, 59(2): 1190-1195. doi: 10.7498/aps.59.1190
    [9] 宋捷, 郭艳青, 王祥, 丁宏林, 黄锐. 激发频率对高氢稀释下纳米晶硅薄膜生长特性的影响.  , 2010, 59(10): 7378-7382. doi: 10.7498/aps.59.7378
    [10] 张晓丹, 孙福和, 许盛之, 王光红, 魏长春, 孙建, 侯国付, 耿新华, 熊绍珍, 赵颖. 单室沉积p-i-n型微晶硅薄膜太阳电池性能优化的研究.  , 2010, 59(2): 1344-1348. doi: 10.7498/aps.59.1344
    [11] 袁贺, 孙长征, 徐建明, 武庆, 熊兵, 罗毅. 基于等离子体增强化学气相沉积技术的光电子器件多层抗反膜的设计和制作.  , 2010, 59(10): 7239-7244. doi: 10.7498/aps.59.7239
    [12] 陈兆权, 刘明海, 刘玉萍, 陈伟, 罗志清, 胡希伟. PECVD制备AZO(ZnO:Al)透明导电薄膜.  , 2009, 58(6): 4260-4266. doi: 10.7498/aps.58.4260
    [13] 曾湘波, 廖显伯, 王 博, 刁宏伟, 戴松涛, 向贤碧, 常秀兰, 徐艳月, 胡志华, 郝会颖, 孔光临. 等离子体增强化学气相沉积法实现硅纳米线掺硼.  , 2004, 53(12): 4410-4413. doi: 10.7498/aps.53.4410
    [14] 王 淼, 李振华, 竹川仁士, 齐藤弥八. 利用微波等离子体增强化学气相沉积法定向生长纳米碳管的研究.  , 2004, 53(3): 888-890. doi: 10.7498/aps.53.888
    [15] 纪爱玲, 马利波, 刘 澂, 王永谦. 纳米Si-SiOx和Si-SiNx复合薄膜的低温制备及其发光特性.  , 2004, 53(11): 3818-3822. doi: 10.7498/aps.53.3818
    [16] 杨恢东, 吴春亚, 赵 颖, 薛俊明, 耿新华, 熊绍珍. 甚高频等离子体增强化学气相沉积法沉积μc-Si∶H薄膜中氧污染的初步研究.  , 2003, 52(11): 2865-2869. doi: 10.7498/aps.52.2865
    [17] 于 威, 刘丽辉, 侯海虹, 丁学成, 韩 理, 傅广生. 螺旋波等离子体增强化学气相沉积氮化硅薄膜.  , 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
    [18] 叶超, 宁兆元, 程珊华, 康健. 微波电子回旋共振等离子体增强化学气相沉积法沉积氟化非晶碳薄膜的研究.  , 2001, 50(4): 784-789. doi: 10.7498/aps.50.784
    [19] 宁兆元, 程珊华, 叶超. 电子回旋共振等离子体增强化学气相沉积a-CFx薄膜的化学键结构.  , 2001, 50(3): 566-571. doi: 10.7498/aps.50.566
    [20] 张仿清, 张亚非, 杨映虎, 李敬起, 陈光华, 蒋翔六. 直流弧光放电化学气相沉积(CVD)法制备金刚石薄膜及其等离子体的光发射谱原位测量.  , 1990, 39(12): 1965-1969. doi: 10.7498/aps.39.1965
计量
  • 文章访问数:  294
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-05
  • 修回日期:  2025-04-16
  • 上网日期:  2025-05-06

/

返回文章
返回
Baidu
map