-
提出了一种基于光纤内马赫-曾德尔干涉仪结构的低频声传感方案, 其中传感光纤是由多模-超高数值孔径-多模光纤焊接级联而成的微型马赫-曾德尔干涉仪, 可有效提高光纤弯曲灵敏度; 然后将该干涉仪结构与聚对苯二甲酸乙二酯换能膜片进行组合, 使得传感光纤在受到声压作用时与膜片同步产生曲率变化, 间接增大了光纤接收声场的面积. 文章推导了该系统的声传感理论, 并通过实验进行了验证, 得到传感系统在65 Hz处信噪比约为57 dB, 最小可探测声压为267.9 ${\text{μPa/H}}{{\text{z}}^{{\text{1/2}}}}$; 在50—500 Hz的频率范围内, 对声波有较好响应, 信噪比均在40 dB以上, 信号较平坦. 该方案可显著提升传感系统声响应能力, 实现对低频声波的有效检测, 且具有制作简单、成本低的特点, 在声波探测相关应用领域具有较大的发展潜力.In this work, a low-frequency acoustic sensing scheme is proposed based on the structure of in-fiber Mach-Zehnder interferometer , in which the refractive index difference between fiber core and cladding is used to form a miniature Mach-Zehnder interferometer through fusion splicing of specialty optical fibers in a multi-mode-ultra-high numerical aperture-multi-mode configuration. This design achieves modal recombination between cladding and core modes, thereby effectively enhancing fiber bending sensitivity. The interferometer structure is then combined with a polyethylene terephthalate (PET) transducer diaphragm, enabling the sensing fiber to undergo curvature changes synchronously with the diaphragm under sound pressure, thereby indirectly increasing the area over which the fiber receives the acoustic field. When external acoustic pressure induces bending modulation on both the sensing fiber and transducer diaphragm, the differential strain distribution between the fiber cladding and core generates an optical path difference. This manifests itself in interference spectrum shifts, enabling the effective detection of low-frequency acoustic signals through demodulating the spectrum variations. In the paper, the theoretical framework for the acoustic sensing system is derived and validated experimentally. The results show that at 65 Hz, the system achieves a signal-to-noise ratio (SNR) of approximately 57 dB and a minimum detectable sound pressure of $267.9{\text{ μPa/H}}{{\text{z}}^{{{1/2}}}}$at 65 Hz. In a frequency range of 50–500 Hz, the system exhibits good acoustic response, with an SNR consistently above 40 dB and a relatively flat signal output. This scheme significantly enhances the acoustic response capability of the sensing system, enabling the effective detection of low-frequency acoustic waves. Additionally, it features simple fabrication and low cost, showing great potential for the development of acoustic wave detection applications.
-
Keywords:
- optical fiber sensing /
- Mach-Zehnder interferometer /
- acoustic sensor /
- acoustic measurement
[1] Zhao Y, Chen M Q, Xia F, Lv R Q 2018 Sensor Acoust. A-Phys. 270 162
Google Scholar
[2] Shnaiderman R, Wissmeyer G, Seeger M, Soliman D, Estrada H, Razansky D, Rosenthal A, Ntziachristos V 2017 Optica 4 1180
Google Scholar
[3] Basiri-Esfahani S, Armin A, Forstner S, Bowen W P 2019 Nat. Commun. 10 132
Google Scholar
[4] Mydlarz C, Salamon J, Bello J P 2017 Appl. Acoustics 117 207
Google Scholar
[5] Jia J, Jiang Y, Zhang L, Gao H, Jiang L 2019 IEEE Sens. J. 19 7988
Google Scholar
[6] 刘欣, 蔡宸, 董志飞, 邓欣, 胡昕宇, 祁志美 2022 71 094301
Google Scholar
Liu X, Cai C, Dong Z F, Deng X, Hu X Y, Qi Z M 2022 Acta Phys. Sin. 71 094301
Google Scholar
[7] Gong Z F, Chen K, Zhou X L, Yang Y, Zhao Z H, Zou H L, Yu Q X 2017 J. Lightwave Technol. 35 5276
Google Scholar
[8] Xu Y P, Zhang L, Gao S, Lu P, Mihailov S, Bao X Y 2017 Opt. Lett. 42 1353
Google Scholar
[9] Li Y, Tian J J, Fu Q, Sun Y X, Yao Y 2019 J. Lightwave Technol. 37 1160
Google Scholar
[10] Dass S, Chatterjee K, Kachhap S, Jha R 2021 J. Lightwave Technol. 39 3974
Google Scholar
[11] Wu Y, Yu C B, Wu F, Li C, Zhou J H, Gong Y, Rao Y J, Chen Y F 2017 J. Lightwave Technol. 35 4344
Google Scholar
[12] Feng G H, Chen W M 2016 Smart Mater. Struct. 25 055046
Google Scholar
[13] Wang S, Lu P, Zhang L, Liu D M, Zhang J S 2014 J. Mod. Opt. 61 1033
Google Scholar
[14] Tian J, Zuo Y W, Zhou K M, Yang Q, Hu X, Jiang Y 2024 J. Lightwave Technol. 42 2538
Google Scholar
[15] Fu X, Lu P, Ni W J, Liu L, Liao H, Jiang X Y, Liu D M, Zhang J S 2016 IEEE Photonics J. 8 7102811
Google Scholar
[16] Yang Q, Tian J, Hu X, Tian J J, He Q Q 2024 Photonics 11 363
Google Scholar
[17] Jiang B Q, Bai Z Y, Wang C L, Zhao Y H, Zhao J L, Zhang L, Zhou K M 2018 J. Lightwave Technol. 36 742
Google Scholar
[18] Guo M, Chen K, Zhang G Y, Li C X, Zhao X Y, Gong Z F, Yu Q X 2022 J. Lightwave Technol. 40 4481
Google Scholar
[19] Ren D P, Liu X, Zhang M Y, Gao R, Qi Z M 2021 IEEE Sens. J. 21 14655
Google Scholar
[20] Dass S, Jha R 2017 J. Lightwave Technol. 35 5411
Google Scholar
[21] Xiang Z W, Dai W Y, Rao W Y, Cai X, Fu H Y 2021 IEEE Sens. J. 21 17882
Google Scholar
[22] Chen J M, Xue C Y, Zheng Y Q, Wu L Y, Chen C, Han Y 2021 Opt. Express 29 16447
Google Scholar
[23] Tang P K, Wang P H, Li M L, Lu M S C 2011 J. Micromech. Microeng. 21 025013
Google Scholar
[24] Wei H M, Wu Z L, Sun K X, Zhang H Y, Wang C, Wang K M, Yang T, Pang F F, Zhang X B, Wang T Y, Krishnaswamy S 2023 Photonics Res. 11 780
Google Scholar
-
表 1 几种声传感方案的性能比较
Table 1. Performance comparison of several acoustic sensing systems.
传感结构 声压响应 信噪比/dB 最小探测声压/(${\text{μPa}}\cdot{\text{Hz}}^{-1/2}$) Tapered fiber[20] 36 mV/kPa 46.84 21.11×106@2500 Hz Gold diaphragm-based FPI with
a fiber-optic collimator[21]12.6 mV/Pa 51 470@150 Hz FP etalon[22] 177.6 mV/Pa 12.7 530@1 kHz LPBG[15] 0.064 nm/kPa 40.6 331.9@550 Hz CMOS micromachined capacitive[23] — — 1.35×106@2.4 MHz Two-photon 3D printed spring-based
Fabry-Perot cavity resonator[24]0.0883 mV/Vpp 56.2 2390@75 kHz 本工作 0.0549 mV/Vpp 57.21 267.9@65 Hz -
[1] Zhao Y, Chen M Q, Xia F, Lv R Q 2018 Sensor Acoust. A-Phys. 270 162
Google Scholar
[2] Shnaiderman R, Wissmeyer G, Seeger M, Soliman D, Estrada H, Razansky D, Rosenthal A, Ntziachristos V 2017 Optica 4 1180
Google Scholar
[3] Basiri-Esfahani S, Armin A, Forstner S, Bowen W P 2019 Nat. Commun. 10 132
Google Scholar
[4] Mydlarz C, Salamon J, Bello J P 2017 Appl. Acoustics 117 207
Google Scholar
[5] Jia J, Jiang Y, Zhang L, Gao H, Jiang L 2019 IEEE Sens. J. 19 7988
Google Scholar
[6] 刘欣, 蔡宸, 董志飞, 邓欣, 胡昕宇, 祁志美 2022 71 094301
Google Scholar
Liu X, Cai C, Dong Z F, Deng X, Hu X Y, Qi Z M 2022 Acta Phys. Sin. 71 094301
Google Scholar
[7] Gong Z F, Chen K, Zhou X L, Yang Y, Zhao Z H, Zou H L, Yu Q X 2017 J. Lightwave Technol. 35 5276
Google Scholar
[8] Xu Y P, Zhang L, Gao S, Lu P, Mihailov S, Bao X Y 2017 Opt. Lett. 42 1353
Google Scholar
[9] Li Y, Tian J J, Fu Q, Sun Y X, Yao Y 2019 J. Lightwave Technol. 37 1160
Google Scholar
[10] Dass S, Chatterjee K, Kachhap S, Jha R 2021 J. Lightwave Technol. 39 3974
Google Scholar
[11] Wu Y, Yu C B, Wu F, Li C, Zhou J H, Gong Y, Rao Y J, Chen Y F 2017 J. Lightwave Technol. 35 4344
Google Scholar
[12] Feng G H, Chen W M 2016 Smart Mater. Struct. 25 055046
Google Scholar
[13] Wang S, Lu P, Zhang L, Liu D M, Zhang J S 2014 J. Mod. Opt. 61 1033
Google Scholar
[14] Tian J, Zuo Y W, Zhou K M, Yang Q, Hu X, Jiang Y 2024 J. Lightwave Technol. 42 2538
Google Scholar
[15] Fu X, Lu P, Ni W J, Liu L, Liao H, Jiang X Y, Liu D M, Zhang J S 2016 IEEE Photonics J. 8 7102811
Google Scholar
[16] Yang Q, Tian J, Hu X, Tian J J, He Q Q 2024 Photonics 11 363
Google Scholar
[17] Jiang B Q, Bai Z Y, Wang C L, Zhao Y H, Zhao J L, Zhang L, Zhou K M 2018 J. Lightwave Technol. 36 742
Google Scholar
[18] Guo M, Chen K, Zhang G Y, Li C X, Zhao X Y, Gong Z F, Yu Q X 2022 J. Lightwave Technol. 40 4481
Google Scholar
[19] Ren D P, Liu X, Zhang M Y, Gao R, Qi Z M 2021 IEEE Sens. J. 21 14655
Google Scholar
[20] Dass S, Jha R 2017 J. Lightwave Technol. 35 5411
Google Scholar
[21] Xiang Z W, Dai W Y, Rao W Y, Cai X, Fu H Y 2021 IEEE Sens. J. 21 17882
Google Scholar
[22] Chen J M, Xue C Y, Zheng Y Q, Wu L Y, Chen C, Han Y 2021 Opt. Express 29 16447
Google Scholar
[23] Tang P K, Wang P H, Li M L, Lu M S C 2011 J. Micromech. Microeng. 21 025013
Google Scholar
[24] Wei H M, Wu Z L, Sun K X, Zhang H Y, Wang C, Wang K M, Yang T, Pang F F, Zhang X B, Wang T Y, Krishnaswamy S 2023 Photonics Res. 11 780
Google Scholar
计量
- 文章访问数: 471
- PDF下载量: 15
- 被引次数: 0