搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维光子晶体中的双波段半狄拉克锥与零折射率材料

纪雨萱 张明楷 李妍

引用本文:
Citation:

二维光子晶体中的双波段半狄拉克锥与零折射率材料

纪雨萱, 张明楷, 李妍

Dual-band semi-Dirac cones in two-dimensional photonic crystal and zero-index material

Ji Yu-Xuan, Zhang Ming-Kai, Li Yan
cstr: 32037.14.aps.73.20240800
PDF
HTML
导出引用
  • 设计了一种由椭圆介电柱子组成的正方晶格光子晶体结构. 通过调节椭圆柱子的大小和放置角度, 在布里渊区中心同时实现两个不同频率的双重偶然简并, 并获得两个不同波段的半狄拉克锥. 更有趣的是, 这两个半狄拉克锥沿椭圆柱子长轴和短轴两个方向表现出的线性和非线性色散关系正好相反, ${\boldsymbol{k}} \cdot {\boldsymbol{p}}$微扰理论也进一步证实了这种奇异的色散关系. 数值计算结果表明在两个半狄拉克点频率附近, 本文所设计的正方晶格光子晶体在线性色散所在方向上等效为阻抗匹配的双零折射率材料, 而在非线性色散所在方向上只能等效为单零折射率材料, 即沿椭圆柱子长轴和短轴两个方向的等效零折射率展现出差异性. 而两个不同波段的半狄拉克锥所对应的这种等效零折射率的各向异性截然相反, 因此可利用“Y”型光子晶体板将两种不同频率的电磁波成功分离.
    Semi-Dirac cones, a type of unique dispersion relation, always exhibit a series of interesting transport properties, such as electromagnetic topological transitions and anisotropic electromagnetic transmission. Recently, dual-band semi-Dirac cones have been found in three-dimensional photonic crystals, presenting great potential in electromagnetic wave regulation. However, to the best of our knowledge, there has been no report on dual-band semi-Dirac cones and their applications in two-dimensional photonic crystals, and most of two-dimensional systems have only realized semi-Dirac cones at a single frequency. Therefore, we are to realize dual-band semi-Dirac cones in two-dimensional photonic crystals.In this work, a type of two-dimensional photonic crystal that comprises a square lattice of elliptical cylinders embedded in air is proposed. By rotating the elliptical cylinders and adjusting their sizes appropriately, accidental degeneracy at two different frequencies is achieved simultaneously in the center of the Brillouin zone. Using ${\boldsymbol{k}} \cdot {\boldsymbol{p}}$ perturbation theory, the dispersion relations near the two degenerate points are proved to be nonlinear in one direction, and linear in other directions. These results indicate that the double accidental degenerate points are two semi-Dirac points with different frequencies, and two different semi-Dirac cones, i.e. dual-band semi-Dirac cones, are realized simultaneously in our designed photonic crystal. More interestingly, the dual-band semi-Dirac cones exhibit opposite linear and nonlinear dispersion relation along the major axis and the minor axis of the ellipse, respectively. And our photonic crystal can be equivalent to an impedance-matched double-zero index material in the direction of linear dispersion and a single-zero index material in the direction of nonlinear dispersion, which is demonstrated by the perfect transmission in the straight waveguide and wavefront shaping capabilities of electromagnetic waves. Based on the different properties of the equivalent zero-refractive-indices near the frequencies of two semi-Dirac point, the designed Y-type waveguide can be used to realize frequency separation by leading out the plane waves of different frequencies along different ports. We believe that our work is meaningful in broadening the exploration of the band structures of two-dimensional photonic crystals and providing greater convenience for regulating electromagnetic waves.
      通信作者: 李妍, liyanQFNU@163.com
    • 基金项目: 山东省自然科学基金青年科学基金(批准号: ZR2016AQ09)和国家自然科学基金青年科学基金(批准号: 11704219)资助的课题.
      Corresponding author: Li Yan, liyanQFNU@163.com
    • Funds: Project supported by the Young Scientists Fund of the Natural Science Foundation of Shandong Province, China (Grant No. ZR2016AQ09) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11704219).
    [1]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    Zandbergen S R, de Dood M J A 2010 Phys. Rev. Lett. 104 043903Google Scholar

    [4]

    Zhang X D, Liu Z Y 2008 Phys. Rev. Lett. 101 264303Google Scholar

    [5]

    Zhang X D 2008 Phys. Rev. Lett. 100 113903Google Scholar

    [6]

    Li Y, Wu Y, Chen X, Mei J 2013 Opt. Express 21 7699Google Scholar

    [7]

    Mei J, Wu Y, Chan C T, Zhang Z Q 2012 Phys. Rev. B 86 035141Google Scholar

    [8]

    Luo J, Lai Y 2022 Front. Phys. 10 845624Google Scholar

    [9]

    周晓霞, 陈英, 蔡力 2023 72 174205Google Scholar

    Zhou X X, Chen Y, Cai L 2023 Acta Phys. Sin. 72 174205Google Scholar

    [10]

    Huang X Q, Lai Y, Hang Z H, Zheng H H, Chan C T 2011 Nat. Mater. 10 582Google Scholar

    [11]

    Xu C Q, Lyu K Q, Wu Y 2023 EPL 141 15002Google Scholar

    [12]

    Wang X, Jiang H T, Yan C, Deng F S, Sun Y, Li Y H, Shi Y L, Chen H 2014 EPL 108 14002Google Scholar

    [13]

    黄学勤, 陈子亭 2015 64 184208Google Scholar

    Huang X Q, Chan C T 2015 Acta Phys. Sin. 64 184208Google Scholar

    [14]

    Dong J W, Chang M L, Huang X Q, Hang Z H, Zhong Z C, Chen W J, Huang Z Y, Chan C T 2015 Phys. Rev. Lett. 114 163901Google Scholar

    [15]

    Li Y, Chan C T, Mazur E 2021 Light Sci. Appl. 10 203Google Scholar

    [16]

    Sakoda K 2012 Opt. Express 20 9925Google Scholar

    [17]

    Li Y, Mei J 2015 Opt. Express 23 12089Google Scholar

    [18]

    Wu Y 2014 Opt. Express 22 1906Google Scholar

    [19]

    曹惠娴, 梅军 2015 64 194301Google Scholar

    Cao H X, Mei J 2015 Acta Phys. Sin. 64 194301Google Scholar

    [20]

    Yasa U G, Turduev M, Giden I H, Kurt H 2018 Phys. Rev. B 97 195131Google Scholar

    [21]

    Zhang X J, Wu Y 2015 Sci. Rep. 5 7892Google Scholar

    [22]

    Yang Y T, Jia Z Y, Xu T, Luo J, Lai Y, Hang Z H 2019 Appl. Phys. Lett. 114 161905Google Scholar

    [23]

    Bor E, Turduev M, Yasa U G, Kurt H, Staliunas K 2018 Phys. Rev. B 98 245112Google Scholar

    [24]

    Yan Y, Luo Y J 2023 Opt. Laser Technol. 164 109558Google Scholar

    [25]

    He X T, Zhong Y N, Zhou Y, Zhong Z C, Dong J W 2015 Sci. Rep. 5 13085Google Scholar

    [26]

    Vertchenko L, DeVault C, Malureanu R, Mazur E, Lavrinenko A 2021 Laser Photonics Rev. 15 2000559Google Scholar

    [27]

    Bor E, Yasa U G, Kurt H, Turduev M 2020 Opt. Lett. 45 2423Google Scholar

    [28]

    Li M Y, Mei R, Yan D Y, Ma Z K, Cao F, Xu Y D, Xu C Q, Luo J 2024 Phys. Rev. B 109 125432Google Scholar

    [29]

    Goerbig M O 2011 Rev. Mod. Phys. 83 1193Google Scholar

    [30]

    Pardo V, Pickett W E 2009 Phys. Rev. Lett. 102 166803Google Scholar

    [31]

    Banerjee S, Singh R R P, Pardo V, Pickett W E 2009 Phys. Rev. Lett. 103 016402Google Scholar

    [32]

    Montambaux G, Piéchon F, Fuchs J N, Goerbig M O 2009 Phys. Rev. B 80 153412Google Scholar

    [33]

    Xiang H X, Zhai F 2024 Phys. Rev. B 109 035432Google Scholar

    [34]

    Ye P P, Xu L, Zhang J 2018 Mod. Phys. Lett. B 32 1850193Google Scholar

    [35]

    Assili M, Haddad S 2013 J. Phys. Condens. Matter 25 365503Google Scholar

  • 图 1  正方晶格光子晶体结构及其原胞示意图

    Fig. 1.  Schematic diagram of a square-lattice photonic crystal and its unit cell.

    图 2  (a) $ \theta = {45^ \circ } $时光子晶体的能带结构, 左下角插图为第一布里渊区; (b) 椭圆长轴增大后打开A点简并所对应的能带结构放大图; (c) 椭圆长轴缩短后打开A点简并所对应的能带结构放大图; (d) 椭圆长轴增大后打开B点简并所对应的能带结构放大图; (e) 椭圆长轴缩短后打开B点简并所对应的能带结构放大图

    Fig. 2.  (a) Band structure of the photonic crystal when $ \theta = {45^ \circ } $, where the inset in the lower left corner shows the first Brillouin zone; (b) enlarged view of the band structure after enlarging the major axis of the ellipse and opening the degeneracy of point A; (c) enlarged view of the band structure after shortening the major axis of the ellipse and opening the degeneracy of point A; (d) enlarged view of the band structure after enlarging the major axis of the ellipse and opening the degeneracy of point B; (e) enlarged view of the band structure after shortening the major axis of the ellipse and opening the degeneracy of point B.

    图 3  (a) C点偶极子态的电场分布图; (b) A点单极子态的电场分布图; (c) A点偶极子态的电场分布图; (d) D点四极态的电场分布图; (e) B点其中一个简并态的电场分布图; (f) B点另一个简并态的电场分布图; (g) 半狄拉克点A附近能带放大图; (h) 半狄拉克点B附近能带放大图

    Fig. 3.  (a) Electric field pattern at point C, which indicates a dipolar state; (b) the electric field pattern at point A, which indicates a monopolar state; (c) the electric field pattern at point A, which indicates a dipolar state; (d) the electric field pattern at point D, which indicates a quadrupolar state; (e) the electric field pattern of one of the degenerate states at point B; (f) the electric field pattern of the other degenerate state at point B; (g) an enlarged view of the band structure near the semi-Dirac point A; (h) an enlarged view of the band structure near the semi-Dirac point B.

    图 4  (a) 频率${\tilde \omega _1} = 0.4410$的平面波沿$\varGamma M'$方向入射时的电场分布; (b) 频率${\tilde \omega _1} = 0.4410$的平面波沿$\varGamma M$方向入射时的电场分布; (c) 频率${\tilde \omega _2} = 0.6295$的平面波沿$\varGamma M'$方向入射时的电场分布; (d) 频率${\tilde \omega _2} = 0.6295$的平面波沿$\varGamma M$方向入射时的电场分布

    Fig. 4.  (a) Electric field pattern when a plane wave with a frequency of $ {\tilde \omega _1} = 0.4410 $ is transmitted along the $\varGamma M'$ direction; (b) the electric field pattern when a plane wave with a frequency of $ {\tilde \omega _1} = 0.4410 $ is transmitted along the $\varGamma M$ direction; (c) the electric field pattern when a plane wave with a frequency of $ {\tilde \omega _2} = 0.6295 $ is transmitted along the $ \varGamma M' $ direction; (d) the electric field pattern when a plane wave with a frequency of $ {\tilde \omega _2} = 0.6295 $ is transmitted along the $\varGamma M$ direction.

    图 5  (a) 频率${\tilde \omega _1} = 0.4410$的点源放置在$ 16 \times 16 $的光子晶体阵列中的电场分布; (b) 频率${\tilde \omega _1} = 0.4410$的点源放置在均匀各向异性零折射率材料中的电场分布

    Fig. 5.  (a) Electric field pattern when a point source with a frequency of $ {\tilde \omega _1} = 0.4410 $ is placed inside the center of a $ 16 \times 16 $ dielectric photonic crystal array; (b) the electric field pattern when a point source with a frequency of $ {\tilde \omega _1} = 0.4410 $ is placed inside the center of a homogeneous anisotropic zero-index material.

    图 6  (a) 频率${\tilde \omega _1} = 0.4410$的平面波在“Y”型波导中传输的电场分布; (b) 频率${\tilde \omega _3} = 0.6320$的平面波在“Y”型波导中传输的电场分布

    Fig. 6.  (a) Electric field pattern of a plane wave with a frequency of $ {\tilde \omega _1} = 0.4410 $ propagating in a Y-type waveguide; (b) the electric field pattern of a plane wave with a frequency of ${\tilde \omega _3} = 0.6320$ propagating in a Y-type waveguide.

    Baidu
  • [1]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    Zandbergen S R, de Dood M J A 2010 Phys. Rev. Lett. 104 043903Google Scholar

    [4]

    Zhang X D, Liu Z Y 2008 Phys. Rev. Lett. 101 264303Google Scholar

    [5]

    Zhang X D 2008 Phys. Rev. Lett. 100 113903Google Scholar

    [6]

    Li Y, Wu Y, Chen X, Mei J 2013 Opt. Express 21 7699Google Scholar

    [7]

    Mei J, Wu Y, Chan C T, Zhang Z Q 2012 Phys. Rev. B 86 035141Google Scholar

    [8]

    Luo J, Lai Y 2022 Front. Phys. 10 845624Google Scholar

    [9]

    周晓霞, 陈英, 蔡力 2023 72 174205Google Scholar

    Zhou X X, Chen Y, Cai L 2023 Acta Phys. Sin. 72 174205Google Scholar

    [10]

    Huang X Q, Lai Y, Hang Z H, Zheng H H, Chan C T 2011 Nat. Mater. 10 582Google Scholar

    [11]

    Xu C Q, Lyu K Q, Wu Y 2023 EPL 141 15002Google Scholar

    [12]

    Wang X, Jiang H T, Yan C, Deng F S, Sun Y, Li Y H, Shi Y L, Chen H 2014 EPL 108 14002Google Scholar

    [13]

    黄学勤, 陈子亭 2015 64 184208Google Scholar

    Huang X Q, Chan C T 2015 Acta Phys. Sin. 64 184208Google Scholar

    [14]

    Dong J W, Chang M L, Huang X Q, Hang Z H, Zhong Z C, Chen W J, Huang Z Y, Chan C T 2015 Phys. Rev. Lett. 114 163901Google Scholar

    [15]

    Li Y, Chan C T, Mazur E 2021 Light Sci. Appl. 10 203Google Scholar

    [16]

    Sakoda K 2012 Opt. Express 20 9925Google Scholar

    [17]

    Li Y, Mei J 2015 Opt. Express 23 12089Google Scholar

    [18]

    Wu Y 2014 Opt. Express 22 1906Google Scholar

    [19]

    曹惠娴, 梅军 2015 64 194301Google Scholar

    Cao H X, Mei J 2015 Acta Phys. Sin. 64 194301Google Scholar

    [20]

    Yasa U G, Turduev M, Giden I H, Kurt H 2018 Phys. Rev. B 97 195131Google Scholar

    [21]

    Zhang X J, Wu Y 2015 Sci. Rep. 5 7892Google Scholar

    [22]

    Yang Y T, Jia Z Y, Xu T, Luo J, Lai Y, Hang Z H 2019 Appl. Phys. Lett. 114 161905Google Scholar

    [23]

    Bor E, Turduev M, Yasa U G, Kurt H, Staliunas K 2018 Phys. Rev. B 98 245112Google Scholar

    [24]

    Yan Y, Luo Y J 2023 Opt. Laser Technol. 164 109558Google Scholar

    [25]

    He X T, Zhong Y N, Zhou Y, Zhong Z C, Dong J W 2015 Sci. Rep. 5 13085Google Scholar

    [26]

    Vertchenko L, DeVault C, Malureanu R, Mazur E, Lavrinenko A 2021 Laser Photonics Rev. 15 2000559Google Scholar

    [27]

    Bor E, Yasa U G, Kurt H, Turduev M 2020 Opt. Lett. 45 2423Google Scholar

    [28]

    Li M Y, Mei R, Yan D Y, Ma Z K, Cao F, Xu Y D, Xu C Q, Luo J 2024 Phys. Rev. B 109 125432Google Scholar

    [29]

    Goerbig M O 2011 Rev. Mod. Phys. 83 1193Google Scholar

    [30]

    Pardo V, Pickett W E 2009 Phys. Rev. Lett. 102 166803Google Scholar

    [31]

    Banerjee S, Singh R R P, Pardo V, Pickett W E 2009 Phys. Rev. Lett. 103 016402Google Scholar

    [32]

    Montambaux G, Piéchon F, Fuchs J N, Goerbig M O 2009 Phys. Rev. B 80 153412Google Scholar

    [33]

    Xiang H X, Zhai F 2024 Phys. Rev. B 109 035432Google Scholar

    [34]

    Ye P P, Xu L, Zhang J 2018 Mod. Phys. Lett. B 32 1850193Google Scholar

    [35]

    Assili M, Haddad S 2013 J. Phys. Condens. Matter 25 365503Google Scholar

  • [1] 武敏, 费宏明, 林瀚, 赵晓丹, 杨毅彪, 陈智辉. 基于二维六方氮化硼材料的光子晶体非对称传输异质结构设计.  , 2021, 70(2): 028501. doi: 10.7498/aps.70.20200741
    [2] 陆志仁, 梁斌明, 丁俊伟, 陈家璧, 庄松林. 近零折射率材料的古斯汉欣位移的特性研究.  , 2016, 65(15): 154208. doi: 10.7498/aps.65.154208
    [3] 耿滔, 吴娜, 董祥美, 高秀敏. 基于磁流体光子晶体的可调谐近似零折射率研究.  , 2016, 65(1): 014213. doi: 10.7498/aps.65.014213
    [4] 黄学勤, 陈子亭. k=0处的类狄拉克锥.  , 2015, 64(18): 184208. doi: 10.7498/aps.64.184208
    [5] 王晓, 陈立潮, 刘艳红, 石云龙, 孙勇. 纵模对光子晶体中类狄拉克点传输特性的影响.  , 2015, 64(17): 174206. doi: 10.7498/aps.64.174206
    [6] 赵浩, 沈义峰, 张中杰. 光子晶体中基于有效折射率接近零的光束准直出射.  , 2014, 63(17): 174204. doi: 10.7498/aps.63.174204
    [7] 陈颖, 范卉青, 卢波. 带多孔硅表面缺陷腔的半无限光子晶体Tamm态及其折射率传感机理.  , 2014, 63(24): 244207. doi: 10.7498/aps.63.244207
    [8] 赵秋玲, 吕浩, 张清悦, 牛东杰, 王霞. 染料掺杂光子晶体荧光带隙边缘的激射研究.  , 2013, 62(4): 044208. doi: 10.7498/aps.62.044208
    [9] 李文胜, 罗时军, 黄海铭, 张琴, 付艳华. 由单负材料组成的一维对称型光子晶体中的隧穿模.  , 2012, 61(17): 174101. doi: 10.7498/aps.61.174101
    [10] 李文胜, 罗时军, 黄海铭, 张琴, 是度芳. 含特异材料光子晶体隧穿模的偏振特性.  , 2012, 61(10): 104101. doi: 10.7498/aps.61.104101
    [11] 刘丽想, 董丽娟, 刘艳红, 杨春花, 杨成全, 石云龙. 平均折射率为零的光子晶体中缺陷模频率特性的实验研究.  , 2011, 60(8): 084218. doi: 10.7498/aps.60.084218
    [12] 刘江涛, 肖文波, 黄接辉, 于天宝, 邓新华. 反常色散材料光子晶体中光输运的光学控制.  , 2010, 59(3): 1665-1670. doi: 10.7498/aps.59.1665
    [13] 孔令凯, 郑志强, 冯卓宏, 李小燕, 姜翠华, 明海. 二维空气环型光子晶体的负折射成像特性.  , 2009, 58(11): 7702-7707. doi: 10.7498/aps.58.7702
    [14] 庄 飞, 沈建其, 叶 军. 调控电磁感应透明气体折射率实现可控光子带隙结构.  , 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [15] 许兴胜, 熊志刚, 金爱子, 陈弘达, 张道中. 聚焦离子束研制半导体材料光子晶体.  , 2007, 56(2): 916-921. doi: 10.7498/aps.56.916
    [16] 张 波, 王 智. 二维空气孔型光子晶体负折射平板透镜的减反层.  , 2007, 56(3): 1404-1408. doi: 10.7498/aps.56.1404
    [17] 王同标, 刘念华. 正负折射率材料组成的一维光子晶体的能带及电场.  , 2007, 56(10): 5878-5882. doi: 10.7498/aps.56.5878
    [18] 厉以宇, 顾培夫, 张锦龙, 李明宇, 刘 旭. 波状结构二维光子晶体负折射现象的研究.  , 2006, 55(9): 4918-4922. doi: 10.7498/aps.55.4918
    [19] 许兴胜, 熊志刚, 孙增辉, 杜 伟, 鲁 琳, 陈弘达, 金爱子, 张道中. 半导体量子阱材料微加工光子晶体的光学特性.  , 2006, 55(3): 1248-1252. doi: 10.7498/aps.55.1248
    [20] 许静平, 王立刚, 羊亚平. 利用含负折射率材料的光子晶体实现角度滤波器.  , 2006, 55(6): 2765-2770. doi: 10.7498/aps.55.2765
计量
  • 文章访问数:  700
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-05
  • 修回日期:  2024-07-21
  • 上网日期:  2024-08-16
  • 刊出日期:  2024-09-20

/

返回文章
返回
Baidu
map