搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吉帕级单轴应力下Mn3Sn单晶的磁化率增强

邓珊珊 宋平 刘潇贺 姚森 赵谦毅

引用本文:
Citation:

吉帕级单轴应力下Mn3Sn单晶的磁化率增强

邓珊珊, 宋平, 刘潇贺, 姚森, 赵谦毅

Enhancement of magnetic susceptibility of Mn3Sn single crystal under GPa-level uniaxial stress

Deng Shan-Shan, Song Ping, Liu Xiao-He, Yao Sen, Zhao Qian-Yi
PDF
HTML
导出引用
  • 如何在室温下实现非共线反铁磁Mn3Sn自旋的调控是一项挑战. 本文通过对Mn3Sn单晶施加GPa级单轴应力调控其磁结构, 发现随着应力的增大, 晶格常数a逐渐减小. 此外, GPa级单轴应力下Mn3Sn的磁化率(χ)不同于MPa级单轴应力下的结果, 其值不再是一个定值, 而是随着应力的增大而增大. 当沿$ \text{[11}\bar{2}\text{0]} $方向施加1.12 GPa应力后, χ达到0.0203 μB/(f.u.·T); 当沿$ \text{[01}\bar{1}\text{0]} $方向施加1.11 GPa应力后, χ达到0.0332 μB/(f.u.·T), 为未变形样品的2.4倍. 进一步的实验结果表明, GPa级的单轴应力打破了kagome晶格的面内六边形的对称性, 从而改变Mn原子间的交换相互作用, 增强体系的反铁磁耦合作用, 使χ不再是一个定值. 这一发现将会为反铁磁自旋调控提供新的思路.
    How to achieve spin control of noncollinear antiferromagnetic Mn3Sn at room temperature is a challenge. In this study, we modulate the magnetic structure of Mn3Sn single crystals by subjecting them to uniaxial stress at the GPa level using a high-pressure combined deformation method. Initially, the single crystal is sliced into regular cuboids, then embedded in a stainless steel sleeve, and finally, uniaxial stress is applied along the $ \text{[11}\bar{2}\text{0]} $ direction and $ \text{[01}\bar{1}\text{0]} $ direction of the Mn3Sn single crystal. Under high stress, the single crystal undergoes plastic deformation. Our observations reveal lattice distortion in the deformed single crystal, with the lattice parameter gradually decreasing as the stress level increases. In addition, the magnetic susceptibility of Mn3Sn under GPa uniaxial stress (χ) is different from that under MPa uniaxial stress, and its value is no longer fixed but increases with the increase of stress. When 1.12 GPa stress is applied in the $ \text{[11}\bar{2}\text{0]} $ direction, χ reaches 0.0203 $ {\text{μ}}_{\text{B}}\cdot{\text{f.u.}}^{{-1}}\cdot{\text{T}}^{{-1}} $, which is 1.42 times that of the undeformed sample. In the case of stress applied along the $ \text{[01}\bar{1}\text{0]} $ direction, χ ≈ 0.0332 $ {\text{μ}}_{\text{B}}\cdot{\text{f.u.}}^{{-1}}\cdot{\text{T}}^{{-1}} $ when the stress is 1.11 GPa. This result is also 2.66 times greater than the reported results. We further calculate the values of trimerization parameter (ξ), isotropic Heisenberg exchange interaction (J), and anisotropic energy (δ) of the system under different stresses. Our results show that ξ gradually increases, J gradually decreases, and δ gradually increases with the increase of stress. These results show that the GPa uniaxial stress introduces anisotropic strain energy into the single crystal, breaking the symmetry of the in-plane hexagon of the kagome lattice, which causes the bond length of the two equilateral triangles composed of Mn atoms to change. Thus, the exchange coupling between Mn atoms in the system is affected, the anisotropy of the system is enhanced, and the antiferromagnetic coupling of the system is enhanced. Therefore, the system χ is no longer a constant value and gradually increases with the increase of stress. This discovery will provide new ideas for regulating the anti-ferromagnetic spin.
      通信作者: 宋平, psong@ysu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 52101233, 51931007, U22A20116, 52071279, 52101234, 52371200)、河北省自然科学基金(批准号: E2022203010)和河北省创新能力提升工程(批准号: 22567605H)资助的课题.
      Corresponding author: Song Ping, psong@ysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52101233, 51931007, U22A20116, 52071279, 52101234, 52371200), the Natural Science Foundation of Hebei Province, China (Grant No. E2022203010), and the Innovation Capability Improvement Project of Hebei Province, China (Grant No. 22567605H).
    [1]

    Nakatsuji S, Kiyohara N, Higo T 2015 Nature 527 212Google Scholar

    [2]

    Li X, Koo J, Zhu Z, Behnia K, Yan B 2023 Nat. Commun. 14 1642Google Scholar

    [3]

    Singh C, Singh V, Pradhan G, Srihari V, Poswal H K, Nath R, Nandy A K, Nayak A K 2020 Phys. Rev. Res. 2 043366Google Scholar

    [4]

    Higo T, Qu D R, Li Y F, Chien C L, Otani Y, Nakatsuji S 2018 Appl. Phys. Lett. 113 202402Google Scholar

    [5]

    Matsuda T, Higo T, Koretsune T, Kanda N, Hirai Y, Peng H, Matsuo T, Yoshikawa N, Shimano R, Nakatsuji S, Matsunaga R 2023 Phys. Rev. Lett. 130 126302Google Scholar

    [6]

    Bai Y, Wang Z, Lei N, Muhammad W, Xiang L F, Li Q, Lai H L, Zhu Y Y, Wang W B, Guo H W, Yin L F, Wu R Q, Shen J 2022 Chin. Phys. Lett. 39 108501Google Scholar

    [7]

    Rout P K, Madduri P V P, Manna S K, Nayak A K 2019 Phys. Rev. B 99 094430Google Scholar

    [8]

    Yan J, Luo X, Lv H Y, Sun Y, Tong P, Lu W J, Zhu X B, Song W H, Sun Y P 2019 Appl. Phys. Lett. 115 102404Google Scholar

    [9]

    Low A, Ghosh S, Changdar S, Routh S, Purwar S, Thirupathaiah S 2022 Phys. Rev. B 106 144429Google Scholar

    [10]

    Xiong D R, Jiang Y H, Zhu D Q, Du A, Guo Z X, Lu S Y, Wang C X, Xia Q T, Zhu D P, Zhao W S 2023 Chin. Phys. B 32 057501Google Scholar

    [11]

    Ma H Y, Yin J X, Hasan M Z, Liu J P 2024 Chin. Phys. Lett. 41 047103Google Scholar

    [12]

    Guo G Y, Wang T C 2017 Phys. Rev. B 96 224415Google Scholar

    [13]

    Ikhlas M, Tomita T, Koretsune T, Suzuki M T, Nishio-Hamane D, Arita R, Otani Y, Nakatsuji S 2017 Nat. Phys. 13 1085Google Scholar

    [14]

    Miwa S, Iihama S, Nomoto T, Tomita T, Higo T, Ikhlas M, Sakamoto S, Otani Y, Mizukami S, Arita R, Nakatsuji S 2021 Small Science 1 2000062Google Scholar

    [15]

    Higo T, Man H, Gopman D B, Wu L, Koretsune T, van’t Erve O M J, Kabanov Y P, Rees D, Li Y, Suzuki M T, Patankar S, Ikhlas M, Chien C L, Arita R, Shull R D, Orenstein J, Nakatsuji S 2018 Nat. Photonics. 12 73Google Scholar

    [16]

    Jungwirth T, Marti X, Wadley P, Wunderlich J 2016 Nat. Nanotechnol. 11 231Google Scholar

    [17]

    Bauer G E W, Saitoh E, Van Wees B J 2012 Nat. Mater. 11 391Google Scholar

    [18]

    Cui B, Cheng B, Hu J F 2021 Chin. Sci. Bull. 66 2042Google Scholar

    [19]

    闫君, 孙莹, 王聪, 史再兴, 邓司浩, 史可文, 卢会清 2014 63 167502Google Scholar

    Yan J, Sun Y, Wang C, Shi Z X, Deng S H, Shi K W, Lu H Q 2014 Acta Phys. Sin. 63 167502Google Scholar

    [20]

    张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 黄兴, 王路忠, 王秋良, 2023 72 128401Google Scholar

    Zhang Y, Hu X N, Cui C Y, Cui X, Niu F F, Huang X, Wang L Z, Wang Q L 2023 Acta Phys. Sin. 72 128401Google Scholar

    [21]

    张志东 2015 64 067503Google Scholar

    Zhang Z D 2015 Acta Phys. Sin. 64 067503Google Scholar

    [22]

    Fang H W, Lyu M, Su H, Yuan J, Li Y W, Xu L X, Liu S, Wei L Y, Liu X Q, Yang H F, Yao Q, Wang M X, Guo Y F, Shi W J, Chen Y L, Liu E K, Liu Z K 2023 Sci. China Mater. 66 2032Google Scholar

    [23]

    An N, Tang M, Hu S, Yang H L, Fan W J, Zhou S M, Qiu X P 2020 Sci. China Phys. Mech. Astron. 63 297511Google Scholar

    [24]

    Li X K, Jiang S, Meng Q K, Zuo H K, Zhu Z W, Balents L, Behnia K 2022 Phys. Rev. B 106 L020402Google Scholar

    [25]

    Yu T Y, Liu R, Peng Y R, Zheng P Y, Wang G W, Ma X B, Yuan Z H, Yin Z P 2022 Phys. Rev. B 106 205103Google Scholar

    [26]

    赵巍胜, 黄阳棋, 张学莹, 康旺, 雷娜, 张有光 2018 67 131205Google Scholar

    Zhao W S, Huang Y Q, Zhang X Y, Kang W, Lei N, Zhang Y G 2018 Acta Phys. Sin. 67 131205Google Scholar

    [27]

    谭碧, 高栋, 邓登福, 陈姝瑶, 毕磊, 刘冬华, 刘涛 2024 73 067501Google Scholar

    Tan B, Gao D, Deng D F, Chen S Y, Bi L, Liu D H, Liu T 2024 Acta Phys. Sin. 73 067501Google Scholar

    [28]

    Nagamiya T 1979 J. Phys. Soc. Japan 46 787Google Scholar

    [29]

    Kuroda K, Tomita T, Suzuki M T, Bareille C, Nugroho A A, Goswami P, Ochi M, Ikhlas M, Nakayama M, Akebi S, Noguchi R, Ishii R, Inami N, Ono K, Kumigashira H, Varykhalov A, Muro T, Koretsune T, Arita R, Shin S, Kondo T, Nakatsuji S 2017 Nat. Mater. 16 1090Google Scholar

    [30]

    Song C, You Y F, Chen X Z, Zhou X F, Wang Y Y, Pan F 2018 Nanotechnology 29 112001Google Scholar

    [31]

    Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005Google Scholar

    [32]

    Coileáin C Ó, Wu H C 2017 SPIN 07 1740014Google Scholar

    [33]

    Jungfleisch M B, Zhang W, Hoffmann A 2018 Phys. Lett. A 382 865Google Scholar

    [34]

    Němec P, Fiebig M, Kampfrath T, Kimel A V 2018 Nat. Phys. 14 229Google Scholar

    [35]

    Wadley P, Howells B, Železný J, Andrews C, Hills V, Campion R P, Novák V, Olejník K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kuneš J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmonds K W, Gallagher B L, Jungwirth T 2016 Science 351 587Google Scholar

    [36]

    Sokolov D A, Kikugawa N, Helm T, Borrmann H, Burkhardt U, Cubitt R, White J S, Ressouche E, Bleuel M, Kummer K, Mackenzie A P, Rößler U K 2019 Nat. Phys. 15 671Google Scholar

    [37]

    Deng Y C, Liu X H, Chen Y, Du Z, Jiang N, Shen C, Zhang E Z, Zheng H Z, Lu H Z, Wang K Y 2023 Natl. Sci. Rev. 10 nwac154Google Scholar

    [38]

    Liu X H, Feng Q, Zhang D, Deng Y C, Dong S, Zhang E Z, Li W, Lu Q, Chang K, Wang K Y 2023 Adv. Mater. 35 2211634Google Scholar

    [39]

    Liu X H, Zhang D, Deng Y C, Jiang N, Zhang E Z, Shen C, Chang K, Wang K Y 2024 ACS Nano 18 1013Google Scholar

    [40]

    Jiang N, Deng Y C, Liu X H, Zhang D, Zhang E Z, Zheng H Z, Chang K, Shen C, Wang K Y 2023 Appl. Phys. Lett. 123 072401Google Scholar

    [41]

    Wang X N, Feng Z X, Qin P X, Yan H, Zhou X R, Guo H X, Leng Z G G, Chen W Q, Jia Q N, Hu Z X, Wu H J, Zhang X Y, Jiang C B, Liu Z Q 2019 Acta Mater. 181 537Google Scholar

    [42]

    Ikhlas M, Dasgupta S, Theuss F, Higo T, Kittaka S, Ramshaw B J, Tchernyshyov O, Hicks C W, Nakatsuji S 2022 Nat. Phys. 18 1086Google Scholar

    [43]

    Song P, Li G K, Ma L, Zhen C M, Hou D L, Wang W H, Liu E K, Chen J L, Wu G H 2014 J. Appl. Phys. 115 213907Google Scholar

    [44]

    Liu Y G, Xu L, Wang Q F, Li W, Zhang X Y 2009 Appl. Phys. Lett. 94 172502Google Scholar

    [45]

    Li X H, Lou L, Song W P, Huang G W, Hou F C, Zhang Q, Zhang H T, Xiao J W, Wen B, Zhang X Y 2017 Adv. Mater. 29 1606430Google Scholar

    [46]

    Huang G W, Zhu G J, Lou L, Yan J C, Song W P, Hou F C, Hua Y X, Zhang Q, Li X H, Zhang X Y 2018 Mater. Lett. 217 219Google Scholar

    [47]

    Zhang X Y 2020 Mater. Res. Lett. 8 49Google Scholar

    [48]

    Zhang H T, Zhang T, Zhang X Y 2023 Adv. Sci. 10 2300193Google Scholar

    [49]

    Lou L, Li Y Q, Li X H, Li H, Li W, Hua Y X, Xia W, Zhao Z, Zhang H T, Yue M, Zhang X Y 2021 Adv. Mater. 33 2102800Google Scholar

    [50]

    Li X H, Lou L, Li Y Q, Zhang G S, Hua Y X, Li W, Zhang H T, Yue M, Zhang X Y 2022 Nano Lett. 22 7644Google Scholar

    [51]

    Li X H, Lou L, Song W P, Zhang Q, Huang G W, Hua Y X, Zhang H T, Xiao J W, Wen B, Zhang X Y 2017 Nano Lett. 17 2985Google Scholar

    [52]

    Huang G W, Li X H, Lou L, Hua Y X, Zhu G J, Li M, Zhang H T, Xiao J W, Wen B, Yue M, Zhang X Y 2018 Small 14 1800619Google Scholar

    [53]

    Li W, Li L L, Nan Y, Li X H, Zhang X Y, Gunderov D V, Stolyarov V V, Popov A G 2007 Appl. Phys. Lett. 91 062509Google Scholar

    [54]

    Rong C B, Zhang Y, Poudyal N, Xiong X Y, Kramer M J, Liu J P 2010 Appl. Phys. Lett. 96 102513Google Scholar

    [55]

    Song P, Yao S, Zhang B X, Jiang B, Deng S S, Guo D F, Ma L, Hou D L 2022 Appl. Phys. Lett. 120 192401Google Scholar

    [56]

    Kandra J T, Lee J Y, Pope D P 1991 Mater. Sci. Eng. A 145 189Google Scholar

    [57]

    Zhang B X, Song P, Deng S S, Lou L, Yao S 2023 Chin. Phys. B 32 087502Google Scholar

    [58]

    Zhao M Y, Guo W, Wu X, Ma L, Song P, Li G K, Zhen C M, Zhao D W, Hou D L 2023 Mater. Horiz. 10 4597Google Scholar

    [59]

    Deng J J, Zhao M Y, Wang Y, Wu X, Niu X T, Ma L, Zhao D W, Zhen C M, Hou D L 2022 J. Phys. D: Appl. Phys. 55 275001Google Scholar

    [60]

    Duan T F, Ren W J, Liu W L, Li S J, Liu W, Zhang Z D 2015 Appl. Phys. Lett. 107 082403Google Scholar

    [61]

    周寿增, 董清飞 2004 超强永磁体: 稀土铁系永磁材料(第2版) (北京: 冶金工业出版社)第59—64页

    Zhou S Z, Dong Q F 2004 Super Permanent Magnet: Rare Earth Iron Permanent Magnet Material (2nd Ed.) (Beijing: Metallurgical Industry Press) pp59–64

    [62]

    Cable J W, Wakabayashi N, Radhakrishna P 1993 Solid State Commun. 88 161Google Scholar

  • 图 1  (a) Mn3Sn晶体结构图; (b) Mn3Sn磁结构图; (c), (d) Sn助熔剂法制得的单晶; (e)晶向标定示意图

    Fig. 1.  (a) Mn3Sn crystal structure diagram; (b) Mn3Sn magnetic structure diagram; (c), (d) single crystal obtained by Sn flux method; (e) crystal orientation calibration diagram.

    图 2  Mn3Sn单晶高压变形示意图

    Fig. 2.  Schematic diagram of Mn3Sn single crystal deformation under high pressure.

    图 3  (a), (b)沿$ \text{[11}\bar{2}\text{0]} $, $ \text{[01}\bar{1}\text{0]} $方向施加应力变形前后的XRD图; (c), (e)变形前$ \text{(11}\bar{2}\text{0)} $, $ \text{(01}\bar{1}\text{0)} $晶面的HRTEM图; (d), (f)变形前$ \text{(11}\bar{2}\text{0)} $, $ \text{(01}\bar{1}\text{0)} $晶面的SAED图; (g), (h)变形后$ \text{(11}\bar{2}\text{0)} $晶面的HRTEM图; (i), (j)变形后$ \text{(01}\bar{1}\text{0)} $晶面的HRTEM图

    Fig. 3.  (a), (b) XRD patterns before and after stress deformation along $ \text{[11}\bar{2}\text{0]} $ and $ \text{[01}\bar{1}\text{0]} $ directions; (c), (e) HRTEM images of $ \text{(11}\bar{2}\text{0)} $ and $ \text{(01}\bar{1}\text{0)} $ crystal faces before deformation; (d), (f) SAED patterns of $ \text{(11}\bar{2}\text{0)} $ and $ \text{(01}\bar{1}\text{0)} $ crystal faces before deformation; (g), (h) HRTEM images of $ \text{(11}\bar{2}\text{0)} $ crystal face after deformation; (i), (j) HRTEM images of $ \text{(01}\bar{1}\text{0)} $ crystal face after deformation.

    图 4  (a), (b)沿$ \text{[11}\bar{2}\text{0]} $, $ \text{[01}\bar{1}\text{0]} $方向变形前后样品的磁滞回线; (c), (d)沿$ \text{[11}\bar{2}\text{0]} $, $ \text{[01}\bar{1}\text{0]} $方向变形前后样品的磁化率χ和剩磁Mr随应力的变化

    Fig. 4.  (a), (b) Hysteresis loops of samples before and after deformation along $ \text{}\text{[11}\bar{2}\text{0]}\text{} $ and $ \text{[01}\bar{1}\text{0]} $ directions; (c), (d) the changes of magnetic susceptibility χ and remanence Mr of sample demagnetization curve with stress before and after deformation along $ \text{}\text{[11}\bar{2}\text{0]}\text{} $ and $ \text{[01}\bar{1}\text{0]} $ directions.

    图 5  (a), (b)沿$ \text{[11}\bar{2}\text{0]} $, $ \text{[01}\bar{1}\text{0]} $方向变形前后三聚参数ξ随应力的变化; (c), (d)黑色曲线为沿$ \text{[11}\bar{2}\text{0]} $, $ \text{[01}\bar{1}\text{0]} $方向施加应力前后单晶的各向同性海森伯交换作用J, 红色曲线为沿$ \text{[11}\bar{2}\text{0]} $, $ \text{[01}\bar{1}\text{0]} $方向施加应力前后单晶的各向异性能δ

    Fig. 5.  (a), (b) Changes of trimerization parameters ξ with stress before and after deformation along $ \text{}\text{[11}\bar{2}\text{0]}\text{} $ and $ \text{[01}\bar{1}\text{0]} $ directions. (c), (d) The black curve shows the isotropic Heisenberg exchange J of a single crystal before and after stress is applied in along $ \text{}\text{[11}\bar{2}\text{0]}\text{} $ and $ \text{[01}\bar{1}\text{0]} $ directions. The red curve shows the anisotropic energy δ of a single crystal before and after stress is applied in $ \text{[11}\bar{2}\text{0]}\text{} $ and $ \text{[01}\bar{1}\text{0]} $ directions.

    Baidu
  • [1]

    Nakatsuji S, Kiyohara N, Higo T 2015 Nature 527 212Google Scholar

    [2]

    Li X, Koo J, Zhu Z, Behnia K, Yan B 2023 Nat. Commun. 14 1642Google Scholar

    [3]

    Singh C, Singh V, Pradhan G, Srihari V, Poswal H K, Nath R, Nandy A K, Nayak A K 2020 Phys. Rev. Res. 2 043366Google Scholar

    [4]

    Higo T, Qu D R, Li Y F, Chien C L, Otani Y, Nakatsuji S 2018 Appl. Phys. Lett. 113 202402Google Scholar

    [5]

    Matsuda T, Higo T, Koretsune T, Kanda N, Hirai Y, Peng H, Matsuo T, Yoshikawa N, Shimano R, Nakatsuji S, Matsunaga R 2023 Phys. Rev. Lett. 130 126302Google Scholar

    [6]

    Bai Y, Wang Z, Lei N, Muhammad W, Xiang L F, Li Q, Lai H L, Zhu Y Y, Wang W B, Guo H W, Yin L F, Wu R Q, Shen J 2022 Chin. Phys. Lett. 39 108501Google Scholar

    [7]

    Rout P K, Madduri P V P, Manna S K, Nayak A K 2019 Phys. Rev. B 99 094430Google Scholar

    [8]

    Yan J, Luo X, Lv H Y, Sun Y, Tong P, Lu W J, Zhu X B, Song W H, Sun Y P 2019 Appl. Phys. Lett. 115 102404Google Scholar

    [9]

    Low A, Ghosh S, Changdar S, Routh S, Purwar S, Thirupathaiah S 2022 Phys. Rev. B 106 144429Google Scholar

    [10]

    Xiong D R, Jiang Y H, Zhu D Q, Du A, Guo Z X, Lu S Y, Wang C X, Xia Q T, Zhu D P, Zhao W S 2023 Chin. Phys. B 32 057501Google Scholar

    [11]

    Ma H Y, Yin J X, Hasan M Z, Liu J P 2024 Chin. Phys. Lett. 41 047103Google Scholar

    [12]

    Guo G Y, Wang T C 2017 Phys. Rev. B 96 224415Google Scholar

    [13]

    Ikhlas M, Tomita T, Koretsune T, Suzuki M T, Nishio-Hamane D, Arita R, Otani Y, Nakatsuji S 2017 Nat. Phys. 13 1085Google Scholar

    [14]

    Miwa S, Iihama S, Nomoto T, Tomita T, Higo T, Ikhlas M, Sakamoto S, Otani Y, Mizukami S, Arita R, Nakatsuji S 2021 Small Science 1 2000062Google Scholar

    [15]

    Higo T, Man H, Gopman D B, Wu L, Koretsune T, van’t Erve O M J, Kabanov Y P, Rees D, Li Y, Suzuki M T, Patankar S, Ikhlas M, Chien C L, Arita R, Shull R D, Orenstein J, Nakatsuji S 2018 Nat. Photonics. 12 73Google Scholar

    [16]

    Jungwirth T, Marti X, Wadley P, Wunderlich J 2016 Nat. Nanotechnol. 11 231Google Scholar

    [17]

    Bauer G E W, Saitoh E, Van Wees B J 2012 Nat. Mater. 11 391Google Scholar

    [18]

    Cui B, Cheng B, Hu J F 2021 Chin. Sci. Bull. 66 2042Google Scholar

    [19]

    闫君, 孙莹, 王聪, 史再兴, 邓司浩, 史可文, 卢会清 2014 63 167502Google Scholar

    Yan J, Sun Y, Wang C, Shi Z X, Deng S H, Shi K W, Lu H Q 2014 Acta Phys. Sin. 63 167502Google Scholar

    [20]

    张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 黄兴, 王路忠, 王秋良, 2023 72 128401Google Scholar

    Zhang Y, Hu X N, Cui C Y, Cui X, Niu F F, Huang X, Wang L Z, Wang Q L 2023 Acta Phys. Sin. 72 128401Google Scholar

    [21]

    张志东 2015 64 067503Google Scholar

    Zhang Z D 2015 Acta Phys. Sin. 64 067503Google Scholar

    [22]

    Fang H W, Lyu M, Su H, Yuan J, Li Y W, Xu L X, Liu S, Wei L Y, Liu X Q, Yang H F, Yao Q, Wang M X, Guo Y F, Shi W J, Chen Y L, Liu E K, Liu Z K 2023 Sci. China Mater. 66 2032Google Scholar

    [23]

    An N, Tang M, Hu S, Yang H L, Fan W J, Zhou S M, Qiu X P 2020 Sci. China Phys. Mech. Astron. 63 297511Google Scholar

    [24]

    Li X K, Jiang S, Meng Q K, Zuo H K, Zhu Z W, Balents L, Behnia K 2022 Phys. Rev. B 106 L020402Google Scholar

    [25]

    Yu T Y, Liu R, Peng Y R, Zheng P Y, Wang G W, Ma X B, Yuan Z H, Yin Z P 2022 Phys. Rev. B 106 205103Google Scholar

    [26]

    赵巍胜, 黄阳棋, 张学莹, 康旺, 雷娜, 张有光 2018 67 131205Google Scholar

    Zhao W S, Huang Y Q, Zhang X Y, Kang W, Lei N, Zhang Y G 2018 Acta Phys. Sin. 67 131205Google Scholar

    [27]

    谭碧, 高栋, 邓登福, 陈姝瑶, 毕磊, 刘冬华, 刘涛 2024 73 067501Google Scholar

    Tan B, Gao D, Deng D F, Chen S Y, Bi L, Liu D H, Liu T 2024 Acta Phys. Sin. 73 067501Google Scholar

    [28]

    Nagamiya T 1979 J. Phys. Soc. Japan 46 787Google Scholar

    [29]

    Kuroda K, Tomita T, Suzuki M T, Bareille C, Nugroho A A, Goswami P, Ochi M, Ikhlas M, Nakayama M, Akebi S, Noguchi R, Ishii R, Inami N, Ono K, Kumigashira H, Varykhalov A, Muro T, Koretsune T, Arita R, Shin S, Kondo T, Nakatsuji S 2017 Nat. Mater. 16 1090Google Scholar

    [30]

    Song C, You Y F, Chen X Z, Zhou X F, Wang Y Y, Pan F 2018 Nanotechnology 29 112001Google Scholar

    [31]

    Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005Google Scholar

    [32]

    Coileáin C Ó, Wu H C 2017 SPIN 07 1740014Google Scholar

    [33]

    Jungfleisch M B, Zhang W, Hoffmann A 2018 Phys. Lett. A 382 865Google Scholar

    [34]

    Němec P, Fiebig M, Kampfrath T, Kimel A V 2018 Nat. Phys. 14 229Google Scholar

    [35]

    Wadley P, Howells B, Železný J, Andrews C, Hills V, Campion R P, Novák V, Olejník K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kuneš J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmonds K W, Gallagher B L, Jungwirth T 2016 Science 351 587Google Scholar

    [36]

    Sokolov D A, Kikugawa N, Helm T, Borrmann H, Burkhardt U, Cubitt R, White J S, Ressouche E, Bleuel M, Kummer K, Mackenzie A P, Rößler U K 2019 Nat. Phys. 15 671Google Scholar

    [37]

    Deng Y C, Liu X H, Chen Y, Du Z, Jiang N, Shen C, Zhang E Z, Zheng H Z, Lu H Z, Wang K Y 2023 Natl. Sci. Rev. 10 nwac154Google Scholar

    [38]

    Liu X H, Feng Q, Zhang D, Deng Y C, Dong S, Zhang E Z, Li W, Lu Q, Chang K, Wang K Y 2023 Adv. Mater. 35 2211634Google Scholar

    [39]

    Liu X H, Zhang D, Deng Y C, Jiang N, Zhang E Z, Shen C, Chang K, Wang K Y 2024 ACS Nano 18 1013Google Scholar

    [40]

    Jiang N, Deng Y C, Liu X H, Zhang D, Zhang E Z, Zheng H Z, Chang K, Shen C, Wang K Y 2023 Appl. Phys. Lett. 123 072401Google Scholar

    [41]

    Wang X N, Feng Z X, Qin P X, Yan H, Zhou X R, Guo H X, Leng Z G G, Chen W Q, Jia Q N, Hu Z X, Wu H J, Zhang X Y, Jiang C B, Liu Z Q 2019 Acta Mater. 181 537Google Scholar

    [42]

    Ikhlas M, Dasgupta S, Theuss F, Higo T, Kittaka S, Ramshaw B J, Tchernyshyov O, Hicks C W, Nakatsuji S 2022 Nat. Phys. 18 1086Google Scholar

    [43]

    Song P, Li G K, Ma L, Zhen C M, Hou D L, Wang W H, Liu E K, Chen J L, Wu G H 2014 J. Appl. Phys. 115 213907Google Scholar

    [44]

    Liu Y G, Xu L, Wang Q F, Li W, Zhang X Y 2009 Appl. Phys. Lett. 94 172502Google Scholar

    [45]

    Li X H, Lou L, Song W P, Huang G W, Hou F C, Zhang Q, Zhang H T, Xiao J W, Wen B, Zhang X Y 2017 Adv. Mater. 29 1606430Google Scholar

    [46]

    Huang G W, Zhu G J, Lou L, Yan J C, Song W P, Hou F C, Hua Y X, Zhang Q, Li X H, Zhang X Y 2018 Mater. Lett. 217 219Google Scholar

    [47]

    Zhang X Y 2020 Mater. Res. Lett. 8 49Google Scholar

    [48]

    Zhang H T, Zhang T, Zhang X Y 2023 Adv. Sci. 10 2300193Google Scholar

    [49]

    Lou L, Li Y Q, Li X H, Li H, Li W, Hua Y X, Xia W, Zhao Z, Zhang H T, Yue M, Zhang X Y 2021 Adv. Mater. 33 2102800Google Scholar

    [50]

    Li X H, Lou L, Li Y Q, Zhang G S, Hua Y X, Li W, Zhang H T, Yue M, Zhang X Y 2022 Nano Lett. 22 7644Google Scholar

    [51]

    Li X H, Lou L, Song W P, Zhang Q, Huang G W, Hua Y X, Zhang H T, Xiao J W, Wen B, Zhang X Y 2017 Nano Lett. 17 2985Google Scholar

    [52]

    Huang G W, Li X H, Lou L, Hua Y X, Zhu G J, Li M, Zhang H T, Xiao J W, Wen B, Yue M, Zhang X Y 2018 Small 14 1800619Google Scholar

    [53]

    Li W, Li L L, Nan Y, Li X H, Zhang X Y, Gunderov D V, Stolyarov V V, Popov A G 2007 Appl. Phys. Lett. 91 062509Google Scholar

    [54]

    Rong C B, Zhang Y, Poudyal N, Xiong X Y, Kramer M J, Liu J P 2010 Appl. Phys. Lett. 96 102513Google Scholar

    [55]

    Song P, Yao S, Zhang B X, Jiang B, Deng S S, Guo D F, Ma L, Hou D L 2022 Appl. Phys. Lett. 120 192401Google Scholar

    [56]

    Kandra J T, Lee J Y, Pope D P 1991 Mater. Sci. Eng. A 145 189Google Scholar

    [57]

    Zhang B X, Song P, Deng S S, Lou L, Yao S 2023 Chin. Phys. B 32 087502Google Scholar

    [58]

    Zhao M Y, Guo W, Wu X, Ma L, Song P, Li G K, Zhen C M, Zhao D W, Hou D L 2023 Mater. Horiz. 10 4597Google Scholar

    [59]

    Deng J J, Zhao M Y, Wang Y, Wu X, Niu X T, Ma L, Zhao D W, Zhen C M, Hou D L 2022 J. Phys. D: Appl. Phys. 55 275001Google Scholar

    [60]

    Duan T F, Ren W J, Liu W L, Li S J, Liu W, Zhang Z D 2015 Appl. Phys. Lett. 107 082403Google Scholar

    [61]

    周寿增, 董清飞 2004 超强永磁体: 稀土铁系永磁材料(第2版) (北京: 冶金工业出版社)第59—64页

    Zhou S Z, Dong Q F 2004 Super Permanent Magnet: Rare Earth Iron Permanent Magnet Material (2nd Ed.) (Beijing: Metallurgical Industry Press) pp59–64

    [62]

    Cable J W, Wakabayashi N, Radhakrishna P 1993 Solid State Commun. 88 161Google Scholar

  • [1] 陈盛如, 林珊, 洪海涛, 崔婷, 金桥, 王灿, 金奎娟, 郭尔佳. 钴氧化物中晶格与自旋的关联耦合效应研究.  , 2023, 72(9): 097502. doi: 10.7498/aps.72.20230206
    [2] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究.  , 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [3] 卿煜林, 彭小莉, 文林, 胡爱元. 自旋为1/2的双层平方晶格阻挫模型的基态相变.  , 2022, 71(3): 037501. doi: 10.7498/aps.71.20211584
    [4] 卿煜林, 彭小莉, 胡爱元. 自旋为1的双层平方晶格阻挫模型的相变.  , 2022, 71(4): 047501. doi: 10.7498/aps.71.20211685
    [5] 卿煜林, 彭小莉, 文林, 胡爱元. 自旋为1/2的双层平方晶格阻挫模型的基态相变研究.  , 2021, (): . doi: 10.7498/aps.70.20211584
    [6] 文林, 胡爱元. 双二次交换作用和各向异性对反铁磁体相变温度的影响.  , 2020, 69(10): 107501. doi: 10.7498/aps.69.20200077
    [7] 方雨青, 金钻明, 陈海洋, 阮舜逸, 李炬赓, 曹世勋, 彭滟, 马国宏, 朱亦鸣. 高通量制备的SmxPr1–xFeO3晶体中反铁磁自旋模式和晶体场跃迁的太赫兹光谱.  , 2020, 69(20): 209501. doi: 10.7498/aps.69.20200732
    [8] 李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术.  , 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [9] 郭静, 孙力玲. 压力下碱金属铁硒基超导体中的现象与物理.  , 2015, 64(21): 217406. doi: 10.7498/aps.64.217406
    [10] 孟代仪, 申兰先, 李德聪, 晒旭霞, 邓书康. Mg掺杂n型Sn基Ⅷ型单晶笼合物的结构及电传输特性.  , 2014, 63(17): 177401. doi: 10.7498/aps.63.177401
    [11] 王美娜, 李英, 王天兴, 刘国栋. 正交多铁性材料DyMnO3的磁性质研究.  , 2013, 62(22): 227101. doi: 10.7498/aps.62.227101
    [12] 李乾利, 温廷敦, 许丽萍, 王志斌. 单轴应力对一维镜像光子晶体光子局域态透射峰的影响.  , 2013, 62(18): 184212. doi: 10.7498/aps.62.184212
    [13] 李鹏飞, 曹海静, 郑莉, 蒋秀丽. 准周期调制下自旋1/2反铁磁XY模型中的晶格畸变行为.  , 2013, 62(15): 157501. doi: 10.7498/aps.62.157501
    [14] 王冠宇, 宋建军, 张鹤鸣, 胡辉勇, 马建立, 王晓艳. 单轴应变Si导带色散关系解析模型.  , 2012, 61(9): 097103. doi: 10.7498/aps.61.097103
    [15] 刘先锋, 韩玖荣, 江学范. 阻挫三角反铁磁AgCrO2螺旋自旋序的第一性原理研究.  , 2010, 59(9): 6487-6493. doi: 10.7498/aps.59.6487
    [16] 于淑云, 刘何燕, 曲静萍, 李养贤, 柳祝红, 陈京兰, 代学芳, 吴光恒. 掺Mn对NiFeGa磁性形状记忆材料单晶特性的影响.  , 2006, 55(6): 3022-3025. doi: 10.7498/aps.55.3022
    [17] 孟凡斌, 胡海宁, 李养贤, 陈贵锋, 陈京兰, 吴光恒. 一维Co单晶纳米线的x射线研究.  , 2005, 54(1): 384-388. doi: 10.7498/aps.54.384
    [18] 侯碧辉, 李 勇, 刘国庆, 张桂花, 刘凤艳, 陶世荃. 单晶LiNbO3:Mn2+的ESR谱研究.  , 2005, 54(1): 373-378. doi: 10.7498/aps.54.373
    [19] 王光军, 王 芳, 沈保根. LaFe11.4Al1.6中铁磁相与反铁磁相的双相共存.  , 2005, 54(3): 1410-1414. doi: 10.7498/aps.54.1410
    [20] 张端明, 严文生, 钟志成, 杨凤霞, 郑克玉, 李智华. PZT四方相区介电常数εr与晶格畸变关系的研究.  , 2004, 53(5): 1316-1320. doi: 10.7498/aps.53.1316
计量
  • 文章访问数:  1473
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-23
  • 修回日期:  2024-04-28
  • 上网日期:  2024-04-29
  • 刊出日期:  2024-06-20

/

返回文章
返回
Baidu
map