搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超快差示扫描量热数据的俯视法分析

程琪 孙永昊 汪卫华

引用本文:
Citation:

超快差示扫描量热数据的俯视法分析

程琪, 孙永昊, 汪卫华

Top-view analysis of ultrafast differential scanning calorimetry data

Cheng Qi, Sun Yong-Hao, Wang Wei-Hua
PDF
HTML
导出引用
  • 超快差示扫描量热仪是第三代差热分析技术, 可以实现最高60000 K/s的超快速加热和最高40000 K/s的超快速冷却, 适合对熔点小于1000 ℃的物质或材料进行速率跨越五个数量级的反复原位升降温测试. 该仪器独特的高速率在满足人们观测样品中毫秒尺度上的结构转变需求的同时, 也产生大量的数据. 本文提出一种“俯视图”的数据分析方法, 即将热流投影到温度-速率或温度-时间的平面, 然后用颜色衬度代表热流强弱. 该方法有效地解决速率或时间在“侧视图”上难以被区分和量化的问题, 实现同时观测几个物理现象和比较其动力学行为的目的. 本文以一种Au基非晶合金为例, 从4篇代表性文献中的“侧视图”上采集数据, 重新绘制出“俯视图”, 比较两者的优缺点. 上述方法具有普适性, 适合对任何物质或材料的超快差示扫描量热数据进行分析. 不仅如此, “俯视图”也为构建新材料的工艺相图、发现新的结构转变和探索不同物理现象的动力学行为提供支持和帮助. 本文数据集可在https://doi.org/10.57760/sciencedb.j00213.00012中访问获取.
    Ultrafast differential scanning calorimetry is the third-generation technique of differential thermal-analysis. It can fast heat up to 60000 K/s or fast cool down to 40000 K/s, so its temperature-changing rate spans five orders of magnitude, and permit repeating experiments on compounds or materials with a melting point lower than 1000 ℃. The unique rate of temperature change allows it to record structural changes of sample in milliseconds, producing a significant number of data. A “top-view” graph is suggested in this study for data analysis. It basically projects the heat flow onto a plane of variables such as temperature, rate or time and uses color contrast to describe the intensity change of heat flow. The issues with “side-view” graphs, where it is a challenge to discern rate or time from several curves, are successfully resolved by this novel technique. It can also realize a comparison of the kinetics among several co-existing physical events. Using an Au-based metallic glass as an example material, this work collects the data from four “side-view” graphs in literature, replots the data on “top-view” graphs, and compares pros and cons. Any substance or material to be examined by utilizing fast differential scanning calorimetry can be examined through using the “top-view” approach. It is useful not only for data analysis but also for constructing processing maps for novel materials, finding new structural transitions, and examining the kinetic behaviors of physical phenomena. All the data presented in this paper are openly available at https://doi.org/ 10.57760/sciencedb.j00213.00012.
      通信作者: 孙永昊, ysun58@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 92263103)和国家关键技术与发展计划(批准号: 2018YFA0703603)资助的课题.
      Corresponding author: Sun Yong-Hao, ysun58@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 92263103) and the National Key Technology Research and Development Program of China (Grant No. 2018YFA0703603).
    [1]

    瓦格纳M著 (陆立华译) 2011 热分析应用基础 (上海: 东华大学出版社) 第1页

    Wagner M (translated by Lu L H) 2011 Thermal Analysis in Practice (Shanghai: Dong Hua University Press) p1

    [2]

    Ravisankar R, Naseerutheen A, Rajalakshmi A, Raja Annamalai, G, Chandrasekaran A 2014 Spectrochim. Acta A 129 201Google Scholar

    [3]

    刘振海, 陆立明, 唐远望 2012 热分析简明教程 (北京: 科学出版社) 第1页

    Liu Z H, Lu L M, Tang Y W 2012 A Concise Coursebook of Thermal Analysis (Beijing: Science Press) p1

    [4]

    Boersma S L 1955 J. Amer. Ceram. 38 281Google Scholar

    [5]

    Watson E S, O’Neill M J, Justin J, Brenner N 1964 Anal. Chem. 36 1233Google Scholar

    [6]

    Reading M, Elliott D, Hill V L 1993 J. Therm. Anal. 40 949Google Scholar

    [7]

    Schick C, Mathot V 2016 Fast Scanning Calorimetry (Switzerland: Springer Nature

    [8]

    Cheng Q, Sun Y H, Orava J, Bai H Y, Wang W H 2022 Acta Mater. 230 117834Google Scholar

    [9]

    Cheng Q, Han X L, Kaban I, Soldatov I, Wang W H, Sun Y H, Orava J 2020 Scripta Mater. 183 61Google Scholar

    [10]

    Cheng Q, Wang P F, Jiang H Y, Gu L, Orava J, Sun Y H, Bai H Y, Wang W H 2021 Phys. Rev. B 103 L100203Google Scholar

    [11]

    Shen J, Lu Z, Wang J Q, Lan S, Zhang F, Hirata A, Chen M W, Wang X L, Wen P, Sun Y H, Bai H Y, Wang W H 2020 J. Phys. Chem. Lett. 11 6718Google Scholar

    [12]

    Shen J, Sun Y H, Orava J, Bai H Y, Wang W H 2022 Acta Mater. 225 117588Google Scholar

    [13]

    江海河 2001 光电子技术与信息 14 1

    Jiang H H 2001 Opto-Electronics Tech. Info. 14 1

    [14]

    Schroers J, Lohwongwatana B, Johnson W L, Peker A 2007 Mater. Sci. Eng. A 449 235

    [15]

    Schorers J, Lohwongwatana B, Johnson W L, Peker A 2005 Appl. Phys. Lett. 87 061912Google Scholar

    [16]

    Cardinal S, Qiao J C, Pelletier J M 2014 Mater. Sci. Forum 783 1901

    [17]

    Zhang W, Guo H, Chen M W, Saotome Y, Qin C L, Inoue S 2009 Scripta Mater. 61 744Google Scholar

    [18]

    Na J H, Han K H, Garrett G R, Launey M F, Demetriou M D, Johnson W L 2019 Sci. Rep. 9 3269Google Scholar

    [19]

    Rizzi P, Corazzari I, Fiore G, Fenoglio I, Fubini B, Kaciulis S, Battezzati L 2013 Cor. Sci. 77 135Google Scholar

    [20]

    Eisenbart M, Klotz U E, Busch R, Gallino I 2014 J. Alloys Compd. 615 S118Google Scholar

    [21]

    Eisenbart M, Klotz U E, Busch R, Gallino I 2014 Cor. Sci. 85 258Google Scholar

    [22]

    Ivanov Y P, Meylan C M, Panagiotopoulos N T, Georgorakis K, Greer A L 2020 Acta Mater. 196 52Google Scholar

    [23]

    Schawe J E K, Löffler J F 2019 Nat. Commun. 10 1337Google Scholar

    [24]

    Cheng Q, Sun Y H, Orava J, Wang W H 2023 Mater. Today Phys. 31 101004Google Scholar

    [25]

    Song L J, Xu W, Huo J T, Wang J Q, Wang X M, Li R W 2018 Intermetallics 93 101Google Scholar

    [26]

    Song L J, Gao M, Xu W, Huo J T, Wang J Q, Li R W, Wang W H, Perepezko J H 2020 Acta Mater. 185 38Google Scholar

    [27]

    Schawe J E K, Löffler J F 2022 Acta Mater. 226 117630

    [28]

    Zhang L J, Wang C H, Wu H Y, Wang L M, Yi J, Zhai Q J, Gao Y L, Zhao B G 2024 Thermochim. Acta 731 179643Google Scholar

    [29]

    Song L J, Gao Y R, Zou P, Xu W, Gao M, Zhang Y, Huo J T, Li F S, Qiao J C, Wang L M, Wang J Q 2023 Proc. Natl. Acad. Sci. 120 e2302776120Google Scholar

    [30]

    Lisio V D, Gallino I, Riegler S S, Frey M, Neuber N, Kumar G, Schroers J, Busch R, Cangialosi D 2023 Nat. Commun. 14 4698Google Scholar

    [31]

    Pogatscher S, Leutenegger D, Schawe J E K, Uggowitzer P J, Löffler J F 2016 Nat. Commun. 7 11113Google Scholar

    [32]

    Kissinger H E 1956 Journal of Research of the National Bureau of Standards 57 217Google Scholar

    [33]

    汪卫华 2023 非晶态物质—常规物质第四态(第二卷) (北京: 科学出版社) 第279页

    Wang W H 2023 Amorphous Matter: The Forth Conventional Matter (Vol. 2) (Beijing: Science Press) p279

  • 图 1  FDSC实验的温控程序(Tq代表熔体温度, Ta代表退火温度, φc代表冷却速率, φh代表加热速率, ta代表退火时间; 双箭头代表变量可以调节的方向)

    Fig. 1.  Thermal protocol of FDSC experiments (Tq is quenching temperature, Ta is annealing temperature, φc is cooling rate, φh is heating rate, ta is annealing time; double arrows indicate directions of change for variables).

    图 2  FDSC结果的三维形貌图、侧视图和俯视图 (h' 代表被φh约化后的热流, 数据来源于参考文献[23])

    Fig. 2.  3D morphology, side and top views of typical FDSC results (h' is φh-normalized heat flow, reproduced from Ref. [23]).

    图 3  铸态Au基非晶合金的超快加热曲线 (a) 侧视图; (b) 俯视图; (c) 低热流强度下的俯视图. 方块和圆圈分别代表焓过冲和晶化的峰值温度; 信息数据来源于文献[22]. 注: 由于文献[22]未能提供部分曲线上完整的晶化峰或熔化峰信息, 所以部分热流曲线不连续

    Fig. 3.  Ultrafast heating curves of the as-cast Au-based metallic glass: (a) Side view; (b) top view; (c) top view under low heat flux intensity. Squares and circles represent peak temperatures of enthalpy overshoot and crystallization; reproduced from Ref. [22]. Note: Due to the lack of a complete crystallization peak or a complete melting peak on some heat-flow curves in Ref. [22], some of the presented appear discontinuous.

    图 4  退火态Au基非晶合金的超快加热曲线 (a) 侧视图; (b) 俯视图. 圆圈代表晶化峰值温度, 数据来源于参考文献[27]

    Fig. 4.  Ultrafast heating curves of the annealed Au-based metallic glass: (a) Side view; (b) top view. Circles represent the peak temperature of crystallization, reproduced from Ref. [27].

    图 5  化学均匀型(CHG)和自掺杂型(SDG) Au基非晶合金的超快加热曲线 (a) CHG样品的侧视图; (b) SDG样品的侧视图; (c) CHG样品的俯视图; (d) SDG样品的俯视图. 三角、空心圆和实心圆分别代表焓过冲、晶化和熔化的峰值温度, 数据来源于参考文献[23]

    Fig. 5.  Ultrafast heating curves of the chemically-homogeneous-glass (CHG) and self-doped glass (SDG) of the Au-based metallic glass: (a) Side view of CHG; (b) side view of SDG; (c) top view of CHG; (d) top view of SDG. Triangles, circles and dots denote peak temperatures of enthalpy overshoot, crystallization and melting, respectively, reproduced from Ref. [23].

    图 6  退火态Au基非晶合金的超快加热曲线 (a)侧视图; (b)俯视图. 圆圈代表焓过冲的峰值温度, 数据来源于参考文献[29]

    Fig. 6.  Ultrafast heating curves of the annealed Au-based metallic glass: (a) Side view; (b) top view. Circles represent the peak temperatures of enthalpy overshoot, reproduced from Ref. [29].

    表 1  Au基化学均匀型玻璃(CHG)和自掺杂型玻璃(SDG)的α弛豫、晶化和熔化激活能

    Table 1.  Activation energy of Au-based CHG and SDG metallic glasses for their α relaxation, crystallization and melting

    物理过程 CHG的激活能Ea/(kJ·mol–1) SDG的激活能Ea/(kJ·mol–1) 相对变化
    α弛豫 110±11 85±7 –23%
    结晶 94±13 105±5 12%
    熔化 430±43 380±26 –12%
    下载: 导出CSV
    Baidu
  • [1]

    瓦格纳M著 (陆立华译) 2011 热分析应用基础 (上海: 东华大学出版社) 第1页

    Wagner M (translated by Lu L H) 2011 Thermal Analysis in Practice (Shanghai: Dong Hua University Press) p1

    [2]

    Ravisankar R, Naseerutheen A, Rajalakshmi A, Raja Annamalai, G, Chandrasekaran A 2014 Spectrochim. Acta A 129 201Google Scholar

    [3]

    刘振海, 陆立明, 唐远望 2012 热分析简明教程 (北京: 科学出版社) 第1页

    Liu Z H, Lu L M, Tang Y W 2012 A Concise Coursebook of Thermal Analysis (Beijing: Science Press) p1

    [4]

    Boersma S L 1955 J. Amer. Ceram. 38 281Google Scholar

    [5]

    Watson E S, O’Neill M J, Justin J, Brenner N 1964 Anal. Chem. 36 1233Google Scholar

    [6]

    Reading M, Elliott D, Hill V L 1993 J. Therm. Anal. 40 949Google Scholar

    [7]

    Schick C, Mathot V 2016 Fast Scanning Calorimetry (Switzerland: Springer Nature

    [8]

    Cheng Q, Sun Y H, Orava J, Bai H Y, Wang W H 2022 Acta Mater. 230 117834Google Scholar

    [9]

    Cheng Q, Han X L, Kaban I, Soldatov I, Wang W H, Sun Y H, Orava J 2020 Scripta Mater. 183 61Google Scholar

    [10]

    Cheng Q, Wang P F, Jiang H Y, Gu L, Orava J, Sun Y H, Bai H Y, Wang W H 2021 Phys. Rev. B 103 L100203Google Scholar

    [11]

    Shen J, Lu Z, Wang J Q, Lan S, Zhang F, Hirata A, Chen M W, Wang X L, Wen P, Sun Y H, Bai H Y, Wang W H 2020 J. Phys. Chem. Lett. 11 6718Google Scholar

    [12]

    Shen J, Sun Y H, Orava J, Bai H Y, Wang W H 2022 Acta Mater. 225 117588Google Scholar

    [13]

    江海河 2001 光电子技术与信息 14 1

    Jiang H H 2001 Opto-Electronics Tech. Info. 14 1

    [14]

    Schroers J, Lohwongwatana B, Johnson W L, Peker A 2007 Mater. Sci. Eng. A 449 235

    [15]

    Schorers J, Lohwongwatana B, Johnson W L, Peker A 2005 Appl. Phys. Lett. 87 061912Google Scholar

    [16]

    Cardinal S, Qiao J C, Pelletier J M 2014 Mater. Sci. Forum 783 1901

    [17]

    Zhang W, Guo H, Chen M W, Saotome Y, Qin C L, Inoue S 2009 Scripta Mater. 61 744Google Scholar

    [18]

    Na J H, Han K H, Garrett G R, Launey M F, Demetriou M D, Johnson W L 2019 Sci. Rep. 9 3269Google Scholar

    [19]

    Rizzi P, Corazzari I, Fiore G, Fenoglio I, Fubini B, Kaciulis S, Battezzati L 2013 Cor. Sci. 77 135Google Scholar

    [20]

    Eisenbart M, Klotz U E, Busch R, Gallino I 2014 J. Alloys Compd. 615 S118Google Scholar

    [21]

    Eisenbart M, Klotz U E, Busch R, Gallino I 2014 Cor. Sci. 85 258Google Scholar

    [22]

    Ivanov Y P, Meylan C M, Panagiotopoulos N T, Georgorakis K, Greer A L 2020 Acta Mater. 196 52Google Scholar

    [23]

    Schawe J E K, Löffler J F 2019 Nat. Commun. 10 1337Google Scholar

    [24]

    Cheng Q, Sun Y H, Orava J, Wang W H 2023 Mater. Today Phys. 31 101004Google Scholar

    [25]

    Song L J, Xu W, Huo J T, Wang J Q, Wang X M, Li R W 2018 Intermetallics 93 101Google Scholar

    [26]

    Song L J, Gao M, Xu W, Huo J T, Wang J Q, Li R W, Wang W H, Perepezko J H 2020 Acta Mater. 185 38Google Scholar

    [27]

    Schawe J E K, Löffler J F 2022 Acta Mater. 226 117630

    [28]

    Zhang L J, Wang C H, Wu H Y, Wang L M, Yi J, Zhai Q J, Gao Y L, Zhao B G 2024 Thermochim. Acta 731 179643Google Scholar

    [29]

    Song L J, Gao Y R, Zou P, Xu W, Gao M, Zhang Y, Huo J T, Li F S, Qiao J C, Wang L M, Wang J Q 2023 Proc. Natl. Acad. Sci. 120 e2302776120Google Scholar

    [30]

    Lisio V D, Gallino I, Riegler S S, Frey M, Neuber N, Kumar G, Schroers J, Busch R, Cangialosi D 2023 Nat. Commun. 14 4698Google Scholar

    [31]

    Pogatscher S, Leutenegger D, Schawe J E K, Uggowitzer P J, Löffler J F 2016 Nat. Commun. 7 11113Google Scholar

    [32]

    Kissinger H E 1956 Journal of Research of the National Bureau of Standards 57 217Google Scholar

    [33]

    汪卫华 2023 非晶态物质—常规物质第四态(第二卷) (北京: 科学出版社) 第279页

    Wang W H 2023 Amorphous Matter: The Forth Conventional Matter (Vol. 2) (Beijing: Science Press) p279

  • [1] 孟绍怡, 郝奇, 王兵, 段亚娟, 乔吉超. 冷却速率对La基非晶合金β弛豫行为和应力弛豫的影响.  , 2024, 73(3): 036101. doi: 10.7498/aps.73.20231417
    [2] 黄蓓蓓, 郝奇, 吕国建, 乔吉超. 锆基非晶合金的动态弛豫和应力松弛.  , 2023, 72(13): 136101. doi: 10.7498/aps.72.20230181
    [3] 孟绍怡, 郝奇, 吕国建, 乔吉超. La基非晶合金β弛豫行为: 退火和加载应变的影响.  , 2023, 72(7): 076101. doi: 10.7498/aps.72.20222389
    [4] 程怡婷, AndreyS. Makarov, GennadiiV. Afonin, VitalyA. Khonik, 乔吉超. 基于剪切模量和热分析数据研究Zr50–xCu34Ag8Al8Pdx (x = 0, 2)非晶合金缺陷浓度演化.  , 2021, 70(14): 146401. doi: 10.7498/aps.70.20210256
    [5] 文大东, 邓永和, 戴雄英, 吴安如, 田泽安. 钽过冷液体等温晶化的原子层面机制.  , 2020, 69(19): 196101. doi: 10.7498/aps.69.20200665
    [6] 柳延辉. 非晶合金的高通量制备与表征.  , 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [7] 管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪. 不均匀性:非晶合金的灵魂.  , 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [8] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展.  , 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [9] 陈娜, 张盈祺, 姚可夫. 源于非晶合金的透明磁性半导体.  , 2017, 66(17): 176113. doi: 10.7498/aps.66.176113
    [10] 王峥, 汪卫华. 非晶合金中的流变单元.  , 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [11] 卞西磊, 王刚. 非晶合金的离子辐照效应.  , 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [12] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏. 铀基非晶合金的发展现状.  , 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [13] 金鑫鑫, 金峰, 刘宁, 孙其诚. 准静态颗粒介质的弹性势能弛豫分析.  , 2016, 65(9): 096102. doi: 10.7498/aps.65.096102
    [14] 周正存, 赵宏平, 顾苏怡, 吴 倩. 快冷Fe-Al合金中的原子缺陷弛豫.  , 2008, 57(2): 1025-1029. doi: 10.7498/aps.57.1025
    [15] 李世彬, 吴志明, 李 伟, 于军胜, 蒋亚东, 廖乃镘. 氢化硅薄膜的晶化机理研究.  , 2008, 57(11): 7114-7118. doi: 10.7498/aps.57.7114
    [16] 闫志杰, 李金富, 周尧和, 仵彦卿. 压痕塑性变形诱导非晶合金的晶化.  , 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [17] 程伟东, 孙民华, 李佳云, 王爱屏, 孙永丽, 刘 芳, 刘雄军. Cu60Zr30Ti10非晶合金弛豫和晶化过程的小角X射线散射研究.  , 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [18] 周 锋, 梁开明, 王国梁. 电场热处理条件下TiO2薄膜的晶化行为研究.  , 2005, 54(6): 2863-2867. doi: 10.7498/aps.54.2863
    [19] 于 威, 何 杰, 孙运涛, 朱海丰, 韩 理, 傅广生. 碳化硅薄膜脉冲激光晶化特性研究.  , 2004, 53(6): 1930-1934. doi: 10.7498/aps.53.1930
    [20] 戚泽明, 施朝淑, 王正, 魏亚光, 谢亚宁, 胡天斗, 李福利. 非晶和纳米ZrO2·Y2O3(15%)的X射线衍射与扩展X射线吸收精细结构研究.  , 2001, 50(7): 1318-1323. doi: 10.7498/aps.50.1318
计量
  • 文章访问数:  2322
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-27
  • 修回日期:  2024-01-17
  • 上网日期:  2024-01-23
  • 刊出日期:  2024-04-05

/

返回文章
返回
Baidu
map