搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正电子湮没符合多普勒展宽技术的材料学研究进展

叶凤娇 张鹏 张红强 况鹏 于润升 王宝义 曹兴忠

引用本文:
Citation:

正电子湮没符合多普勒展宽技术的材料学研究进展

叶凤娇, 张鹏, 张红强, 况鹏, 于润升, 王宝义, 曹兴忠

Research progress of coincidence Doppler broadening of positron annihilation measurement technology in materials

Ye Feng-Jiao, Zhang Peng, Zhang Hong-Qiang, Kuang Peng, Yu Run-Sheng, Wang Bao-Yi, Cao Xing-Zhong
PDF
HTML
导出引用
  • 正电子湮没技术是研究材料微观结构的一种原子尺度表征方法, 通过分析正电子湮没行为可以得到湮没位点处局域电子密度和原子结构信息. 近年来, 正电子湮没谱学技术已经发展成为优于常规手段的特色表征技术, 其中符合多普勒展宽技术在研究缺陷附近的电子和原子结构方面具有独特优势, 商谱曲线中高动量区域形状的变化反映了正电子湮没位点周围的元素信息. 在常规符合多普勒展宽技术发展基础上, 能量可调的慢正电子束流符合多普勒展宽技术在获取表面微观结构的深度分布信息上展示出独特的作用, 同时也弥补了常规符合多普勒展宽技术只能表征体材料中缺陷环境的不足. 本文结合国内外相关进展, 综述了符合多普勒展宽技术在各类材料中的研究进展: 1)合金中空位型缺陷和纳米沉淀的演化行为; 2) 半导体中晶格空位与杂质原子的相互作用; 3)氧化物中氧空位和金属阳离子浓度的变化. 除此之外, 在聚合物中自由体积孔洞的大小、数量及分布的估算表征领域中, 符合多普勒展宽技术也逐步得到应用.
    Positron annihilation technique is an atomic-scale characterization method used to analyze the defects and microstructure of materials, which is extremely sensitive to open volume defects. By examining the annihilation behaviour of positrons and electrons in open volume defects, local electron density and atomic structure information around the annihilation site can be obtained, such as the size and concentration of vacancies, and vacancy clusters. In recent years, positron annihilation spectroscopy has evolved into a superior tool for characterizing features of material compared with conventional methods. The coincident Doppler broadening technique provides unique advantages for examining the local electronic structure and chemical environment (elemental composition) information about defects due to its effectiveness describing high momentum electronic information. The low momentum portion of the quotient spectrum indicates the Doppler shift generated by the annihilation of valence electrons near the vacancy defect. Changes in the peak amplitudes and positions of the characteristic peaks in the high momentum region can reveal elemental information about the positron annihilation point. The physical mechanism of element segregation, the structural features of open volume defects and the interaction between interstitial atoms and vacancy defects are well investigated by using the coincidence Doppler broadening technology. In recent years, based on the development of Doppler broadening technology, the sensitivity of slow positron beam coincidence Doppler broadening technology with adjustable energy has been significantly enhanced at a certain depth. It is notable that slow positron beam techniques can offer surface, defect, and interface microstructural information as a function of material depth. It compensates for the fact that the traditional coincidence Doppler broadening technique can only determine the overall defect information. Positron annihilation technology has been applied to the fields of second phase evolution in irradiated materials, hydrogen/helium effect, and free volume in thin films, as a result of the continuous development of slow positron beam and the improvement of various experimental test methods based on slow positron beam. In this paper, the basic principles of the coincidence Doppler broadening technique are briefly discussed, and the application research progress of the coincidence Doppler broadening technique in various materials is reviewed by combining the reported developments: 1) the evolution behaviour of nanoscale precipitation in alloys; 2) the interaction between lattice vacancies and impurity atoms in semiconductors; 3) the changes of oxygen vacancy and metal cation concentration in oxide material. In addition, coincident Doppler broadening technology has been steadily used to estimate and quantify the sizes, quantities, and distributions of free volume holes in polymers.
      通信作者: 曹兴忠, caoxzh@ihep.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFA0210002)和国家自然科学基金(批准号: U1732265, 12175262, 11575205, 11875005, 11775235)资助的课题.
      Corresponding author: Cao Xing-Zhong, caoxzh@ihep.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFA0210002) and the National Natural Science Foundation of China (Grant Nos. U1732265, 12175262, 11575205, 11875005, 11775235).
    [1]

    Lynn K G, MacDonald J R, Boie R A, Feldman L C, Gabbe J D, Robbins M F, Bonderup E, Golovchenko J 1977 Phys. Rev. Lett. 38 241Google Scholar

    [2]

    Lynn K G, Goland A N 1976 Solid. State. Commun. 18 1549Google Scholar

    [3]

    Zhang X, Lu G 2010 Phys. Rev. B. 82 012101Google Scholar

    [4]

    Elsayed M, Krause-Rehberg R, Christian E, Nadine E, Bernd K 2018 Phys. Status Solidi A 215 1800036Google Scholar

    [5]

    Abhaya S, Rajaraman R, Sarguna R M, Pradyumna K P, David C, Amarendra G 2019 J. Alloys Compd. 806 780Google Scholar

    [6]

    曹兴忠, 宋力刚, 靳硕学, 张仁刚, 王宝义, 魏龙 2017 66 027801Google Scholar

    Cao X Z, Song L G, Jin S X, Zhang R G, Wang B Y, Wei L 2017 Acta Phys. Sin. 66 027801Google Scholar

    [7]

    胡远超, 曹兴忠, 李玉晓, 张鹏, 靳硕学, 卢二阳, 于润升, 魏龙, 王宝义 2015 64 247804Google Scholar

    Hu Y C, Cao X Z, Li Y X, Zhang P, Jin S X, Lu E Y, Yu R S, Wei L, Wang B Y 2015 Acta Phys. Sin. 64 247804Google Scholar

    [8]

    Grafutin V I, Prokop’ev E P 2002 Phys. Usp. 45 59Google Scholar

    [9]

    郗传英 2005 博士学位论文 (合肥: 中国科学技术大学)

    Xi C Y 2005 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [10]

    Ishizaki T, Yoshiie T, Sato K, Yanagita S, Xu Q, Komatsu M, Kiritani M 2003 Mater. Sci. Eng. A 350 102Google Scholar

    [11]

    Elsayed M, Bondarenko V, Petters K, Gebauer J, Krause-Rehberg R 2008 J. Appl. Phy. 104 103526Google Scholar

    [12]

    Xia R, Cao X Z, Gao M Z, Zhang P, Zeng M F, Wang B Y, Wei L 2017 Phys. Chem. Chem. Phys. 19 3616Google Scholar

    [13]

    Karwasz G P, Zecca A, Brusa R S, Pliszkab D 2004 J. Alloys Compd. 382 244Google Scholar

    [14]

    Utpalla P, Sharma S K, Sudarshan K, Kumar V, Pujari P K 2019 Eur. Polym. J. 117 10Google Scholar

    [15]

    Suzuki T, He C Q, Kondo K, Shantarovich V, Ito Y 2003 Radiat. Phys. Chem. 68 489Google Scholar

    [16]

    Sharma S K, Prakash J, Bahadur J, Sudarshan K, Maheshwari P, Mazumderc S, Pujari P K 2014 Phys. Chem. Chem. Phys. 16 1399Google Scholar

    [17]

    Seeger A 1973 J. Phys. F: Met. Phys. 3 284Google Scholar

    [18]

    朱特, 曹兴忠 2020 69 177801Google Scholar

    Zhu T, Cao X Z 2020 Acta Phys. Sin. 69 177801Google Scholar

    [19]

    Wang B Y, Cao X Z, Yu R S, Wei C F, Zhang Z M, Ma C X, Chang T B, Pei G X, Li J C, Zheng L S, Wei L, Wang T M, He Y J, Yu W Z, Zhu S Y 2004 Positron Annihilation, ICPA-13 Proceedings Kyoto, Japan Sep 7–12, 2003 pp513–515

    [20]

    Zhang R G, Wang B Y, Zhang H, Wei L 2005 Appl. Surf. Sci. 245 340Google Scholar

    [21]

    Wan D Y, Wang Y T, Wang B Y, Ma C X, Sun H, Wei L 2003 J. Cryst. Growth 253 230Google Scholar

    [22]

    王丹妮, 王宝义, 张兰芝, 钟玉荣, 章志明, 李道武, 魏龙, 张天保 2008 核技术 31 577Google Scholar

    Wang D N, Wang B Y, Zhang L Z, Zhong Y R, Zheng Z M, Li D W, Wei L, Zhang T B 2008 Nucl. Tech. 31 577Google Scholar

    [23]

    Asoka-Kumar P, Alatalo M, Ghosh V J, Kruseman A C, Nielsen B, Lynn K G 1996 Phys. Rev. B 77 2097Google Scholar

    [24]

    Brusa R S, Deng W, Karwasz G P, Zecca A 2002 Nucl. Instrum. Methods Phys. Res. , Sect. B 194 519Google Scholar

    [25]

    Xi C Y, Ye B J, Kong W, Weng H M, Zhou X Y, Han R D 2006 Chin. J. Chem. Phys. 19 203Google Scholar

    [26]

    Lee S U, Lee Y J, Kim J R, Jeong K E, Jeong S Y 2019 J. Ind. Eng. Chem. 79 443Google Scholar

    [27]

    Sugita K, Ogawa R, Mizuno M, Araki Hm, Yabuuchi A 2022 Scr. Mater. 208 114339Google Scholar

    [28]

    Jin K, Guo W, Lu C Y, Ullah M W, Zhang Y W, Weber W J, Wang L M, Poplawsky J D, Bei H B 2016 Acta Mater. 121 365Google Scholar

    [29]

    Jin S X, Zhang P, Lu E Y, Guo L P, Wang B Y, Cao X Z 2016 Acta Mater. 103 658Google Scholar

    [30]

    Zhong Z H, Xu Q, Mori K, Tokitani M 2019 Philos. Mag. 99 1515Google Scholar

    [31]

    王少阶 2008 应用正电子谱学(上卷) (武汉: 湖北科学技术出版社) 第85页

    Wang S J 2008 Applied Positron Spectroscopy (Vol. 1) (Wuhan: Hubei Science and Technology Press) p85

    [32]

    Onitsuka T, Takenaka M, Kuramoto, Nagai Y, Hasegawa M 2001 Phys. Rev. B 65 012204Google Scholar

    [33]

    Bartha K, Zháňal P, Stráský J, Čížek J, Dopita M, Lukáč F, Harcuba P, Hájek M, Polyakova V, Semenova I, Janečeka M 2019 J. Alloys Compd. 788 771Google Scholar

    [34]

    Nagai Y, Hasegawa M, Tang Z, Hempel A, Yubuta K, Shimamura T, Kawazoe Y, Kawai A, Kano F 2000 Phys. Rev. B 61 6574Google Scholar

    [35]

    Liu X S, Zhang P, Wang B Y, Cao X Z, Jin S X, Yu R S 2021 Materials 14 1451Google Scholar

    [36]

    Abhaya S, Rajaraman S. Kalavathi R, Amarendra G 2015 J. Alloys Compd. 620 277Google Scholar

    [37]

    Ye F J, Zhu T, Wang Q Q, Song Y M, Zhang H Q, Kuang P, Zhang P, Yu R S, Cao X Z, Wang B Y 2022 Intermetallics 149 107670Google Scholar

    [38]

    Nagai Y, Tang Z, Hassegawa M, Kanai T, Saneyasu M 2001 Phys. Rev. B 63 134110Google Scholar

    [39]

    Xu Q, Yoshiie T, Sato K 2007 Phys. Status Solidi C 4 3573Google Scholar

    [40]

    Wang X W, ZhongY R, Wang B Y, Zhang H Y 2009 J. Mater. Res. 24 1794Google Scholar

    [41]

    王茜茜 2022 硕士学位论文 (贵阳: 贵州大学)

    Wang Q Q 2022 M. S. Thesis (Guiyang: Guizhou University

    [42]

    Sabelová V, Kršjak V, Kuriplach Jm, Dai Y, Slugeň V 2015 J. Nucl. Mater. 458 350Google Scholar

    [43]

    Fujii K, Fukuya K, Nakata N, Hono K, Nagai Y, Hasegawa M 2005 J. Nucl. Mater. 340 247Google Scholar

    [44]

    Ge W N, Rahman A, Cheng H, Zhang M, Liu J D, Zhang Z M, Ye B J 2018 J. Magn. Magn. Mater. 449 401Google Scholar

    [45]

    Kundu R, Bhattacharya S, Roy D, Nambissan P M G 2017 RSC Adv. 7 8131Google Scholar

    [46]

    Qin M J, Gao F, Cizek J, Yang S J, Fan X L, Zhao L L, Xu J, Dong G G, Reece M, Yan H X 2019 Acta Mater. 164 76Google Scholar

    [47]

    Ahmed M, Mukherjee S, Singha T, Nambissan P M G 2023 J. Phys. Chem. Solids 181 111513Google Scholar

    [48]

    Thorat A V, Ghoshal T, Morris M A, Nambissan P M G 2014 Acta Phys. Pol. A 125 756Google Scholar

    [49]

    Das A, Mandal A C, Roy S, Prashanth P, Ahamed S I, Kar S, Prasad M S, Nambissan P M G 2016 Physica E 83 389Google Scholar

    [50]

    Ghosh S, Khan G K, Mandal K, Samanta A, Nambissan P M G 2013 J. Phys. Chem. C 117 8458Google Scholar

    [51]

    Das A 2019 Curr. Sci. 117 1990Google Scholar

    [52]

    Yu R S, Maekawa M, Kawasuso A, Wang B Y, Wei L 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 270 47Google Scholar

    [53]

    Elsayed M, Krause-Rehberg R, Korff B, Ratschinski I, Leipner H S 2013 Eur. Phys. J. B 86 358Google Scholar

    [54]

    Xu J, Moxom J, Somieski B, White C W 2001 Phys. Rev. B 64 112404Google Scholar

    [55]

    Slotte J, Makkonen I, Tuomisto F 2016 ECS J. Solid State Sci. Technol. 5 3166Google Scholar

    [56]

    Simpson P J, Jenei Z, Asoka-Kumar P, Robison R R, Law M E 2012 Appl. Phys. Lett. 85 1538Google Scholar

    [57]

    Das A, Mandal A C, Roy S, Nambissan P M G 2018 AIP Adv. 8 095013Google Scholar

    [58]

    Pasang T, Namratha K, Guagliardo P, Byrappa K, Ranganathaiah C, Samarin S, FWilliams J 2015 Mater. Res. Express 2 045502Google Scholar

    [59]

    Sharma S K, Bahadur J, Bahadur J, Sudarshan K, Maheshwari P, Mazumder S, Pujari P K 2014 Phys. Chem. Phys. Chem. 16 1399Google Scholar

    [60]

    Cao X Z, Xia R, Yang J, Zeng M, Wang B Y, Yu R S, Wei L 2017 Acta Phys. Pol A 132 1535Google Scholar

    [61]

    Ghasemifard M, Ghamari M 2023 J. Appl. Polym. Sci. 141 1Google Scholar

    [62]

    Rana U, Nambissan P M G, Malika S, Chakrabarti K 2014 Phys. Chem. Chem. Phys. 7 3292Google Scholar

    [63]

    Cao X Z, Zhu T, Jin S X, Kuang P, Zhang P, Lu E Y, Gong Y H, Guo L P, Wang B Y 2017 Appl. Phys. A 123 176Google Scholar

    [64]

    An X D, Zhu T, Wan M P, Li Y H, Wang Q Q, Zhang P, Liu J Y, Song Y M, Zhang Z K, Wang B Y, Cao X Z 2021 Int. J. Hydrogen Energy 46 13163Google Scholar

    [65]

    Wang Q Q, An X D, Zhu T, Wan M P, Zhang P, Ye F J, Song Y M, Huang C W, Ma R, Wang B Y, Cao X Z 2021 J. Alloys Compd. 885 160909Google Scholar

    [66]

    Fujinami M, Sawada T, Akahane T 2003 Radiat. Phys. Chem. 68 631Google Scholar

    [67]

    Beyerlein I J, Demkowicz M J, Misraa A, Uberuaga B P 2015 Prog. Mater. Sci. 74 125Google Scholar

    [68]

    Liu Y L, Song L G, Chen Y, Bai R Y, Wang Z, Zhu T, Zhang P, Jin S X, Wang H H, Lu E Y, Cao X Z, Wang B Y 2021 Fusion Eng. Des. 162 112118Google Scholar

    [69]

    Ren X L, Yao B D, Zhu T, Zhong Z H, Wang Y X, Cao X Z, Jinno S, Xu Q 2020 Intermetallics 126 106942Google Scholar

    [70]

    Zhang L Z, Wang D N, Wang B Y, Yu R S, Wei L 2007 Appl. Surf. Sci. 253 7309Google Scholar

    [71]

    Reiner M, Pikart P, Hugenschmidt C 2014 J. Alloys Compd. 587 515Google Scholar

    [72]

    Khanam A, Slotte J, Tuomisto F, Subhechha S, Popovici M, Kar G S 2022 J. Appl. Phys. 131 245301Google Scholar

    [73]

    杨静 2015 博士学位论文 (北京: 中国科学院高能物理研究所)

    Yang J 2015 Ph. D. Dissertation (Beijing: Institute of High Energy Physics, Chinese Academy of Sciences

    [74]

    Wiktor J, Jomard G, Torrent M 2015 Phys. Rev. B 93 125113Google Scholar

    [75]

    Yang Q G, Cao X Z, Wang B Y, Wang P, Olsson P 2023 Phys. Rev. B 108 104113Google Scholar

    [76]

    Simula K A, Haerkönen J, Zhelezova I, Drummond N D, Tuomisto F, Makkonen I 2023 Phys. Rev. B 108 045201Google Scholar

    [77]

    Makkonen I, Hakala M, Puska M J 2006 Phys. Rev. B 73 035103Google Scholar

    [78]

    Puska M J, Seitsonen A P, Nieminen R M 1995 Phys. Rev. B 52 10947Google Scholar

    [79]

    Yang Q G, Hu Z, Makkonen L, Desgardin P, Egger W, Barthe M F, Olsson P 2022 J. Nucl. Mater. 571 154019Google Scholar

    [80]

    刘永利 2022 博士学位论文 (北京: 中国科学院高能物理研究所)

    Liu Y L 2022 Ph. D. Dissertation (Beijing: Institute of High Energy Physics, Chinese Academy of Sciences

    [81]

    Yang Q G, Olsson P 2023 Acta Mater. 242 118429Google Scholar

    [82]

    Elsayed M, Staab T E M, Čížek J, Krause-Rehberg R 2021 Acta Mater. 219 117228Google Scholar

    [83]

    Elsayed M, Krause-Rehberg R, Korff B, Richter S, Leipner H S 2013 J. Appl. Phys. 113 094902Google Scholar

    [84]

    Rauch C, Makkonen I, Tuomisto F 2011 Phys Status Solidi A 208 1548Google Scholar

    [85]

    Makkonena I, Hakalab M, Puska M J 2006 Physica B 376-377 972Google Scholar

    [86]

    Slotte J, Tuomisto F 2012 Mater. Sci. Semicond. Process. 15 669Google Scholar

    [87]

    Linez F, Makkonen I, Tuomisto F 2016 Phys. Rev. B 94 014103Google Scholar

  • 图 1  正电子湮没中的多普勒展宽原理

    Fig. 1.  Doppler broadening principle in positron annihilation.

    图 2  CDB测量系统示意图

    Fig. 2.  Schematic diagram of CDB measurement system.

    图 3  不同样品的CDB谱图 (a) 纯Fe样品; (b) Fe-Cu样品; (c)对角化后的纯Fe和Fe-Cu样品. 插图为Cu特征峰(PL = 12×10–3m0c—28×10–3m0c)附近的扩展图

    Fig. 3.  CDB spectra of different samples: (a) Pure Fe; (b) Fe-Cu samples; (c) pure Fe and Fe-Cu samples after diagonalization. Inset is an extended view near the Cu characteristic peak (PL = 12×10–3m0c—28×10–3m0c)

    图 4  纯Fe中的 CDB谱图与DBS图[18]

    Fig. 4.  CDB spectra and DBS in pure Fe[18].

    图 5  (a) 纯Fe的CDB中S参数及W参数的定义区域; (b) Fe-Cu合金中的正电子湮没

    Fig. 5.  (a) Definition area of S parameter and W parameter in CDB of pure Fe; (b) schematic diagram of positron annihilation in Fe-Cu alloy

    图 6  典型元素与Al的商谱图[23] (a)实验数据; (b)理论数据

    Fig. 6.  Spectra for different elements after normalizing to Al[23]: (a) Experimental curves; (b) theoretical curves.

    图 7  各种金属元素的正电子亲合势A+ (单位: eV)[9]

    Fig. 7.  Positron affinity A+ (unit: eV) of metal elements[9].

    图 8  纯 Cu, Fe-0.3%Cu 合金在不同剂量下辐照后与纯Fe的CDB谱[29]

    Fig. 8.  CDB spectra with pure Fe of pure Cu, Fe-0.3%Cu alloy irradiated at different doses[29].

    图 9  纯 Cu和Fe-0.3%Cu 合金在不同剂量下辐照后与纯Cu的CDB谱[29]

    Fig. 9.  CDB spectra of pure Cu and Fe-0.3%Cu alloy irradiated with pure Cu at different doses[29].

    图 10  (a) FeCrMnCuMo合金、纯Cr, Mn, Cu和Mo相对于纯Fe的CDB谱图[30]; (b) 铸态、退火态FeCrMnCuMo合金和纯Cu相对于纯Fe的CDB谱图[30]; (c)纯Fe, Cr, Mn, Cu与FeCrMnCuMo在773 K和1073 K下退火相比于铸态FeCrMnCuMo合金的CDB谱图[30]

    Fig. 10.  (a) CDB ratio curves of the FeCrMnCuMo alloy, pure Cr, Mn, Cu and Mo with respect to pure Fe; (b) as-cast, annealed FeCrMnCuMo alloy and pure Cu with respect to pure Fe; (c) pure Fe, Cr, Mn, Cu and Mo and annealed FeCrMnCuMo alloy at 773 K and 1073 K with respect to the as-cast FeCrMnCuMo[30].

    图 11  Fe-1.0%Cu合金在不同温度下等时退火的CDB谱图[32]

    Fig. 11.  CDB spectra of isochronous annealing of Fe-1.0%Cu alloy at different temperatures[32].

    图 12  纯铜、淬火后Fe-1.0%Cu合金和在不同时间时效后的CDB谱图[34]

    Fig. 12.  CDB spectra of pure Cu, quenched Fe-1.0% Cu alloy and aged at different times[34].

    图 13  (a)纯Fe, Fe-1.0%Cu合金在不同时间时效后的CDB谱图[34]

    Fig. 13.  CDB spectra of pure Fe, Fe-1.0%Cu alloy aged at different times[34].

    图 14  快中子辐照后的Fe-0.3%Cu, Fe-0.15%Cu, Fe-0.05%Cu, 纯Fe和纯Cu的CDB谱图[38]

    Fig. 14.  CDB spectra of pure Fe, pure Cu, Fe-0.3%Cu, Fe-0.15%Cu, Fe-0.05%Cu after fast neutron [38].

    图 15  未充氢和充氢样品的CDB谱图[40]

    Fig. 15.  CDB spectra of uncharged and hydrogen-charged samples[40].

    图 16  充氢样品和退火后纯Al的CDB谱图[40]

    Fig. 16.  CDB spectra of hydrogen-charged samples and annealed pure[40].

    图 17  纯 Ti (a)和Ti-Mo合金(b)充氢前后的CDB曲线[41]

    Fig. 17.  CDB curves of pure Ti (a) and Ti-Mo alloy (b) before and after hydrogen charging[41].

    图 18  不同浓度La掺杂Bi1-xLaxFeO3的CDB谱图[44]

    Fig. 18.  CDB spectra of Bi1-xLaxFeO3 samples doped with different concentrations of La[44].

    图 19  SiC在不同温度下退火的CDB谱图[52]

    Fig. 19.  CDB spectra of SiC annealed at different temperatures[52].

    图 20  不同浓度Ca掺杂MgO样品的CDB谱图[57]

    Fig. 20.  CDB spectra of MgO samples doped with different concentrations of Ca[57].

    图 21  聚合物中正电子的湮没状态

    Fig. 21.  Annihilation state of positron in polymer.

    图 22  PVA基纳米复合材料的CDB谱图[59]

    Fig. 22.  CDB spectra of PVA based nanocomposites[59].

    图 23  纳米复合材料中自由正电子湮没贡献的CDB与PVA的比值曲线. 插图为纯 PVA 的动量密度分布反卷积[59]

    Fig. 23.  CDB ratio curves with respect to PVA obtained for free positron annihilation contribution in the nanocomposites. The inset shows the deconvolution of the momentum density for pure PVA[59].

    图 24  纯钛样品在RT, 473和573 K的H离子辐照至0.2 dpa时的CDB谱图[64]

    Fig. 24.  CDB ratio curves of the pure titanium specimen H ion irradiated to 0.2 dpa at RT, 473 and 573 K[64].

    图 25  在300, 573和773 K下辐照CrCoFeMnNi与未辐照CrCoFeMnNi的CDB谱图[69]

    Fig. 25.  CDB spectra of the irradiated CrCoFeMnNi at 300, 573 and 773 K to the unirradiated CrCoFeMnNi[69].

    图 26  不同退火温度下Ti/Al界面的CDB谱图[70]

    Fig. 26.  CDB spectra of Ti/Al interface at different annealing temperatures[70].

    图 27  钨中空位团簇的多普勒谱[79]

    Fig. 27.  Doppler spectra of vacancy clusters in tungsten[79].

    图 28  (a) 根据多普勒谱计算的计算SW参数[79]; (b) 钨晶格、单空位和VN的实验SW参量[79]

    Fig. 28.  (a) Computed S and W parameters calculated from Doppler spectra[79]; (b) experimental S and W parameters for tungsten lattice, single vacancy and VN[79].

    图 29  (a)有不同数量空位的纯钨多普勒谱曲线[80]; (b)有不同空位/He原子比值的纯钨多普勒谱曲线[80]

    Fig. 29.  (a) Doppler spectra of pure tungsten with different numbers of vacancies[80]; (b) Doppler spectra of pure tungsten with different vacancy/He atom ratios[80].

    图 30  纯钨中有不同空位/He原子比值下的多普勒谱曲线[80]

    Fig. 30.  Doppler curves of pure tungsten with different vacancy/He atom ratios[80].

    图 31  (a) fcc Cu和V1-Cu1-8的多普勒谱[81]; (b)两种不同晶格常数下fcc Cu, V1-Cu14-50和fcc Cu, bcc Cu晶格中单空位的多普勒谱[81]

    Fig. 31.  (a) Doppler spectra of the fcc Cu and V1-Cu1-8[81]; (b) Doppler spectra of the fcc Cu, V1-Cu14-50 and single vacancy in fcc Cu and bcc Cu lattice with two different lattice constants[81].

    图 32  (a) Al-In合金在淬火后以及纯In的多普勒谱图[82]; (b) 模拟计算的单空位和双空位以及空位-In复合物的多普勒谱图[82]

    Fig. 32.  (a) Doppler spectra of Al-In alloys after quenching as well as the spectrum of the pure indium reference[82]; (b) calculated ratio curves with respect to Al for mono- and di-vacancies as well as for vacancy-In complexes[82].

    图 33  (a) Al-Sn合金在淬火后以及纯Sn的多普勒谱图[82]; (b) 模拟计算的单位和双空位以及空位-Sn复合物的多普勒谱图[82]

    Fig. 33.  (a) Doppler spectra of Al-In alloys after quenching as well as the spectrum of the pure indium reference[82]; (b) calculated ratio curves with respect to Al for mono- and di-vacancies as well as for vacancy-In complexes[82].

    图 34  (a) Zn-扩散GaAs(淬火态)和纯Zn样品的多普勒谱图[83]; (b) 理论上计算了GaAs中不同空位和空位配合物的动量密度[83]

    Fig. 34.  (a) Results of Doppler broadening spectroscopy of Zn-diffused SI GaAs (as-quenched) and pure Zn samples[83]; (b) ratio of the momentum density to bulk GaAs for different vacancies and vacancy complexes in GaAs are theoretically calculated[83].

    Baidu
  • [1]

    Lynn K G, MacDonald J R, Boie R A, Feldman L C, Gabbe J D, Robbins M F, Bonderup E, Golovchenko J 1977 Phys. Rev. Lett. 38 241Google Scholar

    [2]

    Lynn K G, Goland A N 1976 Solid. State. Commun. 18 1549Google Scholar

    [3]

    Zhang X, Lu G 2010 Phys. Rev. B. 82 012101Google Scholar

    [4]

    Elsayed M, Krause-Rehberg R, Christian E, Nadine E, Bernd K 2018 Phys. Status Solidi A 215 1800036Google Scholar

    [5]

    Abhaya S, Rajaraman R, Sarguna R M, Pradyumna K P, David C, Amarendra G 2019 J. Alloys Compd. 806 780Google Scholar

    [6]

    曹兴忠, 宋力刚, 靳硕学, 张仁刚, 王宝义, 魏龙 2017 66 027801Google Scholar

    Cao X Z, Song L G, Jin S X, Zhang R G, Wang B Y, Wei L 2017 Acta Phys. Sin. 66 027801Google Scholar

    [7]

    胡远超, 曹兴忠, 李玉晓, 张鹏, 靳硕学, 卢二阳, 于润升, 魏龙, 王宝义 2015 64 247804Google Scholar

    Hu Y C, Cao X Z, Li Y X, Zhang P, Jin S X, Lu E Y, Yu R S, Wei L, Wang B Y 2015 Acta Phys. Sin. 64 247804Google Scholar

    [8]

    Grafutin V I, Prokop’ev E P 2002 Phys. Usp. 45 59Google Scholar

    [9]

    郗传英 2005 博士学位论文 (合肥: 中国科学技术大学)

    Xi C Y 2005 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [10]

    Ishizaki T, Yoshiie T, Sato K, Yanagita S, Xu Q, Komatsu M, Kiritani M 2003 Mater. Sci. Eng. A 350 102Google Scholar

    [11]

    Elsayed M, Bondarenko V, Petters K, Gebauer J, Krause-Rehberg R 2008 J. Appl. Phy. 104 103526Google Scholar

    [12]

    Xia R, Cao X Z, Gao M Z, Zhang P, Zeng M F, Wang B Y, Wei L 2017 Phys. Chem. Chem. Phys. 19 3616Google Scholar

    [13]

    Karwasz G P, Zecca A, Brusa R S, Pliszkab D 2004 J. Alloys Compd. 382 244Google Scholar

    [14]

    Utpalla P, Sharma S K, Sudarshan K, Kumar V, Pujari P K 2019 Eur. Polym. J. 117 10Google Scholar

    [15]

    Suzuki T, He C Q, Kondo K, Shantarovich V, Ito Y 2003 Radiat. Phys. Chem. 68 489Google Scholar

    [16]

    Sharma S K, Prakash J, Bahadur J, Sudarshan K, Maheshwari P, Mazumderc S, Pujari P K 2014 Phys. Chem. Chem. Phys. 16 1399Google Scholar

    [17]

    Seeger A 1973 J. Phys. F: Met. Phys. 3 284Google Scholar

    [18]

    朱特, 曹兴忠 2020 69 177801Google Scholar

    Zhu T, Cao X Z 2020 Acta Phys. Sin. 69 177801Google Scholar

    [19]

    Wang B Y, Cao X Z, Yu R S, Wei C F, Zhang Z M, Ma C X, Chang T B, Pei G X, Li J C, Zheng L S, Wei L, Wang T M, He Y J, Yu W Z, Zhu S Y 2004 Positron Annihilation, ICPA-13 Proceedings Kyoto, Japan Sep 7–12, 2003 pp513–515

    [20]

    Zhang R G, Wang B Y, Zhang H, Wei L 2005 Appl. Surf. Sci. 245 340Google Scholar

    [21]

    Wan D Y, Wang Y T, Wang B Y, Ma C X, Sun H, Wei L 2003 J. Cryst. Growth 253 230Google Scholar

    [22]

    王丹妮, 王宝义, 张兰芝, 钟玉荣, 章志明, 李道武, 魏龙, 张天保 2008 核技术 31 577Google Scholar

    Wang D N, Wang B Y, Zhang L Z, Zhong Y R, Zheng Z M, Li D W, Wei L, Zhang T B 2008 Nucl. Tech. 31 577Google Scholar

    [23]

    Asoka-Kumar P, Alatalo M, Ghosh V J, Kruseman A C, Nielsen B, Lynn K G 1996 Phys. Rev. B 77 2097Google Scholar

    [24]

    Brusa R S, Deng W, Karwasz G P, Zecca A 2002 Nucl. Instrum. Methods Phys. Res. , Sect. B 194 519Google Scholar

    [25]

    Xi C Y, Ye B J, Kong W, Weng H M, Zhou X Y, Han R D 2006 Chin. J. Chem. Phys. 19 203Google Scholar

    [26]

    Lee S U, Lee Y J, Kim J R, Jeong K E, Jeong S Y 2019 J. Ind. Eng. Chem. 79 443Google Scholar

    [27]

    Sugita K, Ogawa R, Mizuno M, Araki Hm, Yabuuchi A 2022 Scr. Mater. 208 114339Google Scholar

    [28]

    Jin K, Guo W, Lu C Y, Ullah M W, Zhang Y W, Weber W J, Wang L M, Poplawsky J D, Bei H B 2016 Acta Mater. 121 365Google Scholar

    [29]

    Jin S X, Zhang P, Lu E Y, Guo L P, Wang B Y, Cao X Z 2016 Acta Mater. 103 658Google Scholar

    [30]

    Zhong Z H, Xu Q, Mori K, Tokitani M 2019 Philos. Mag. 99 1515Google Scholar

    [31]

    王少阶 2008 应用正电子谱学(上卷) (武汉: 湖北科学技术出版社) 第85页

    Wang S J 2008 Applied Positron Spectroscopy (Vol. 1) (Wuhan: Hubei Science and Technology Press) p85

    [32]

    Onitsuka T, Takenaka M, Kuramoto, Nagai Y, Hasegawa M 2001 Phys. Rev. B 65 012204Google Scholar

    [33]

    Bartha K, Zháňal P, Stráský J, Čížek J, Dopita M, Lukáč F, Harcuba P, Hájek M, Polyakova V, Semenova I, Janečeka M 2019 J. Alloys Compd. 788 771Google Scholar

    [34]

    Nagai Y, Hasegawa M, Tang Z, Hempel A, Yubuta K, Shimamura T, Kawazoe Y, Kawai A, Kano F 2000 Phys. Rev. B 61 6574Google Scholar

    [35]

    Liu X S, Zhang P, Wang B Y, Cao X Z, Jin S X, Yu R S 2021 Materials 14 1451Google Scholar

    [36]

    Abhaya S, Rajaraman S. Kalavathi R, Amarendra G 2015 J. Alloys Compd. 620 277Google Scholar

    [37]

    Ye F J, Zhu T, Wang Q Q, Song Y M, Zhang H Q, Kuang P, Zhang P, Yu R S, Cao X Z, Wang B Y 2022 Intermetallics 149 107670Google Scholar

    [38]

    Nagai Y, Tang Z, Hassegawa M, Kanai T, Saneyasu M 2001 Phys. Rev. B 63 134110Google Scholar

    [39]

    Xu Q, Yoshiie T, Sato K 2007 Phys. Status Solidi C 4 3573Google Scholar

    [40]

    Wang X W, ZhongY R, Wang B Y, Zhang H Y 2009 J. Mater. Res. 24 1794Google Scholar

    [41]

    王茜茜 2022 硕士学位论文 (贵阳: 贵州大学)

    Wang Q Q 2022 M. S. Thesis (Guiyang: Guizhou University

    [42]

    Sabelová V, Kršjak V, Kuriplach Jm, Dai Y, Slugeň V 2015 J. Nucl. Mater. 458 350Google Scholar

    [43]

    Fujii K, Fukuya K, Nakata N, Hono K, Nagai Y, Hasegawa M 2005 J. Nucl. Mater. 340 247Google Scholar

    [44]

    Ge W N, Rahman A, Cheng H, Zhang M, Liu J D, Zhang Z M, Ye B J 2018 J. Magn. Magn. Mater. 449 401Google Scholar

    [45]

    Kundu R, Bhattacharya S, Roy D, Nambissan P M G 2017 RSC Adv. 7 8131Google Scholar

    [46]

    Qin M J, Gao F, Cizek J, Yang S J, Fan X L, Zhao L L, Xu J, Dong G G, Reece M, Yan H X 2019 Acta Mater. 164 76Google Scholar

    [47]

    Ahmed M, Mukherjee S, Singha T, Nambissan P M G 2023 J. Phys. Chem. Solids 181 111513Google Scholar

    [48]

    Thorat A V, Ghoshal T, Morris M A, Nambissan P M G 2014 Acta Phys. Pol. A 125 756Google Scholar

    [49]

    Das A, Mandal A C, Roy S, Prashanth P, Ahamed S I, Kar S, Prasad M S, Nambissan P M G 2016 Physica E 83 389Google Scholar

    [50]

    Ghosh S, Khan G K, Mandal K, Samanta A, Nambissan P M G 2013 J. Phys. Chem. C 117 8458Google Scholar

    [51]

    Das A 2019 Curr. Sci. 117 1990Google Scholar

    [52]

    Yu R S, Maekawa M, Kawasuso A, Wang B Y, Wei L 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 270 47Google Scholar

    [53]

    Elsayed M, Krause-Rehberg R, Korff B, Ratschinski I, Leipner H S 2013 Eur. Phys. J. B 86 358Google Scholar

    [54]

    Xu J, Moxom J, Somieski B, White C W 2001 Phys. Rev. B 64 112404Google Scholar

    [55]

    Slotte J, Makkonen I, Tuomisto F 2016 ECS J. Solid State Sci. Technol. 5 3166Google Scholar

    [56]

    Simpson P J, Jenei Z, Asoka-Kumar P, Robison R R, Law M E 2012 Appl. Phys. Lett. 85 1538Google Scholar

    [57]

    Das A, Mandal A C, Roy S, Nambissan P M G 2018 AIP Adv. 8 095013Google Scholar

    [58]

    Pasang T, Namratha K, Guagliardo P, Byrappa K, Ranganathaiah C, Samarin S, FWilliams J 2015 Mater. Res. Express 2 045502Google Scholar

    [59]

    Sharma S K, Bahadur J, Bahadur J, Sudarshan K, Maheshwari P, Mazumder S, Pujari P K 2014 Phys. Chem. Phys. Chem. 16 1399Google Scholar

    [60]

    Cao X Z, Xia R, Yang J, Zeng M, Wang B Y, Yu R S, Wei L 2017 Acta Phys. Pol A 132 1535Google Scholar

    [61]

    Ghasemifard M, Ghamari M 2023 J. Appl. Polym. Sci. 141 1Google Scholar

    [62]

    Rana U, Nambissan P M G, Malika S, Chakrabarti K 2014 Phys. Chem. Chem. Phys. 7 3292Google Scholar

    [63]

    Cao X Z, Zhu T, Jin S X, Kuang P, Zhang P, Lu E Y, Gong Y H, Guo L P, Wang B Y 2017 Appl. Phys. A 123 176Google Scholar

    [64]

    An X D, Zhu T, Wan M P, Li Y H, Wang Q Q, Zhang P, Liu J Y, Song Y M, Zhang Z K, Wang B Y, Cao X Z 2021 Int. J. Hydrogen Energy 46 13163Google Scholar

    [65]

    Wang Q Q, An X D, Zhu T, Wan M P, Zhang P, Ye F J, Song Y M, Huang C W, Ma R, Wang B Y, Cao X Z 2021 J. Alloys Compd. 885 160909Google Scholar

    [66]

    Fujinami M, Sawada T, Akahane T 2003 Radiat. Phys. Chem. 68 631Google Scholar

    [67]

    Beyerlein I J, Demkowicz M J, Misraa A, Uberuaga B P 2015 Prog. Mater. Sci. 74 125Google Scholar

    [68]

    Liu Y L, Song L G, Chen Y, Bai R Y, Wang Z, Zhu T, Zhang P, Jin S X, Wang H H, Lu E Y, Cao X Z, Wang B Y 2021 Fusion Eng. Des. 162 112118Google Scholar

    [69]

    Ren X L, Yao B D, Zhu T, Zhong Z H, Wang Y X, Cao X Z, Jinno S, Xu Q 2020 Intermetallics 126 106942Google Scholar

    [70]

    Zhang L Z, Wang D N, Wang B Y, Yu R S, Wei L 2007 Appl. Surf. Sci. 253 7309Google Scholar

    [71]

    Reiner M, Pikart P, Hugenschmidt C 2014 J. Alloys Compd. 587 515Google Scholar

    [72]

    Khanam A, Slotte J, Tuomisto F, Subhechha S, Popovici M, Kar G S 2022 J. Appl. Phys. 131 245301Google Scholar

    [73]

    杨静 2015 博士学位论文 (北京: 中国科学院高能物理研究所)

    Yang J 2015 Ph. D. Dissertation (Beijing: Institute of High Energy Physics, Chinese Academy of Sciences

    [74]

    Wiktor J, Jomard G, Torrent M 2015 Phys. Rev. B 93 125113Google Scholar

    [75]

    Yang Q G, Cao X Z, Wang B Y, Wang P, Olsson P 2023 Phys. Rev. B 108 104113Google Scholar

    [76]

    Simula K A, Haerkönen J, Zhelezova I, Drummond N D, Tuomisto F, Makkonen I 2023 Phys. Rev. B 108 045201Google Scholar

    [77]

    Makkonen I, Hakala M, Puska M J 2006 Phys. Rev. B 73 035103Google Scholar

    [78]

    Puska M J, Seitsonen A P, Nieminen R M 1995 Phys. Rev. B 52 10947Google Scholar

    [79]

    Yang Q G, Hu Z, Makkonen L, Desgardin P, Egger W, Barthe M F, Olsson P 2022 J. Nucl. Mater. 571 154019Google Scholar

    [80]

    刘永利 2022 博士学位论文 (北京: 中国科学院高能物理研究所)

    Liu Y L 2022 Ph. D. Dissertation (Beijing: Institute of High Energy Physics, Chinese Academy of Sciences

    [81]

    Yang Q G, Olsson P 2023 Acta Mater. 242 118429Google Scholar

    [82]

    Elsayed M, Staab T E M, Čížek J, Krause-Rehberg R 2021 Acta Mater. 219 117228Google Scholar

    [83]

    Elsayed M, Krause-Rehberg R, Korff B, Richter S, Leipner H S 2013 J. Appl. Phys. 113 094902Google Scholar

    [84]

    Rauch C, Makkonen I, Tuomisto F 2011 Phys Status Solidi A 208 1548Google Scholar

    [85]

    Makkonena I, Hakalab M, Puska M J 2006 Physica B 376-377 972Google Scholar

    [86]

    Slotte J, Tuomisto F 2012 Mater. Sci. Semicond. Process. 15 669Google Scholar

    [87]

    Linez F, Makkonen I, Tuomisto F 2016 Phys. Rev. B 94 014103Google Scholar

  • [1] 朱特, 曹兴忠. 正电子湮没谱学在金属材料氢/氦行为研究中的应用.  , 2020, 69(17): 177801. doi: 10.7498/aps.69.20200724
    [2] 胡远超, 曹兴忠, 李玉晓, 张鹏, 靳硕学, 卢二阳, 于润升, 魏龙, 王宝义. 慢正电子束流技术在金属/合金微观缺陷研究中的应用.  , 2015, 64(24): 247804. doi: 10.7498/aps.64.247804
    [3] 张丽娟, 张传超, 廖威, 刘建党, 谷冰川, 袁晓东, 叶邦角. 氘化对KH2PO4晶体微观缺陷影响的正电子湮没研究.  , 2015, 64(9): 097802. doi: 10.7498/aps.64.097802
    [4] 丁勇, 陈仁杰, 郭帅, 刘兴民, 李东, 闫阿儒. 添加Dy元素对钕铁硼速凝片微观组织和磁特性的影响.  , 2011, 60(5): 057103. doi: 10.7498/aps.60.057103
    [5] 王小炼, 冯灏, 孙卫国, 樊群超, 王斌, 曾阳阳. 运用球高斯分布极化势研究低能电子与H2 分子碰撞的振动激发动量迁移散射截面.  , 2011, 60(2): 023401. doi: 10.7498/aps.60.023401
    [6] 张强, 户田裕之. 同步辐射K边减影成像及其在多孔金属材料中的应用.  , 2011, 60(11): 114103. doi: 10.7498/aps.60.114103
    [7] 唐小锋, 牛铭理, 周晓国, 刘世林. 基于阈值光电子-光离子符合技术的分子离子光谱和解离动力学研究.  , 2010, 59(10): 6940-6947. doi: 10.7498/aps.59.6940
    [8] 王雪涛, 关庆丰, 邱冬华, 程秀围, 李艳, 彭冬晋, 顾倩倩. 强流脉冲电子束作用下金属纯Cu的微观结构状态——空位簇缺陷及表面微孔结构.  , 2010, 59(10): 7252-7257. doi: 10.7498/aps.59.7252
    [9] 熊涛, 高传波, 陈祥磊, 周先意, 翁惠民, 曹方宇, 叶邦角, 韩荣典, 杜淮江. Fe3O4-C核壳型纳米纤维的正电子研究.  , 2009, 58(10): 6946-6950. doi: 10.7498/aps.58.6946
    [10] 杜晓明, 吴尔冬, 董宝中, 吴忠华, 苑学众. Ti-Mo合金氢化物微观缺陷的小角X射线散射研究.  , 2008, 57(9): 5782-5787. doi: 10.7498/aps.57.5782
    [11] 陈登平, 贺红亮, 黎明发, 经福谦. 冲击压缩下非均质脆性固体的弛豫破坏研究.  , 2007, 56(1): 423-428. doi: 10.7498/aps.56.423
    [12] 郭建亭, 李玉芳, 熊良钺, 叶恒强. 合金元素Zr韧化不同计量比Ni3Al合金的微观机制.  , 2005, 54(4): 1868-1873. doi: 10.7498/aps.54.1868
    [13] 刘义保, 庞文宁, 丁海兵, 尚仁成. 电子-光子符合散射实验中受激原子态电荷云分布的研究.  , 2005, 54(8): 3554-3558. doi: 10.7498/aps.54.3554
    [14] 班春燕, 巴启先, 崔建忠, 路贵民, 訾炳涛. 脉冲电流作用下LY12铝合金的微观结构和合金元素分布.  , 2001, 50(10): 2028-2031. doi: 10.7498/aps.50.2028
    [15] 钟夏平, 邓 文, 唐郁生, 熊良钺, 王淑荷, 郭建亭, 龙期威. 合金元素韧化或脆化FeAl金属间化合物的微观机制.  , 1998, 47(10): 1734-1740. doi: 10.7498/aps.47.1734
    [16] 杨炳忻, 陈向军, 庞文宁, 陈淼华, 张芳, 田宝利, 徐克尊. (e,2e)电子动量谱仪研制和若干原子分子的电子动量谱测量.  , 1997, 46(5): 862-869. doi: 10.7498/aps.46.862
    [17] 吴奕初, 朱梓英, 伊东芳子, 伊藤泰男. 镍中氢与缺陷互作用的正电子寿命和多普勒展宽研究.  , 1997, 46(2): 406-410. doi: 10.7498/aps.46.406
    [18] 顾一鸣, 任尚元. Si中D3d对称性态密度分布和缺陷对电子结构.  , 1987, 36(6): 736-744. doi: 10.7498/aps.36.736
    [19] 顾秉林, 楼永明, 高乃飞, 熊家炯. 金属中点缺陷的电子结构和缺陷谱.  , 1986, 35(1): 17-24. doi: 10.7498/aps.35.17
    [20] 曾庆城. 硅中电离杂质扩散分布的显微观测.  , 1981, 30(2): 249-253. doi: 10.7498/aps.30.249
计量
  • 文章访问数:  2859
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-14
  • 修回日期:  2024-01-11
  • 上网日期:  2024-01-13
  • 刊出日期:  2024-04-05

/

返回文章
返回
Baidu
map