-
电磁场对物质性质的影响和调控一直是科学研究的核心议题. 然而, 在计算凝聚态物理领域, 由于传统的密度泛函理论并不能轻易推广至含有外加电磁场的情景, 且外场往往会破缺周期性体系原本具有的平移对称性, 从而使得布洛赫定理失效. 因此, 利用第一性原理方法计算外场作用下的物质性质并非易事, 特别是在外场不能被视为微扰的情况下. 在过去的二十年中, 许多计算凝聚态物理学者致力于构建和发展适用于有限外场下周期性体系的第一性原理计算方法. 本文旨在系统地回顾这些理论方法及其在铁电、压电、铁磁、多铁等领域的应用. 本文首先简要介绍现代电极化理论, 并阐述基于此理论以及密度泛函理论, 构建出两种用于有限电场下计算的方法. 然后探讨将外磁场纳入密度泛函理论, 并对相关的现有计算手段以及所面临的挑战进行讨论. 接着回顾了被广泛用于研究磁性、铁电和多铁体系的第一性原理有效哈密顿量方法, 以及该方法在考虑外场时的延伸. 最后, 介绍了当下备受瞩目的利用机器学习中的神经网络方法构建有效哈密顿量模型的发展成果及在考虑外场下的拓展.The influence of electromagnetic field on material characteristics remains a pivotal concern in scientific researches. Nonetheless, in the realm of computational condensed matter physics, the extension of traditional density functional theory to scenarios inclusive of external electromagentic fields poses considerable challenges. These issues largely stem from the disruption of translational symmetry by external fields inherent in periodic systems, rendering Bloch's theorem inoperative. Consequently, the using the first-principles method to calculate material properties in the presence of external fields becomes an intricate task, especially in circumstances where the external field cannot be approximated as a minor perturbation. Over the past two decades, a significant number of scholars within the field of computational condensed matter physics have dedicated their efforts to the formulation and refinement of first-principles computational method adopted in handling periodic systems subjected to finite external fields. This work attempts to systematically summarize these theoretical methods and their applications in the broad spectrum, including but not limited to ferroelectric, piezoelectric, ferromagnetic, and multiferroic domains. In the first part of this paper, we provide a succinct exposition of modern theory of polarization and delineate the process of constructing two computation methods in finite electric fields predicated by this theory in conjunction with density functional theory. The succeeding segment focuses on the integration of external magnetic fields into density functional theory and examining the accompanying computational procedures alongside the challenges they present. In the third part, we firstly review the first-principles effective Hamiltonian method, which is widely used in the study of magnetic, ferroelectric and multiferroic systems, and its adaptability to the case involving external fields. Finally, we discuss the exciting developments of constructing effective Hamiltonian models by using machine learning neural network methods , and their extensions according to the external fields.
-
Keywords:
- first-principles calculation /
- electromagnetic field /
- effective Hamiltonian /
- machine learning
[1] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar
[2] Kohn W 1999 Rev. Mod. Phys. 71 1253Google Scholar
[3] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar
[4] Wu M 2021 Nat. Rev. Phys. 3 726Google Scholar
[5] Belov K P, Levitin R Z, Nikitin S A 1964 Sov. Phys. Uspekhi 7 179Google Scholar
[6] Haider T 2017 Int. J. Electromagn. Appl. 7 17
[7] Hirohata A, Yamada K, Nakatani Y, Prejbeanu I L, Diény B, Pirro P, Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711Google Scholar
[8] Vitale S A, Nezich D, Varghese J O, Kim P, Gedik N, Jarillo‐Herrero P, Xiao D, Rothschild M 2018 Small 14 1801483Google Scholar
[9] Yao C, Ma Y 2021 Science 24 102541
[10] Spaldin N A, Ramesh R 2019 Nat. Mater. 18 203Google Scholar
[11] Paras, Yadav K, Kumar P, Teja D R, Chakraborty S, Chakraborty M, Mohapatra S S, Sahoo A, Chou M M C, Liang C T, Hang D R 2023 Nanomaterials 13 160
[12] Ennen I, Kappe D, Rempel T, Glenske C, Hütten A 2016 Sensors 16 904Google Scholar
[13] von Klitzing K, Chakraborty T, Kim P, Madhavan V, Dai X, McIver J, Tokura Y, Savary L, Smirnova D, Rey A M, Felser C, Gooth J, Qi X 2020 Nat. Rev. Phys. 2 397Google Scholar
[14] Zhang L, Ren J, Wang J S, Li B 2011 J. Phys. Condens. Matter 23 305402Google Scholar
[15] Baroni S, Giannozzi P, Testa A 1987 Phys. Rev. Lett. 58 1861Google Scholar
[16] Gonze X, Allan D C, Teter M P 1992 Phys. Rev. Lett. 68 3603Google Scholar
[17] Gonze X 1997 Phys. Rev. B 55 10337Google Scholar
[18] Resta R 1992 Ferroelectrics 136 51Google Scholar
[19] King-Smith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651Google Scholar
[20] Resta R 1994 Rev. Mod. Phys. 66 899Google Scholar
[21] Vanderbilt D, King-Smith R D 1993 Phys. Rev. B 48 4442Google Scholar
[22] Resta R 2010 J. Phys. Condens. Mat. 22 123201Google Scholar
[23] Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847Google Scholar
[24] Marzari N, Mostofi A A, Yates J R, Souza I, Vanderbilt D 2012 Rev. Mod. Phys. 84 1419Google Scholar
[25] Ortiz G, Martin R M 1994 Phys. Rev. B 49 14202Google Scholar
[26] Resta R 1998 Phys. Rev. Lett. 80 1800Google Scholar
[27] Valença Ferreira De Aragão E, Moreno D, Battaglia S, Bendazzoli G L, Evangelisti S, Leininger T, Suaud N, Berger J A 2019 Phys. Rev. B 99 205144Google Scholar
[28] Nunes R W, Gonze X 2001 Phys. Rev. B 63 155107Google Scholar
[29] Kane E O 1960 J. Phys. Chem. Solids 12 181Google Scholar
[30] Wannier G H 1960 Phys. Rev. 117 432Google Scholar
[31] Nenciu G 1991 Rev. Mod. Phys. 63 91Google Scholar
[32] Souza I, Íñiguez J, Vanderbilt D 2002 Phys. Rev. Lett. 89 117602Google Scholar
[33] Umari P, Pasquarello A 2002 Phys. Rev. Lett. 89 157602Google Scholar
[34] Ymeri H M 1997 Electr. Eng. 80 163Google Scholar
[35] Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045Google Scholar
[36] Fu H, Bellaiche L 2003 Phys. Rev. Lett. 91 057601Google Scholar
[37] Xu C, Chen P, Tan H, Yang Y, Xiang H, Bellaiche L 2020 Phys. Rev. Lett. 125 037203Google Scholar
[38] Chen L, Xu C, Tian H, Xiang H, Íñiguez J, Yang Y, Bellaiche L 2019 Phys. Rev. Lett. 122 247701Google Scholar
[39] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar
[40] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys. Condens. Mat. 21 395502Google Scholar
[41] Gonze X, Amadon B, Anglade P M, et al. 2009 Comput. Phys. Commun. 180 2582Google Scholar
[42] Zwanziger J W, Galbraith J, Kipouros Y, Torrent M, Giantomassi M, Gonze X 2012 Comput. Mater. Sci. 58 113Google Scholar
[43] Wu X, Vanderbilt D, Hamann D R 2005 Phys. Rev. B 72 035105Google Scholar
[44] Vanderbilt D 2000 J. Phys. Chem. Solids 61 147Google Scholar
[45] Bennett D, Tanner D, Ghosez P, Janolin P E, Bousquet E 2022 Phys. Rev. B 106 174105Google Scholar
[46] Fiebig M, Lottermoser T, Meier D, Trassin M 2016 Nat. Rev. Mater. 1 16046Google Scholar
[47] Malashevich A, Coh S, Souza I, Vanderbilt D 2012 Phys. Rev. B 86 094430Google Scholar
[48] Gonze X, Ghosez Ph, Godby R W 1995 Phys. Rev. Lett. 74 4035Google Scholar
[49] Resta R 2018 Eur. Phys. J. B 91 100Google Scholar
[50] Stengel M, Spaldin N A, Vanderbilt D 2009 Nat. Phys. 5 304Google Scholar
[51] Hong J, Vanderbilt D 2011 Phys. Rev. B 84 115107Google Scholar
[52] Jiang Z, Zhang R, Li F, Jin L, Zhang N, Wang D, Jia C L 2016 AIP Adv. 6 065122Google Scholar
[53] Wu X, Rabe K M, Vanderbilt D 2011 Phys. Rev. B 83 020104
[54] Wu X, Stengel M, Rabe K M, Vanderbilt D 2008 Phys. Rev. Lett. 101 087601Google Scholar
[55] Stengel M, Fennie C J, Ghosez P 2012 Phys. Rev. B 86 094112Google Scholar
[56] Stengel M, Vanderbilt D 2009 Phys. Rev. B 80 241103Google Scholar
[57] Stengel M 2011 Phys. Rev. Lett. 106 136803Google Scholar
[58] Cancellieri C, Fontaine D, Gariglio S, Reyren N, Caviglia A D, Fête A, Leake S J, Pauli S A, Willmott P R, Stengel M, Ghosez Ph, Triscone J M 2011 Phys. Rev. Lett. 107 056102Google Scholar
[59] Hong J, Vanderbilt D 2013 Phys. Rev. B 88 174107Google Scholar
[60] Diéguez O, Vanderbilt D 2006 Phys. Rev. Lett. 96 056401Google Scholar
[61] Barth U V, Hedin L 1972 J. Phys. C Solid State Phys. 5 1629Google Scholar
[62] Gunnarsson O, Lundqvist B I 1976 Phys. Rev. B 13 4274Google Scholar
[63] Kubler J, Hock K H, Sticht J, Williams A R 1988 J. Phys. F Met. Phys. 18 469Google Scholar
[64] Sharma S, Dewhurst J K, Ambrosch-Draxl C, Kurth S, Helbig N, Pittalis S, Shallcross S, Nordström L, Gross E K U 2007 Phys. Rev. Lett. 98 196405Google Scholar
[65] Sandratskii L M 1998 Adv. Phys. 47 91Google Scholar
[66] Pu Z C, Li H, Zhang N, Jiang H, Gao Y Q, Xiao Y Q, Gao Y Q, Sun Q M, Zhang Y, Shao S H 2023 Phys. Rev. Res. 5 013036Google Scholar
[67] Ullrich C A 2018 Phys. Rev. B 98 035140Google Scholar
[68] Jacob C R, Reiher M 2012 Int. J. Quantum Chem. 112 3661Google Scholar
[69] Ullrich C A 2019 Phys. Rev. A 100 012516Google Scholar
[70] Bousquet E, Spaldin N A, Delaney K T 2011 Phys. Rev. Lett. 106 107202Google Scholar
[71] Bousquet E, Spaldin N 2011 Phys. Rev. Lett. 107 197603Google Scholar
[72] Dasa T R, Hao L, Liu J, Xu H 2019 J. Mater. Chem. C 7 13294Google Scholar
[73] Vignale G, Rasolt M 1987 Phys. Rev. Lett. 59 2360Google Scholar
[74] Vignale G, Rasolt M, Geldart D J W 1990 Advanced Quantum Chemistry (Cambridge: Academic Press) pp235–253
[75] Laestadius A 2014 Int. J. Quantum Chem. 114 1445Google Scholar
[76] Laestadius A, Benedicks M 2014 Int. J. Quantum Chem. 114 782Google Scholar
[77] Laestadius A 2014 J. Math. Chem. 52 2581Google Scholar
[78] Grayce C J, Harris R A 1994 Phys. Rev. A 50 3089Google Scholar
[79] Reimann S, Borgoo A, Tellgren E I, Teale A M, Helgaker T 2017 J. Chem. Theory Comput. 13 4089Google Scholar
[80] Tellgren E I, Teale A M, Furness J W, Lange K K, Ekström U, Helgaker T 2014 J. Chem. Phys. 140 034101Google Scholar
[81] Furness J W, Verbeke J, Tellgren E I, Stopkowicz S, Ekström U, Helgaker T, Teale A M 2015 J. Chem. Theory Comput. 11 4169Google Scholar
[82] Reimann S, Borgoo A, Austad J, Tellgren E I, Teale A M, Helgaker T, Stopkowicz S 2019 Mol. Phys. 117 97Google Scholar
[83] Sen S, Tellgren E I 2021 J. Chem. Theory Comput. 17 1480Google Scholar
[84] Pemberton M J, Irons T J P, Helgaker T, Teale A M 2022 J. Chem. Phys. 156 204113Google Scholar
[85] Penz M, Tellgren E I, Csirik M A, Ruggenthaler M, Laestadius A 2023 arXiv: 2303.01357 [quant-ph
[86] Lieb E H, Schrader R 2013 Phys. Rev. A 88 032516Google Scholar
[87] Diener G 1991 J. Phys. Condens. Mat. 3 9417Google Scholar
[88] Pan X Y, Sahni V 2010 Int. J. Quantum Chem. 110 2833Google Scholar
[89] Tellgren E I, Kvaal S, Sagvolden E, Ekström U, Teale A M, Helgaker T 2012 Phys. Rev. A 86 062506Google Scholar
[90] Laestadius A, Benedicks M 2015 Phys. Rev. A 91 032508Google Scholar
[91] Laestadius A, Penz M, Tellgren E I 2021 J. Phys. Condens. Mat. 33 295504Google Scholar
[92] Thonhauser T, Ceresoli D, Mostofi A A, Marzari N, Resta R, Vanderbilt D 2009 J. Chem. Phys. 131 101101Google Scholar
[93] Ceresoli D, Gerstmann U, Seitsonen A P, Mauri F 2010 Phys. Rev. B 81 060409Google Scholar
[94] Murakami S 2006 Phys. Rev. Lett. 97 236805Google Scholar
[95] Coh S, Vanderbilt D, Malashevich A, Souza I 2011 Phys. Rev. B 83 085108Google Scholar
[96] Göbel B, Mook A, Henk J, Mertig I 2019 Phys. Rev. B 99 060406Google Scholar
[97] Essin A M, Moore J E, Vanderbilt D 2009 Phys. Rev. Lett. 102 146805Google Scholar
[98] Essin A M, Turner A M, Moore J E, Vanderbilt D 2010 Phys. Rev. B 81 205104Google Scholar
[99] Thonhauser T 2011 Int. J. Mod. Phys. B 25 1429Google Scholar
[100] Xiao D, Shi J, Niu Q 2005 Phys. Rev. Lett. 95 137204Google Scholar
[101] Aryasetiawan F, Karlsson K, Miyake T 2016 Phys. Rev. B 93 161104Google Scholar
[102] Ceresoli D, Thonhauser T, Vanderbilt D, Resta R 2006 Phys. Rev. B 74 024408Google Scholar
[103] Aryasetiawan F, Karlsson K 2019 J. Phys. Chem. Solids 128 87Google Scholar
[104] Thonhauser T, Ceresoli D, Vanderbilt D, Resta R 2005 Phys. Rev. Lett. 95 137205Google Scholar
[105] Shi J, Vignale G, Xiao D, Niu Q 2007 Phys. Rev. Lett. 99 197202Google Scholar
[106] Lopez M G, Vanderbilt D, Thonhauser T, Souza I 2012 Phys. Rev. B 85 014435Google Scholar
[107] Hanke J P, Freimuth F, Nandy A K, Zhang H, Blügel S, Mokrousov Y 2016 Phys. Rev. B 94 121114Google Scholar
[108] Pickard C J, Mauri F 2001 Phys. Rev. B 63 245101Google Scholar
[109] Yates J R, Pickard C J, Mauri F 2007 Phys. Rev. B 76 024401Google Scholar
[110] Qiao S, Kimura A, Adachi H, Iori K, Miyamoto K, Xie T, Namatame H, Taniguchi M, Tanaka A, Muro T, Imada S, Suga S 2004 Phys. Rev. B 70 134418Google Scholar
[111] Kolchinskaya A, Komissinskiy P, Yazdi M B, Vafaee M, Mikhailova D, Narayanan N, Ehrenberg H, Wilhelm F, Rogalev A, Alff L 2012 Phys. Rev. B 85 224422Google Scholar
[112] Cai W, Galli G 2004 Phys. Rev. Lett. 92 186402Google Scholar
[113] Lee E, Cai W, Galli G A 2007 J. Comput. Phys. 226 1310Google Scholar
[114] Kohn W 1959 Phys. Rev. 115 1460Google Scholar
[115] Zak J 1964 Phys. Rev. 134 A1602Google Scholar
[116] Xu K, Feng J, Xiang H 2022 Chin. Phys. B 31 097505Google Scholar
[117] Drautz R, Fähnle M 2004 Phys. Rev. B 69 104404Google Scholar
[118] Hastings W K 1972 Biometrika 57 97
[119] Gilbert T L 2004 IEEE Trans. Magn. 40 3443Google Scholar
[120] Tranchida J, Plimpton S J, Thibaudeau P, Thompson A P 2018 J. Comput. Phys. 372 406Google Scholar
[121] Rózsa L, Udvardi L, Szunyogh L 2013 J. Phys. Condens. Mat. 25 506002Google Scholar
[122] Rózsa L, Udvardi L, Szunyogh L 2014 J. Phys. Condens. Mat. 26 216003Google Scholar
[123] Ma P W, Dudarev S L, Woo C H 2012 Phys. Rev. B 85 184301Google Scholar
[124] Ma P W, Woo C H, Dudarev S L 2008 Phys. Rev. B 78 024434Google Scholar
[125] Liechtenstein A I, Anisimov V I, Zaanen J 1995 Phys. Rev. B 52 R5467Google Scholar
[126] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar
[127] Himmetoglu B, Floris A, De Gironcoli S, Cococcioni M 2014 Int. J. Quantum Chem. 114 14Google Scholar
[128] Dederichs P H, Blügel S, Zeller R, Akai H 1984 Phys. Rev. Lett. 53 2512Google Scholar
[129] Ma P W, Dudarev S L 2015 Phys. Rev. B 91 054420Google Scholar
[130] Chen Y, Yang Y, Xu C, Xiang H 2023 Phys. Rev. B 107 214439Google Scholar
[131] Cai Z, Wang K, Xu Y, Wei S H, Xu B 2023 arXiv: 2208.04551 [cond-mat
[132] Li X, Yu H, Lou F, Feng J, Whangbo M H, Xiang H 2021 Molecules 26 803Google Scholar
[133] Xu C, Xu B, Dupé B, Bellaiche L 2019 Phys. Rev. B 99 104420Google Scholar
[134] Xu C, Feng J, Prokhorenko S, Nahas Y, Xiang H, Bellaiche L 2020 Phys. Rev. B 101 060404Google Scholar
[135] Kitaev A 2006 Ann. Phys. 321 2Google Scholar
[136] Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241Google Scholar
[137] Moriya T 1960 Phys. Rev. 120 91Google Scholar
[138] Moriya T 1960 Phys. Rev. Lett. 4 228Google Scholar
[139] Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152Google Scholar
[140] Bak P, Jensen M H 1980 J. Phys. C Solid State Phys. 13 L881Google Scholar
[141] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106Google Scholar
[142] Weber T, Waizner J, Tucker G S, Georgii R, Kugler M, Bauer A, Pfleiderer C, Garst M, Böni P 2018 Phys. Rev. B 97 224403Google Scholar
[143] Huang S X, Chien C L 2012 Phys. Rev. Lett. 108 267201Google Scholar
[144] Fujishiro Y, Kanazawa N, Tokura Y 2020 Appl. Phys. Lett. 116 090501Google Scholar
[145] Pappas C, Lelièvre-Berna E, Falus P, Bentley P M, Moskvin E, Grigoriev S, Fouquet P, Farago B 2009 Phys. Rev. Lett. 102 197202Google Scholar
[146] Ni J Y, Li X Y, Amoroso D, He X, Feng J S, Kan E J, Picozzi S, Xiang H J 2021 Phys. Rev. Lett. 127 247204Google Scholar
[147] Grytsiuk S, Hanke J P, Hoffmann M, Bouaziz J, Gomonay O, Bihlmayer G, Lounis S, Mokrousov Y, Blügel S 2020 Nat. Commun. 11 511Google Scholar
[148] Kartsev A, Augustin M, Evans R F L, Novoselov K S, Santos E J G 2020 Npj Comput. Mater. 6 150Google Scholar
[149] Zhu H F, Cao H Y, Xie Y, Hou Y S, Chen S, Xiang H, Gong X G 2016 Phys. Rev. B 93 024511Google Scholar
[150] Novák P, Chaplygin I, Seifert G, Gemming S, Laskowski R 2008 Comput. Mater. Sci. 44 79Google Scholar
[151] Fedorova N S, Ederer C, Spaldin N A, Scaramucci A 2015 Phys. Rev. B 91 165122Google Scholar
[152] Xiang H, Lee C, Koo H J, Gong X, Whangbo M H 2013 Dalton. Trans. 42 823Google Scholar
[153] Xiang H J, Kan E J, Wei S H, Whangbo M H, Gong X G 2011 Phys. Rev. B 84 224429Google Scholar
[154] Li X Y, Lou F, Gong X G, Xiang H 2020 New J. Phys. 22 053036Google Scholar
[155] Lou F, Li X Y, Ji J Y, Yu H Y, Feng J S, Gong X G, Xiang H J 2021 J. Chem. Phys. 154 114103Google Scholar
[156] Lounis S, Dederichs P H 2010 Phys. Rev. B 82 180404Google Scholar
[157] Szilva A, Costa M, Bergman A, Szunyogh L, Nordström L, Eriksson O 2013 Phys. Rev. Lett. 111 127204Google Scholar
[158] He X, Helbig N, Verstraete M J, Bousquet E 2021 Comput. Phys. Commun. 264 107938Google Scholar
[159] Katsnelson M I, Kvashnin Y O, Mazurenko V V, Lichtenstein A I 2010 Phys. Rev. B 82 100403Google Scholar
[160] Katsnelson M I, Lichtenstein A I 2000 Phys. Rev. B 61 8906Google Scholar
[161] Liechtenstein A I, Katsnelson M I, Antropov V P, Gubanov V A 1987 J. Magn. Magn. Mater. 67 65Google Scholar
[162] Wang X, Wang D sheng, Wu R, Freeman A J 1996 J. Magn. Magn. Mater. 159 337Google Scholar
[163] Wan X, Yin Q, Savrasov S Y 2006 Phys. Rev. Lett. 97 266403Google Scholar
[164] Durhuus F L, Skovhus T, Olsen T 2023 J. Phys. Condens. Mat. 35 105802Google Scholar
[165] Bhowmik T K, Sinha T P 2021 J. Solid State Chem. 304 122570Google Scholar
[166] Campbell D, Xu C, Bayaraa T, Bellaiche L 2020 Phys. Rev. B 102 144406Google Scholar
[167] Polesya S, Mankovsky S, Bornemann S, Ködderitzsch D, Minár J, Ebert H 2014 Phys. Rev. B 89 184414Google Scholar
[168] Dupé B, Hoffmann M, Paillard C, Heinze S 2014 Nat. Commun. 5 4030Google Scholar
[169] Simon E, Palotás K, Rózsa L, Udvardi L, Szunyogh L 2014 Phys. Rev. B 90 094410Google Scholar
[170] Fernandes I L, Chico J, Lounis S 2020 J. Phys. Condens. Mat. 32 425802Google Scholar
[171] Liang J, Wang W, Du H, Hallal A, Garcia K, Chshiev M, Fert A, Yang H 2020 Phys. Rev. B 101 184401Google Scholar
[172] Carvalho P C, Miranda I P, Klautau A B, Bergman A, Petrilli H M 2021 Phys. Rev. Mater. 5 124406Google Scholar
[173] Zhang Y, Xu C, Cheng P, Nahas Y, Prokhorenko S, Bellaiche L 2020 Phys. Rev. B 102 241107Google Scholar
[174] Leonov A O, Mostovoy M 2015 Nat. Commun. 6 8275Google Scholar
[175] Xu C, Feng J, Xiang H, Bellaiche L 2018 npj Comput. Mater. 4 1Google Scholar
[176] Cochran W 1960 Adv. Phys. 9 387Google Scholar
[177] Blinc R 1987 Ferroelectrics 74 301Google Scholar
[178] Zhong W, Vanderbilt D, Rabe K M 1994 Phys. Rev. Lett. 73 1861Google Scholar
[179] Zhong W, Vanderbilt D, Rabe K M 1995 Phys. Rev. B 52 6301Google Scholar
[180] LmEs M E, Bel I 1969 Phys. Rev. 177
[181] Rabe K M, Joannopoulos J D 1987 Phys. Rev. Lett. 59 570Google Scholar
[182] Rabe K M, Joannopoulos J D 1987 Phys. Rev. B 36 6631Google Scholar
[183] Rabe K M, Waghmare U V 1995 Phys. Rev. B 52 13236Google Scholar
[184] Bellaiche L, García A, Vanderbilt D 2000 Phys. Rev. Lett. 84 5427Google Scholar
[185] Walizer L, Lisenkov S, Bellaiche L 2006 Phys. Rev. B 73 144105Google Scholar
[186] Vanderbilt D, Zhong W 1998 Ferroelectrics 206 181Google Scholar
[187] Kornev I A, Bellaiche L, Janolin P E, Dkhil B, Suard E 2006 Phys. Rev. Lett. 97 157601Google Scholar
[188] Fthenakis Z G, Ponomareva I 2017 Phys. Rev. B 96 184110Google Scholar
[189] Mani B K, Lisenkov S, Ponomareva I 2015 Phys. Rev. B 91 134112Google Scholar
[190] Wang P S, Xiang H J 2014 Phys. Rev. X 4 011035
[191] Ye Q J, Zhang X F, Li X Z 2019 Electron. Struct. 1 044006Google Scholar
[192] Nahas Y, Prokhorenko S, Louis L, Gui Z, Kornev I, Bellaiche L 2015 Nat. Commun. 6 8542Google Scholar
[193] Ponomareva I, Lisenkov S 2012 Phys. Rev. Lett. 108 167604Google Scholar
[194] Fan N, Íñiguez J, Bellaiche L, Xu B 2022 Phys. Rev. B 106 224107Google Scholar
[195] Ma X, Yang Y, Bellaiche L, Wu D 2022 Phys. Rev. B 105 054104
[196] Zhang J T, Hou X, Zhang Y J, Tang G, Wang J 2021 Mater. Rep. Energy 1 100050
[197] Ponomareva I, Tagantsev A K, Bellaiche L 2012 Phys. Rev. B 85 104101Google Scholar
[198] Lai B K, Ponomareva I, Naumov I I, Kornev I, Fu H, Bellaiche L, Salamo G J 2006 Phys. Rev. Lett. 96 137602Google Scholar
[199] Mani B K, Herchig R, Glazkova E, Lisenkov S, Ponomareva I 2016 Nanotechnology 27 195705Google Scholar
[200] Lisenkov S, Ponomareva I 2009 Phys. Rev. B 80 140102Google Scholar
[201] Beckman S P, Wan L F, Barr J A, Nishimatsu T 2012 Mater. Lett. 89 254Google Scholar
[202] Tarnaoui M, Zaim N, Kerouad M, Zaim A 2020 Comput. Mater. Sci. 183 109816Google Scholar
[203] Fu H, Bellaiche L 2003 Phys. Rev. Lett. 91 257601Google Scholar
[204] Prosandeev S, Ponomareva I, Kornev I, Naumov I, Bellaiche L 2006 Phys. Rev. Lett. 96 237601Google Scholar
[205] Sasani A, Íñiguez J, Bousquet E 2022 Phys. Rev. B 105 064414Google Scholar
[206] Kornev I A, Lisenkov S, Haumont R, Dkhil B, Bellaiche L 2007 Phys. Rev. Lett. 99 227602Google Scholar
[207] Lisenkov S, Kornev I A, Bellaiche L 2009 Phys. Rev. B 79 012101
[208] Albrecht D, Lisenkov S, Ren W, Rahmedov D, Kornev I A, Bellaiche L 2010 Phys. Rev. B 81 140401Google Scholar
[209] Rahmedov D, Wang D, Íñiguez J, Bellaiche L 2012 Phys. Rev. Lett. 109 037207Google Scholar
[210] Jin G, Cao K, Guo G C, He L 2012 Phys. Rev. Lett. 108 187205Google Scholar
[211] Xu B, Dupé B, Xu C, Xiang H, Bellaiche L 2018 Phys. Rev. B 98 184420Google Scholar
[212] Bhattacharjee S, Rahmedov D, Wang D, Íñiguez J, Bellaiche L 2014 Phys. Rev. Lett. 112 147601Google Scholar
[213] Xiang H J, Kan E J, Zhang Y, Whangbo M H, Gong X G 2011 Phys. Rev. Lett. 107 157202Google Scholar
[214] Lu X Z, Wu X, Xiang H J 2015 Phys. Rev. B 91 100405Google Scholar
[215] Xiang H J, Wang P S, Whangbo M H, Gong X G 2013 Phys. Rev. B 88 054404Google Scholar
[216] Wang P S, Lu X Z, Gong X G, Xiang H J 2016 Comput. Mater. Sci. 112 448Google Scholar
[217] Pi M, Xu X, He M, Chai Y 2022 Phys. Rev. B 105 L020407Google Scholar
[218] Behler J 2011 J. Chem. Phys. 134 074106Google Scholar
[219] Himanen L, Jäger M O J, Morooka E V, Federici Canova F, Ranawat Y S, Gao D Z, Rinke P, Foster A S 2020 Comput. Phys. Commun. 247 106949Google Scholar
[220] Liu J, Luo W, Wang L, Zhang J, Fu X Z, Luo J L 2022 Adv. Funct. Mater. 32 2110748Google Scholar
[221] Huo H, Rupp M 2022 Mach. Learn. Sci. Technol. 3 045017Google Scholar
[222] Isayev O, Oses C, Toher C, Gossett E, Curtarolo S, Tropsha A 2017 Nat. Commun. 8 15679Google Scholar
[223] Zhang L, Han J, Wang H, Car R, E W 2018 Phys. Rev. Lett. 120 143001Google Scholar
[224] Ren Z, Tian S I P, Noh J, Oviedo F, Xing G, Li J, Liang Q, Zhu R, Aberle A G, Sun S, Wang X, Liu Y, Li Q, Jayavelu S, Hippalgaonkar K, Jung Y, Buonassisi T 2022 Matter 5 314Google Scholar
[225] Xie T, Fu X, Ganea O E, Barzilay R, Jaakkola T 2022 arXiv: 2110.06197 [cond-mat
[226] Xie T, Grossman J C 2018 Phys. Rev. Lett. 120 145301Google Scholar
[227] Wang Q, Zhang L 2021 Nat. Commun. 12 5359Google Scholar
[228] Schütt K T, Sauceda H E, Kindermans P J, Tkatchenko A, Müller K R 2018 J. Chem. Phys. 148 241722Google Scholar
[229] Yu H, Zhong Y, Hong L, Xu C, Ren W, Gong X, Xiang H 2023 arXiv: 2203.02853 [cond-mat
[230] Weiler M, Geiger M, Welling M, Boomsma W, Cohen T 2018 arXiv: 1807.02547 [cs, stat
[231] Batzner S, Musaelian A, Sun L, Geiger M, Mailoa J P, Kornbluth M, Molinari N, Smidt T E, Kozinsky B 2022 Nat. Commun. 13 2453Google Scholar
[232] Musaelian A, Batzner S, Johansson A, Sun L, Owen C J, Kornbluth M, Kozinsky B 2023 Nat. Commun. 14 579Google Scholar
[233] Kondor R 2018 arXiv: 1803.01588 [cs
[234] Thomas N, Smidt T, Kearnes S, Yang L, Li L, Kohlhoff K, Riley P 2018 arXiv: 1802.08219 [cs
[235] Yu H Y, Zhong Y, Ji J Y, Gong X G, Xiang H J 2022 arXiv: 2211.11403 [cond-mat
[236] Ma L Y, Wu J, Zhu T Y, Huang Y W, Lu Q Y, Liu S 2023 arXiv: 2305.02952 [cond-mat
[237] Zhang L F, Chen M H, Wu X F, Wang H, Weinan E, Car R 2020 Phys. Rev. B 102 041121Google Scholar
[238] Marques M A L, Gross E K U 2004 Annu. Rev. Phys. Chem. 55 427Google Scholar
[239] Botti S, Schindlmayr A, Sole R D, Reining L 2007 Rep. Prog. Phys. 70 357Google Scholar
[240] Romaniello P, De Boeij P L 2005 Phys. Rev. B 71 155108Google Scholar
-
图 1 两种原子构成的系统的不同原胞选择[21], 两原子电荷分别为$ {Z}_{1}=+e $(空心圆)和$ {Z}_{2}=+3 e $(阴影圆) (a), (b)包含了完整的原子, 但相对位置不同; (c)原胞由一个完整的$ +e $电荷和4个$ +3 e/4 $电荷组成
Fig. 1. Possible choices of unit cell for a system composed of two types of atoms having ionic charges $ {Z}_{1}=+e $ (open circles) and $ {Z}_{2}=+3 e $ (shaded circles) [21]: (a), (b) Unit cell is specified by two complete basis ions, but in different relative orientations; (c) unit cell is specified by “split basis” consisting of one complete $ +e $ charge and four charges $ +3 e/4 $ in a symmetric arrangement
图 2 固定电压法和固定电场法的差异[45]. 当材料发生应变$ \eta $时, 如果保持电压$ {{\Delta }}V $不变, 电场从$ E= {{{\Delta }}V}/{d} $变化为$ E= {{{\Delta }}V}/{[(1+\eta )d]} $; 如果保持电场$ E $不变, 电压从$ {{\Delta }}V $变为$ (1+ \eta ){{\Delta }}V $
Fig. 2. Differences between fixed-E method and fixed-voltage method[45]. When a strain $ \eta $ is applied to the material, electric field will change from $ E= {{{\Delta }}V}/{d} $ to $ E= $$ {{{\Delta }}V}/{[(1+\eta )d]} $ if voltage is held fixed, or voltage will change from $ {{\Delta }}V $ to $ (1+\eta ){{\Delta }}V $ if electric field is held fixed
图 3 施加场的方向约束在[001], [110]或[111]方向时, PbTiO3中形式为$ \varepsilon \left(D\right) $($ \varepsilon $为外电场)(a)、$ D\left(P\right) $ (b)和$ P\left(\varepsilon \right) $ (c) 的电状态方程[51], 采取原子单位制
Fig. 3. Electric equations of state of the form $ \varepsilon \left(D\right) $ (a), $ D\left(P\right) $ (b), and $ P\left(\varepsilon \right) $ (c) in PbTiO3, plotted for fields constrained to lie along the [001], [110], or [111] directions[51]. All units are a.u..
图 4 Cr2O3的横向响应贡献[70] . 固定离子响应$ {\alpha }^{\left({\mathrm{e}}{\mathrm{l}}\right)} $(空心方块)的贡献约为总响应的四分之一(实心方块); 响应的剩余部分(空心圆)来自于外场下的结构畸变, 利用波恩有效电荷计算得到
Fig. 4. Contributions to the transverse response of Cr2O3 [70]. The clamped-ion response, $ {\alpha }^{\left({\mathrm{e}}{\mathrm{l}}\right)} $(open squares) contributes approximately one fourth of the total response (filled circles). The remainder of the response, computed using Born effective charges, is due to structural distortions in the applied field (open circles).
图 5 实空间波函数$ \psi \left(x, y\right) $通过两次傅里叶变换到倒空间函数$ c $[112] (a)当$ B=0 $时, $ f(x, {K}_{y}) $可被视为一系列一维周期函数或圆环; (b)当$ B=2{\mathrm{\pi }}/\left(ab\right) $时, MPBC使其变为一条长螺旋线. 由此介空间和倒空间内的波函数可等效为一维函数
Fig. 5. The real-space wave function $ \psi (x, y) $ can be Fourier transformed into reciprocal space $ c $ in two steps[112]: (a) At $ B=0 $, $ f(x, {K}_{y}) $ can be regarded as a set of one-dimensional periodic functions, or rings; (b) at $ B=2{\mathrm{\pi }}/\left(ab\right) $, MPBC requires to be a long spiral. The resulting wavefunction in intermediate and reciprocal space is effectively one dimensional.
图 6 致密氘流体在零场和强场下的电子结构[112] (a)总电荷密度在B从0升到104 T时基本保持一致; (b) B = 0 (蓝色)和 B = 104 T (红色)时HOMO态在不同原子上的电荷密度分布
Fig. 6. Electronic structure of dense deuterium fluid under zero and intense magnetic fields[112]: (a) Total charge density remains essentially the same as B goes from 0 to 104 T; (b) the charge densities of the HOMO state for B = 0 (blue) and B = 104 T (red) are distributed on different atoms.
图 7 CrGe(Se, Te)3 Janus单层的磁场-温度相图[173]. 相边界由热容、磁化率、局域自旋手性决定. 这8个相描述为破碎迷宫畴、斯格明子与嵌套斯格明子合相(I)、迷宫畴(II)、破碎迷宫畴与斯格明子混合相(III)、孤立斯格明子与嵌套斯格明子混合相(IV)、孤立斯格明子(V)、杂化斯格明子相(VI, 部分斯格明子合并, 部分斯格明子保持分离)、饱和铁磁态(VII)、顺磁态(VIII). 如图所示为相III ($ B=1.8{\mathrm{T}} $, $ T=4.14{\mathrm{K}} $)、相IV ($ B=1.8{\mathrm{T}} $, $ T=4.14{\mathrm{K}} $)、相V ($ B= $$ 2.4{\mathrm{T}} $, $ T=4.14{\mathrm{K}} $) 和相VI ($ B=2.4{\mathrm{T}} $, $ T=13.3{\mathrm{K}} $) 的代表性自旋结构
Fig. 7. Magnetic field versus temperature phase diagram of the studied CrGe(Se, Te)3 Janus monolayer[173]. The phase boundaries are determined by heat capacity, magnetic susceptibility, local spin chirality, as well as snapshots. The eight phases depicted are as follows: fragmented labyrinth domain, skyrmion and skyrmionium mixed phase (I), labyrinth domain (II), fragmented labyrinth domain and skyrmion mixed phase (III), isolated skyrmion and skyrmionium mixed phase (IV), isolated skyrmion (V), hybrid skyrmion phase (VI, for which some skyrmions merge together but others remain isolated), saturated ferromagnetic state (VII), and paramagnetic state (VIII). Representative spin textures are shown for phase III ($ B=2.4{\mathrm{T}} $, $ T=4.14{\mathrm{K}}) $, phase IV ($ B=1.8{\mathrm{T}} $, $ T=4.14{\mathrm{K}} $), phase V ($ B=2.4{\mathrm{T}} $, $ T=4.14{\mathrm{K}} $), and phase VI ($ B=2.4{\mathrm{T}} $, $ T=13.3{\mathrm{K}} $).
图 8 铁电材料PbSc0.5Ta0.5O3 的电热效应[195] (a) 铁电材料PbSc0.5Ta0.5O3的极化强度$ P(\tilde{E}, T) $关于沿$ \langle 111\rangle $方向施加的电场$ \tilde{E} $和温度$ T $的函数; (b) 电热系数$ \alpha $在330 K时随电场E的函数关系. 在研究温度下时使$ \alpha $达到极大值的电场[$ \tilde{E}\left({\alpha }_{{\mathrm{m}}{\mathrm{a}}{\mathrm{x}}}\right) $]和固定温度时使得$ r\langle 11\bar{1}\rangle $达到最大值的电场[$ \tilde{E}\left(r\langle 11\bar{1}\rangle \right) $]也标记在图(a)中. $ {\chi }^{2}\tilde{E} $也在图(b)中标出以与$ \alpha $做对比. $ r\langle 11\bar{1}\rangle $是大致沿$ \left[11\bar{1}\right] $, $ \left[\bar{1}11\right] $或$ \left[\bar{1}11\right] $方向的局域偶极矩的比例
Fig. 8. Electrocaloric effects of ferroelectric PbSc0.5Ta0.5O3 [195] : (a) Polarization $ P(\tilde{E}, T) $ of as a function of electric field $ \tilde{E} $ applied along $ \langle 111\rangle $ direction and temperature $ T $; (b) electrocaloric coefficient $ \alpha $ as a function of electric field at 330 K. The electric field for which α exhibits its maximum [$ \tilde{E}\left({\alpha }_{{\mathrm{m}}{\mathrm{a}}{\mathrm{x}}}\right) $] and the electric field at which $ r\langle 11\bar{1}\rangle $ exhibits its maximum [$ \tilde{E}\left(r\langle 11\bar{1}\rangle \right) $] for the investigated temperatures are shown in panel (a). $ {\chi }^{2}\tilde{E} $ is shown in panel (b) to compare it with α.$ r\langle 11\bar{1}\rangle $ is defined as the percentage of local dipoles lying near $ \left[11\bar{1}\right] $, $ \left[\bar{1}11\right] $, or $ \left[\bar{1}11\right] $ directions.
图 9 块体BiFeO3在各种$ {C}_{1} $和$ {C}_{2} $值下预测的磁性结构[211], 其中$ {C}_{1} $和$ {C}_{2} $分别是第一近邻和第二近邻的反自旋-电流相互作用系数 (a) 计算得到的相图与$ {C}_{1} $和$ {C}_{2} $的函数关系, 蓝色十字标志和黑色圆点分别代表来自前人选取的$ {C}_{1}{\mathrm{值}} $(此时$ {C}_{2}=0 $)和$ {C}_{2} $值(此时$ {C}_{1}=0 $), 蓝色三角表示通过密度泛函理论计算得到的结果, 黑线是磁场大小为18 T时$ \left[\bar{1}10\right] $螺旋相向反铁磁相转变的临界相; (b) 图示展示了5种类型的磁螺旋的传播方向, 对于每种类型, 红色、蓝色和黄色分别代表了不同传播方向的等效磁螺旋
Fig. 9. Predicted magnetic structures at various $ {C}_{1} $ and $ {C}_{2} $ values for bulk BiFeO3 [211], $ {C}_{1} $ and $ {C}_{2} $ are coefficients of inverse spin-current interaction for 1st nearest neighbors and 2nd nearest neighbors, respectively: (a) Calculated phase diagram as functions of $ {C}_{1} $ and $ {C}_{2} $, the blue cross symbols and black circles are $ {C}_{1} $ (with $ {C}_{2}=0 $) or $ {C}_{2} $ (with $ {C}_{1}=0) $ values from previous studies, respectively, the blue triangle symbols are calculated by density functional theory, the black lines are determined by considering the critical magnetic field of 18 T changing the $ \left[\bar{1}10\right] $ cycloid to antiferromagnetism; (b) illustration of the propagation directions of the five types of cycloids, for each type, equivalent cycloids of different propagation directions are shown in red, blue, and yellow colors.
图 10 SpinGNN框架[229], SpinGNN包含海森伯边图神经网络(HEGNN)和自旋-距离边图神经网络(SEGNN) (a) HEGNN利用更新后的GNN边特征作为Heisenberg系数, 构建Heisenberg型的磁势; (b) SEGNN利用自旋-距离边晶体图, 以自旋矢量的点乘和键长初始化边, 可以构建一般的高阶磁势, $ \parallel $表示拼接
Fig. 10. The SpinGNN framework [229], illustration of the SpinGNN including the Heisenberg Edge GNN (HEGNN) and Spin-Distance Edge GNN (SEGNN): (a) HEGNN utilizes the updated edge feature of GNN as the Heisenberg coefficients and builds a Heisenberg-based magnetic potential; (b) SEGNN utilizes the spin-distance edge crystal graph which initializes the edge with the dot product of the spin vector and bond length and builds a high-order general magnetic potential, $ \parallel $ denotes concatenation.
表 1 用固定电场方法计算的一些III-V半导体介电性质与实验的比较[42], 其中玻恩有效电荷张量在材料对称性下退化为标量, 且$ {d}_{123} $定义为$ {\chi }_{123}^{\left(2\right)}/2 $, LDA和PBE是计算时使用的交换关联泛函近似
Table 1. Computed dieletric properties of some III–V semiconductors by means of fixed-E method compared to experiment[42], Born effective charge tensor degenerates to a scalar due to the symmetry of the material and $ {d}_{123} $ is defined as $ {\chi }_{123}^{\left(2\right)}/2 $, LDA and PBE are different exchange-correlation functional approximations used in calculation.
Compound $ {Z}_{{\mathrm{A}}{\mathrm{l}}}^{*} $ $ {\varepsilon}_{{\mathrm{s}}{\mathrm{t}}{\mathrm{a}}{\mathrm{t}}{\mathrm{i}}{\mathrm{c}}} $ $ {\varepsilon}_{\infty } $ d123/(pm·V–1) AlP (LDA) 2.22 10.26 8.01 21.5 (PBE) 2.23 10.09 7.84 23.2 (Expt.) 2.28 9.8 7.5 AlAs (LDA) 2.18 11.05 8.75 32.7 (PBE) 2.17 10.89 8.80 38.8 (Expt.) 2.20 10.16 8.16 32 AlSb (LDA) 1.84 12.54 11.17 98.3 (PBE) 1.83 12.83 11.45 103 (Expt.) 1.93 11.68 9.88 98 -
[1] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar
[2] Kohn W 1999 Rev. Mod. Phys. 71 1253Google Scholar
[3] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar
[4] Wu M 2021 Nat. Rev. Phys. 3 726Google Scholar
[5] Belov K P, Levitin R Z, Nikitin S A 1964 Sov. Phys. Uspekhi 7 179Google Scholar
[6] Haider T 2017 Int. J. Electromagn. Appl. 7 17
[7] Hirohata A, Yamada K, Nakatani Y, Prejbeanu I L, Diény B, Pirro P, Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711Google Scholar
[8] Vitale S A, Nezich D, Varghese J O, Kim P, Gedik N, Jarillo‐Herrero P, Xiao D, Rothschild M 2018 Small 14 1801483Google Scholar
[9] Yao C, Ma Y 2021 Science 24 102541
[10] Spaldin N A, Ramesh R 2019 Nat. Mater. 18 203Google Scholar
[11] Paras, Yadav K, Kumar P, Teja D R, Chakraborty S, Chakraborty M, Mohapatra S S, Sahoo A, Chou M M C, Liang C T, Hang D R 2023 Nanomaterials 13 160
[12] Ennen I, Kappe D, Rempel T, Glenske C, Hütten A 2016 Sensors 16 904Google Scholar
[13] von Klitzing K, Chakraborty T, Kim P, Madhavan V, Dai X, McIver J, Tokura Y, Savary L, Smirnova D, Rey A M, Felser C, Gooth J, Qi X 2020 Nat. Rev. Phys. 2 397Google Scholar
[14] Zhang L, Ren J, Wang J S, Li B 2011 J. Phys. Condens. Matter 23 305402Google Scholar
[15] Baroni S, Giannozzi P, Testa A 1987 Phys. Rev. Lett. 58 1861Google Scholar
[16] Gonze X, Allan D C, Teter M P 1992 Phys. Rev. Lett. 68 3603Google Scholar
[17] Gonze X 1997 Phys. Rev. B 55 10337Google Scholar
[18] Resta R 1992 Ferroelectrics 136 51Google Scholar
[19] King-Smith R D, Vanderbilt D 1993 Phys. Rev. B 47 1651Google Scholar
[20] Resta R 1994 Rev. Mod. Phys. 66 899Google Scholar
[21] Vanderbilt D, King-Smith R D 1993 Phys. Rev. B 48 4442Google Scholar
[22] Resta R 2010 J. Phys. Condens. Mat. 22 123201Google Scholar
[23] Marzari N, Vanderbilt D 1997 Phys. Rev. B 56 12847Google Scholar
[24] Marzari N, Mostofi A A, Yates J R, Souza I, Vanderbilt D 2012 Rev. Mod. Phys. 84 1419Google Scholar
[25] Ortiz G, Martin R M 1994 Phys. Rev. B 49 14202Google Scholar
[26] Resta R 1998 Phys. Rev. Lett. 80 1800Google Scholar
[27] Valença Ferreira De Aragão E, Moreno D, Battaglia S, Bendazzoli G L, Evangelisti S, Leininger T, Suaud N, Berger J A 2019 Phys. Rev. B 99 205144Google Scholar
[28] Nunes R W, Gonze X 2001 Phys. Rev. B 63 155107Google Scholar
[29] Kane E O 1960 J. Phys. Chem. Solids 12 181Google Scholar
[30] Wannier G H 1960 Phys. Rev. 117 432Google Scholar
[31] Nenciu G 1991 Rev. Mod. Phys. 63 91Google Scholar
[32] Souza I, Íñiguez J, Vanderbilt D 2002 Phys. Rev. Lett. 89 117602Google Scholar
[33] Umari P, Pasquarello A 2002 Phys. Rev. Lett. 89 157602Google Scholar
[34] Ymeri H M 1997 Electr. Eng. 80 163Google Scholar
[35] Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045Google Scholar
[36] Fu H, Bellaiche L 2003 Phys. Rev. Lett. 91 057601Google Scholar
[37] Xu C, Chen P, Tan H, Yang Y, Xiang H, Bellaiche L 2020 Phys. Rev. Lett. 125 037203Google Scholar
[38] Chen L, Xu C, Tian H, Xiang H, Íñiguez J, Yang Y, Bellaiche L 2019 Phys. Rev. Lett. 122 247701Google Scholar
[39] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar
[40] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys. Condens. Mat. 21 395502Google Scholar
[41] Gonze X, Amadon B, Anglade P M, et al. 2009 Comput. Phys. Commun. 180 2582Google Scholar
[42] Zwanziger J W, Galbraith J, Kipouros Y, Torrent M, Giantomassi M, Gonze X 2012 Comput. Mater. Sci. 58 113Google Scholar
[43] Wu X, Vanderbilt D, Hamann D R 2005 Phys. Rev. B 72 035105Google Scholar
[44] Vanderbilt D 2000 J. Phys. Chem. Solids 61 147Google Scholar
[45] Bennett D, Tanner D, Ghosez P, Janolin P E, Bousquet E 2022 Phys. Rev. B 106 174105Google Scholar
[46] Fiebig M, Lottermoser T, Meier D, Trassin M 2016 Nat. Rev. Mater. 1 16046Google Scholar
[47] Malashevich A, Coh S, Souza I, Vanderbilt D 2012 Phys. Rev. B 86 094430Google Scholar
[48] Gonze X, Ghosez Ph, Godby R W 1995 Phys. Rev. Lett. 74 4035Google Scholar
[49] Resta R 2018 Eur. Phys. J. B 91 100Google Scholar
[50] Stengel M, Spaldin N A, Vanderbilt D 2009 Nat. Phys. 5 304Google Scholar
[51] Hong J, Vanderbilt D 2011 Phys. Rev. B 84 115107Google Scholar
[52] Jiang Z, Zhang R, Li F, Jin L, Zhang N, Wang D, Jia C L 2016 AIP Adv. 6 065122Google Scholar
[53] Wu X, Rabe K M, Vanderbilt D 2011 Phys. Rev. B 83 020104
[54] Wu X, Stengel M, Rabe K M, Vanderbilt D 2008 Phys. Rev. Lett. 101 087601Google Scholar
[55] Stengel M, Fennie C J, Ghosez P 2012 Phys. Rev. B 86 094112Google Scholar
[56] Stengel M, Vanderbilt D 2009 Phys. Rev. B 80 241103Google Scholar
[57] Stengel M 2011 Phys. Rev. Lett. 106 136803Google Scholar
[58] Cancellieri C, Fontaine D, Gariglio S, Reyren N, Caviglia A D, Fête A, Leake S J, Pauli S A, Willmott P R, Stengel M, Ghosez Ph, Triscone J M 2011 Phys. Rev. Lett. 107 056102Google Scholar
[59] Hong J, Vanderbilt D 2013 Phys. Rev. B 88 174107Google Scholar
[60] Diéguez O, Vanderbilt D 2006 Phys. Rev. Lett. 96 056401Google Scholar
[61] Barth U V, Hedin L 1972 J. Phys. C Solid State Phys. 5 1629Google Scholar
[62] Gunnarsson O, Lundqvist B I 1976 Phys. Rev. B 13 4274Google Scholar
[63] Kubler J, Hock K H, Sticht J, Williams A R 1988 J. Phys. F Met. Phys. 18 469Google Scholar
[64] Sharma S, Dewhurst J K, Ambrosch-Draxl C, Kurth S, Helbig N, Pittalis S, Shallcross S, Nordström L, Gross E K U 2007 Phys. Rev. Lett. 98 196405Google Scholar
[65] Sandratskii L M 1998 Adv. Phys. 47 91Google Scholar
[66] Pu Z C, Li H, Zhang N, Jiang H, Gao Y Q, Xiao Y Q, Gao Y Q, Sun Q M, Zhang Y, Shao S H 2023 Phys. Rev. Res. 5 013036Google Scholar
[67] Ullrich C A 2018 Phys. Rev. B 98 035140Google Scholar
[68] Jacob C R, Reiher M 2012 Int. J. Quantum Chem. 112 3661Google Scholar
[69] Ullrich C A 2019 Phys. Rev. A 100 012516Google Scholar
[70] Bousquet E, Spaldin N A, Delaney K T 2011 Phys. Rev. Lett. 106 107202Google Scholar
[71] Bousquet E, Spaldin N 2011 Phys. Rev. Lett. 107 197603Google Scholar
[72] Dasa T R, Hao L, Liu J, Xu H 2019 J. Mater. Chem. C 7 13294Google Scholar
[73] Vignale G, Rasolt M 1987 Phys. Rev. Lett. 59 2360Google Scholar
[74] Vignale G, Rasolt M, Geldart D J W 1990 Advanced Quantum Chemistry (Cambridge: Academic Press) pp235–253
[75] Laestadius A 2014 Int. J. Quantum Chem. 114 1445Google Scholar
[76] Laestadius A, Benedicks M 2014 Int. J. Quantum Chem. 114 782Google Scholar
[77] Laestadius A 2014 J. Math. Chem. 52 2581Google Scholar
[78] Grayce C J, Harris R A 1994 Phys. Rev. A 50 3089Google Scholar
[79] Reimann S, Borgoo A, Tellgren E I, Teale A M, Helgaker T 2017 J. Chem. Theory Comput. 13 4089Google Scholar
[80] Tellgren E I, Teale A M, Furness J W, Lange K K, Ekström U, Helgaker T 2014 J. Chem. Phys. 140 034101Google Scholar
[81] Furness J W, Verbeke J, Tellgren E I, Stopkowicz S, Ekström U, Helgaker T, Teale A M 2015 J. Chem. Theory Comput. 11 4169Google Scholar
[82] Reimann S, Borgoo A, Austad J, Tellgren E I, Teale A M, Helgaker T, Stopkowicz S 2019 Mol. Phys. 117 97Google Scholar
[83] Sen S, Tellgren E I 2021 J. Chem. Theory Comput. 17 1480Google Scholar
[84] Pemberton M J, Irons T J P, Helgaker T, Teale A M 2022 J. Chem. Phys. 156 204113Google Scholar
[85] Penz M, Tellgren E I, Csirik M A, Ruggenthaler M, Laestadius A 2023 arXiv: 2303.01357 [quant-ph
[86] Lieb E H, Schrader R 2013 Phys. Rev. A 88 032516Google Scholar
[87] Diener G 1991 J. Phys. Condens. Mat. 3 9417Google Scholar
[88] Pan X Y, Sahni V 2010 Int. J. Quantum Chem. 110 2833Google Scholar
[89] Tellgren E I, Kvaal S, Sagvolden E, Ekström U, Teale A M, Helgaker T 2012 Phys. Rev. A 86 062506Google Scholar
[90] Laestadius A, Benedicks M 2015 Phys. Rev. A 91 032508Google Scholar
[91] Laestadius A, Penz M, Tellgren E I 2021 J. Phys. Condens. Mat. 33 295504Google Scholar
[92] Thonhauser T, Ceresoli D, Mostofi A A, Marzari N, Resta R, Vanderbilt D 2009 J. Chem. Phys. 131 101101Google Scholar
[93] Ceresoli D, Gerstmann U, Seitsonen A P, Mauri F 2010 Phys. Rev. B 81 060409Google Scholar
[94] Murakami S 2006 Phys. Rev. Lett. 97 236805Google Scholar
[95] Coh S, Vanderbilt D, Malashevich A, Souza I 2011 Phys. Rev. B 83 085108Google Scholar
[96] Göbel B, Mook A, Henk J, Mertig I 2019 Phys. Rev. B 99 060406Google Scholar
[97] Essin A M, Moore J E, Vanderbilt D 2009 Phys. Rev. Lett. 102 146805Google Scholar
[98] Essin A M, Turner A M, Moore J E, Vanderbilt D 2010 Phys. Rev. B 81 205104Google Scholar
[99] Thonhauser T 2011 Int. J. Mod. Phys. B 25 1429Google Scholar
[100] Xiao D, Shi J, Niu Q 2005 Phys. Rev. Lett. 95 137204Google Scholar
[101] Aryasetiawan F, Karlsson K, Miyake T 2016 Phys. Rev. B 93 161104Google Scholar
[102] Ceresoli D, Thonhauser T, Vanderbilt D, Resta R 2006 Phys. Rev. B 74 024408Google Scholar
[103] Aryasetiawan F, Karlsson K 2019 J. Phys. Chem. Solids 128 87Google Scholar
[104] Thonhauser T, Ceresoli D, Vanderbilt D, Resta R 2005 Phys. Rev. Lett. 95 137205Google Scholar
[105] Shi J, Vignale G, Xiao D, Niu Q 2007 Phys. Rev. Lett. 99 197202Google Scholar
[106] Lopez M G, Vanderbilt D, Thonhauser T, Souza I 2012 Phys. Rev. B 85 014435Google Scholar
[107] Hanke J P, Freimuth F, Nandy A K, Zhang H, Blügel S, Mokrousov Y 2016 Phys. Rev. B 94 121114Google Scholar
[108] Pickard C J, Mauri F 2001 Phys. Rev. B 63 245101Google Scholar
[109] Yates J R, Pickard C J, Mauri F 2007 Phys. Rev. B 76 024401Google Scholar
[110] Qiao S, Kimura A, Adachi H, Iori K, Miyamoto K, Xie T, Namatame H, Taniguchi M, Tanaka A, Muro T, Imada S, Suga S 2004 Phys. Rev. B 70 134418Google Scholar
[111] Kolchinskaya A, Komissinskiy P, Yazdi M B, Vafaee M, Mikhailova D, Narayanan N, Ehrenberg H, Wilhelm F, Rogalev A, Alff L 2012 Phys. Rev. B 85 224422Google Scholar
[112] Cai W, Galli G 2004 Phys. Rev. Lett. 92 186402Google Scholar
[113] Lee E, Cai W, Galli G A 2007 J. Comput. Phys. 226 1310Google Scholar
[114] Kohn W 1959 Phys. Rev. 115 1460Google Scholar
[115] Zak J 1964 Phys. Rev. 134 A1602Google Scholar
[116] Xu K, Feng J, Xiang H 2022 Chin. Phys. B 31 097505Google Scholar
[117] Drautz R, Fähnle M 2004 Phys. Rev. B 69 104404Google Scholar
[118] Hastings W K 1972 Biometrika 57 97
[119] Gilbert T L 2004 IEEE Trans. Magn. 40 3443Google Scholar
[120] Tranchida J, Plimpton S J, Thibaudeau P, Thompson A P 2018 J. Comput. Phys. 372 406Google Scholar
[121] Rózsa L, Udvardi L, Szunyogh L 2013 J. Phys. Condens. Mat. 25 506002Google Scholar
[122] Rózsa L, Udvardi L, Szunyogh L 2014 J. Phys. Condens. Mat. 26 216003Google Scholar
[123] Ma P W, Dudarev S L, Woo C H 2012 Phys. Rev. B 85 184301Google Scholar
[124] Ma P W, Woo C H, Dudarev S L 2008 Phys. Rev. B 78 024434Google Scholar
[125] Liechtenstein A I, Anisimov V I, Zaanen J 1995 Phys. Rev. B 52 R5467Google Scholar
[126] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar
[127] Himmetoglu B, Floris A, De Gironcoli S, Cococcioni M 2014 Int. J. Quantum Chem. 114 14Google Scholar
[128] Dederichs P H, Blügel S, Zeller R, Akai H 1984 Phys. Rev. Lett. 53 2512Google Scholar
[129] Ma P W, Dudarev S L 2015 Phys. Rev. B 91 054420Google Scholar
[130] Chen Y, Yang Y, Xu C, Xiang H 2023 Phys. Rev. B 107 214439Google Scholar
[131] Cai Z, Wang K, Xu Y, Wei S H, Xu B 2023 arXiv: 2208.04551 [cond-mat
[132] Li X, Yu H, Lou F, Feng J, Whangbo M H, Xiang H 2021 Molecules 26 803Google Scholar
[133] Xu C, Xu B, Dupé B, Bellaiche L 2019 Phys. Rev. B 99 104420Google Scholar
[134] Xu C, Feng J, Prokhorenko S, Nahas Y, Xiang H, Bellaiche L 2020 Phys. Rev. B 101 060404Google Scholar
[135] Kitaev A 2006 Ann. Phys. 321 2Google Scholar
[136] Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241Google Scholar
[137] Moriya T 1960 Phys. Rev. 120 91Google Scholar
[138] Moriya T 1960 Phys. Rev. Lett. 4 228Google Scholar
[139] Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152Google Scholar
[140] Bak P, Jensen M H 1980 J. Phys. C Solid State Phys. 13 L881Google Scholar
[141] Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106Google Scholar
[142] Weber T, Waizner J, Tucker G S, Georgii R, Kugler M, Bauer A, Pfleiderer C, Garst M, Böni P 2018 Phys. Rev. B 97 224403Google Scholar
[143] Huang S X, Chien C L 2012 Phys. Rev. Lett. 108 267201Google Scholar
[144] Fujishiro Y, Kanazawa N, Tokura Y 2020 Appl. Phys. Lett. 116 090501Google Scholar
[145] Pappas C, Lelièvre-Berna E, Falus P, Bentley P M, Moskvin E, Grigoriev S, Fouquet P, Farago B 2009 Phys. Rev. Lett. 102 197202Google Scholar
[146] Ni J Y, Li X Y, Amoroso D, He X, Feng J S, Kan E J, Picozzi S, Xiang H J 2021 Phys. Rev. Lett. 127 247204Google Scholar
[147] Grytsiuk S, Hanke J P, Hoffmann M, Bouaziz J, Gomonay O, Bihlmayer G, Lounis S, Mokrousov Y, Blügel S 2020 Nat. Commun. 11 511Google Scholar
[148] Kartsev A, Augustin M, Evans R F L, Novoselov K S, Santos E J G 2020 Npj Comput. Mater. 6 150Google Scholar
[149] Zhu H F, Cao H Y, Xie Y, Hou Y S, Chen S, Xiang H, Gong X G 2016 Phys. Rev. B 93 024511Google Scholar
[150] Novák P, Chaplygin I, Seifert G, Gemming S, Laskowski R 2008 Comput. Mater. Sci. 44 79Google Scholar
[151] Fedorova N S, Ederer C, Spaldin N A, Scaramucci A 2015 Phys. Rev. B 91 165122Google Scholar
[152] Xiang H, Lee C, Koo H J, Gong X, Whangbo M H 2013 Dalton. Trans. 42 823Google Scholar
[153] Xiang H J, Kan E J, Wei S H, Whangbo M H, Gong X G 2011 Phys. Rev. B 84 224429Google Scholar
[154] Li X Y, Lou F, Gong X G, Xiang H 2020 New J. Phys. 22 053036Google Scholar
[155] Lou F, Li X Y, Ji J Y, Yu H Y, Feng J S, Gong X G, Xiang H J 2021 J. Chem. Phys. 154 114103Google Scholar
[156] Lounis S, Dederichs P H 2010 Phys. Rev. B 82 180404Google Scholar
[157] Szilva A, Costa M, Bergman A, Szunyogh L, Nordström L, Eriksson O 2013 Phys. Rev. Lett. 111 127204Google Scholar
[158] He X, Helbig N, Verstraete M J, Bousquet E 2021 Comput. Phys. Commun. 264 107938Google Scholar
[159] Katsnelson M I, Kvashnin Y O, Mazurenko V V, Lichtenstein A I 2010 Phys. Rev. B 82 100403Google Scholar
[160] Katsnelson M I, Lichtenstein A I 2000 Phys. Rev. B 61 8906Google Scholar
[161] Liechtenstein A I, Katsnelson M I, Antropov V P, Gubanov V A 1987 J. Magn. Magn. Mater. 67 65Google Scholar
[162] Wang X, Wang D sheng, Wu R, Freeman A J 1996 J. Magn. Magn. Mater. 159 337Google Scholar
[163] Wan X, Yin Q, Savrasov S Y 2006 Phys. Rev. Lett. 97 266403Google Scholar
[164] Durhuus F L, Skovhus T, Olsen T 2023 J. Phys. Condens. Mat. 35 105802Google Scholar
[165] Bhowmik T K, Sinha T P 2021 J. Solid State Chem. 304 122570Google Scholar
[166] Campbell D, Xu C, Bayaraa T, Bellaiche L 2020 Phys. Rev. B 102 144406Google Scholar
[167] Polesya S, Mankovsky S, Bornemann S, Ködderitzsch D, Minár J, Ebert H 2014 Phys. Rev. B 89 184414Google Scholar
[168] Dupé B, Hoffmann M, Paillard C, Heinze S 2014 Nat. Commun. 5 4030Google Scholar
[169] Simon E, Palotás K, Rózsa L, Udvardi L, Szunyogh L 2014 Phys. Rev. B 90 094410Google Scholar
[170] Fernandes I L, Chico J, Lounis S 2020 J. Phys. Condens. Mat. 32 425802Google Scholar
[171] Liang J, Wang W, Du H, Hallal A, Garcia K, Chshiev M, Fert A, Yang H 2020 Phys. Rev. B 101 184401Google Scholar
[172] Carvalho P C, Miranda I P, Klautau A B, Bergman A, Petrilli H M 2021 Phys. Rev. Mater. 5 124406Google Scholar
[173] Zhang Y, Xu C, Cheng P, Nahas Y, Prokhorenko S, Bellaiche L 2020 Phys. Rev. B 102 241107Google Scholar
[174] Leonov A O, Mostovoy M 2015 Nat. Commun. 6 8275Google Scholar
[175] Xu C, Feng J, Xiang H, Bellaiche L 2018 npj Comput. Mater. 4 1Google Scholar
[176] Cochran W 1960 Adv. Phys. 9 387Google Scholar
[177] Blinc R 1987 Ferroelectrics 74 301Google Scholar
[178] Zhong W, Vanderbilt D, Rabe K M 1994 Phys. Rev. Lett. 73 1861Google Scholar
[179] Zhong W, Vanderbilt D, Rabe K M 1995 Phys. Rev. B 52 6301Google Scholar
[180] LmEs M E, Bel I 1969 Phys. Rev. 177
[181] Rabe K M, Joannopoulos J D 1987 Phys. Rev. Lett. 59 570Google Scholar
[182] Rabe K M, Joannopoulos J D 1987 Phys. Rev. B 36 6631Google Scholar
[183] Rabe K M, Waghmare U V 1995 Phys. Rev. B 52 13236Google Scholar
[184] Bellaiche L, García A, Vanderbilt D 2000 Phys. Rev. Lett. 84 5427Google Scholar
[185] Walizer L, Lisenkov S, Bellaiche L 2006 Phys. Rev. B 73 144105Google Scholar
[186] Vanderbilt D, Zhong W 1998 Ferroelectrics 206 181Google Scholar
[187] Kornev I A, Bellaiche L, Janolin P E, Dkhil B, Suard E 2006 Phys. Rev. Lett. 97 157601Google Scholar
[188] Fthenakis Z G, Ponomareva I 2017 Phys. Rev. B 96 184110Google Scholar
[189] Mani B K, Lisenkov S, Ponomareva I 2015 Phys. Rev. B 91 134112Google Scholar
[190] Wang P S, Xiang H J 2014 Phys. Rev. X 4 011035
[191] Ye Q J, Zhang X F, Li X Z 2019 Electron. Struct. 1 044006Google Scholar
[192] Nahas Y, Prokhorenko S, Louis L, Gui Z, Kornev I, Bellaiche L 2015 Nat. Commun. 6 8542Google Scholar
[193] Ponomareva I, Lisenkov S 2012 Phys. Rev. Lett. 108 167604Google Scholar
[194] Fan N, Íñiguez J, Bellaiche L, Xu B 2022 Phys. Rev. B 106 224107Google Scholar
[195] Ma X, Yang Y, Bellaiche L, Wu D 2022 Phys. Rev. B 105 054104
[196] Zhang J T, Hou X, Zhang Y J, Tang G, Wang J 2021 Mater. Rep. Energy 1 100050
[197] Ponomareva I, Tagantsev A K, Bellaiche L 2012 Phys. Rev. B 85 104101Google Scholar
[198] Lai B K, Ponomareva I, Naumov I I, Kornev I, Fu H, Bellaiche L, Salamo G J 2006 Phys. Rev. Lett. 96 137602Google Scholar
[199] Mani B K, Herchig R, Glazkova E, Lisenkov S, Ponomareva I 2016 Nanotechnology 27 195705Google Scholar
[200] Lisenkov S, Ponomareva I 2009 Phys. Rev. B 80 140102Google Scholar
[201] Beckman S P, Wan L F, Barr J A, Nishimatsu T 2012 Mater. Lett. 89 254Google Scholar
[202] Tarnaoui M, Zaim N, Kerouad M, Zaim A 2020 Comput. Mater. Sci. 183 109816Google Scholar
[203] Fu H, Bellaiche L 2003 Phys. Rev. Lett. 91 257601Google Scholar
[204] Prosandeev S, Ponomareva I, Kornev I, Naumov I, Bellaiche L 2006 Phys. Rev. Lett. 96 237601Google Scholar
[205] Sasani A, Íñiguez J, Bousquet E 2022 Phys. Rev. B 105 064414Google Scholar
[206] Kornev I A, Lisenkov S, Haumont R, Dkhil B, Bellaiche L 2007 Phys. Rev. Lett. 99 227602Google Scholar
[207] Lisenkov S, Kornev I A, Bellaiche L 2009 Phys. Rev. B 79 012101
[208] Albrecht D, Lisenkov S, Ren W, Rahmedov D, Kornev I A, Bellaiche L 2010 Phys. Rev. B 81 140401Google Scholar
[209] Rahmedov D, Wang D, Íñiguez J, Bellaiche L 2012 Phys. Rev. Lett. 109 037207Google Scholar
[210] Jin G, Cao K, Guo G C, He L 2012 Phys. Rev. Lett. 108 187205Google Scholar
[211] Xu B, Dupé B, Xu C, Xiang H, Bellaiche L 2018 Phys. Rev. B 98 184420Google Scholar
[212] Bhattacharjee S, Rahmedov D, Wang D, Íñiguez J, Bellaiche L 2014 Phys. Rev. Lett. 112 147601Google Scholar
[213] Xiang H J, Kan E J, Zhang Y, Whangbo M H, Gong X G 2011 Phys. Rev. Lett. 107 157202Google Scholar
[214] Lu X Z, Wu X, Xiang H J 2015 Phys. Rev. B 91 100405Google Scholar
[215] Xiang H J, Wang P S, Whangbo M H, Gong X G 2013 Phys. Rev. B 88 054404Google Scholar
[216] Wang P S, Lu X Z, Gong X G, Xiang H J 2016 Comput. Mater. Sci. 112 448Google Scholar
[217] Pi M, Xu X, He M, Chai Y 2022 Phys. Rev. B 105 L020407Google Scholar
[218] Behler J 2011 J. Chem. Phys. 134 074106Google Scholar
[219] Himanen L, Jäger M O J, Morooka E V, Federici Canova F, Ranawat Y S, Gao D Z, Rinke P, Foster A S 2020 Comput. Phys. Commun. 247 106949Google Scholar
[220] Liu J, Luo W, Wang L, Zhang J, Fu X Z, Luo J L 2022 Adv. Funct. Mater. 32 2110748Google Scholar
[221] Huo H, Rupp M 2022 Mach. Learn. Sci. Technol. 3 045017Google Scholar
[222] Isayev O, Oses C, Toher C, Gossett E, Curtarolo S, Tropsha A 2017 Nat. Commun. 8 15679Google Scholar
[223] Zhang L, Han J, Wang H, Car R, E W 2018 Phys. Rev. Lett. 120 143001Google Scholar
[224] Ren Z, Tian S I P, Noh J, Oviedo F, Xing G, Li J, Liang Q, Zhu R, Aberle A G, Sun S, Wang X, Liu Y, Li Q, Jayavelu S, Hippalgaonkar K, Jung Y, Buonassisi T 2022 Matter 5 314Google Scholar
[225] Xie T, Fu X, Ganea O E, Barzilay R, Jaakkola T 2022 arXiv: 2110.06197 [cond-mat
[226] Xie T, Grossman J C 2018 Phys. Rev. Lett. 120 145301Google Scholar
[227] Wang Q, Zhang L 2021 Nat. Commun. 12 5359Google Scholar
[228] Schütt K T, Sauceda H E, Kindermans P J, Tkatchenko A, Müller K R 2018 J. Chem. Phys. 148 241722Google Scholar
[229] Yu H, Zhong Y, Hong L, Xu C, Ren W, Gong X, Xiang H 2023 arXiv: 2203.02853 [cond-mat
[230] Weiler M, Geiger M, Welling M, Boomsma W, Cohen T 2018 arXiv: 1807.02547 [cs, stat
[231] Batzner S, Musaelian A, Sun L, Geiger M, Mailoa J P, Kornbluth M, Molinari N, Smidt T E, Kozinsky B 2022 Nat. Commun. 13 2453Google Scholar
[232] Musaelian A, Batzner S, Johansson A, Sun L, Owen C J, Kornbluth M, Kozinsky B 2023 Nat. Commun. 14 579Google Scholar
[233] Kondor R 2018 arXiv: 1803.01588 [cs
[234] Thomas N, Smidt T, Kearnes S, Yang L, Li L, Kohlhoff K, Riley P 2018 arXiv: 1802.08219 [cs
[235] Yu H Y, Zhong Y, Ji J Y, Gong X G, Xiang H J 2022 arXiv: 2211.11403 [cond-mat
[236] Ma L Y, Wu J, Zhu T Y, Huang Y W, Lu Q Y, Liu S 2023 arXiv: 2305.02952 [cond-mat
[237] Zhang L F, Chen M H, Wu X F, Wang H, Weinan E, Car R 2020 Phys. Rev. B 102 041121Google Scholar
[238] Marques M A L, Gross E K U 2004 Annu. Rev. Phys. Chem. 55 427Google Scholar
[239] Botti S, Schindlmayr A, Sole R D, Reining L 2007 Rep. Prog. Phys. 70 357Google Scholar
[240] Romaniello P, De Boeij P L 2005 Phys. Rev. B 71 155108Google Scholar
计量
- 文章访问数: 3958
- PDF下载量: 229
- 被引次数: 0