搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于嵌入式粗糙颈亥姆霍兹共振器的低频宽带通风消声器

李婷 吴丰民 张同涛 王军军 杨彬 章东

引用本文:
Citation:

基于嵌入式粗糙颈亥姆霍兹共振器的低频宽带通风消声器

李婷, 吴丰民, 张同涛, 王军军, 杨彬, 章东

A low-frequency wideband ventilation muffler based on an embedded rough-necked Helmholtz resonator

Li Ting, Wu Feng-Min, Zhang Tong-Tao, Wang Jun-Jun, Yang Bin, Zhang Dong
PDF
HTML
导出引用
  • 针对目前亥姆霍兹共振器的低频吸声效果不理想的问题, 提出了一种粗糙颈管亥姆霍兹共振器吸声体, 将粗糙度引入亥姆霍兹共振器的颈管, 改变经典亥姆霍兹共振器颈管形状并构建粗糙颈管亥姆霍兹共振器吸声体结构, 可以在不改变整体尺寸的前提下, 有效地为吸声器提供低频吸声所需的声阻抗, 从而降低共振频率. 利用有限元法对结构进行了仿真并通过阻抗管吸声测试进行验证, 实验与仿真具有较高的一致性. 基于以上验证, 颈管引入粗糙度后可以有效降低亥姆霍兹共振器吸收峰值频率, 设计了8个吸声单元紧凑组合的粗糙颈管低频宽带通风消声器. 相比于光滑颈管的消声器, 吸声效果由500—1100 Hz频段内0.8以上的宽频吸声优化为400—1200 Hz频段内0.8以上的吸声效果, 可为低频宽带通风消声器的设计与优化提供参考.
    Aiming at the unsatisfactory low-frequency sound absorption effect of Helmholtz resonator, a novel broadband low-frequency ventilation absorber with rough neck is proposed. The roughness is introduced into the neck of Helmholtz resonator to change the shape of the neck and achieve the structure of rough neck Helmholtz resonator. The proposed absorber can effectively provide the acoustic impedance required for low-frequency sound absorption without changing the overall size, thereby reducing the resonant frequency. The finite element method is used to simulate the structure, and the impedance tube sound absorption test is carried out to verify it. The experimental and simulation results show high consistency with each other. The results also indicate that the rough neck Helmholtz resonator absorber with roughness introduced in the neck achieves an absorption peak at 58 Hz, with an absorption coefficient of about 0.63. Comparing with the absorber without roughness introduced, the resonant peak frequency becomes low, from 70 Hz to 58 Hz, reducing 17.1%. Therefore, adjusting the neck roughness can serve as a method of tuning the acoustic performance, and the absorption peak frequency can be adjusted by appropriately increasing the neck roughness so as to move it in the low frequency direction. Based on the verification that the roughness of the neck can effectively reduce the absorption peak frequency of Helmholtz resonator, a broadband low-frequency ventilation absorber with a rough neck, which is composed of eight absorption units, is designed. Through simulation calculation and experimental exploration, the absorption coefficient can achieve more than 0.8 in a target working frequency band of 500-1100 Hz. On this basis, the acoustic impedance of the structure can be adjusted by introducing roughness into the neck of Helmholtz resonator, so as to obtain the optimized broadband low-frequency ventilation absorber with a rough neck, which achieves a broadband sound absorption coefficient higher than 0.8 in a frequency range of 400–1200 Hz. The optimized structure also has 8 consecutive absorption peaks with amplitudes above 0.95. The proposed low-frequency broadband ventilation absorber provides a reference for designing and optimizing efficient low-frequency subwavelength acoustic absorbers. It has a wide range of applications in pipeline noise control.
      通信作者: 吴丰民, fmwu@hrbust.edu.cn ; 章东, dzhang@nju.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 11934009) 资助的课题.
      Corresponding author: Wu Feng-Min, fmwu@hrbust.edu.cn ; Zhang Dong, dzhang@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11934009).
    [1]

    马大猷 1993 物理 22 8

    Ma D Y 1993 Physics 22 8

    [2]

    马大猷 2002 声学技术 1 2Google Scholar

    Ma D Y 2002 Tech. Acoust. 1 2Google Scholar

    [3]

    王正敏, 饶伟, 李德玉 2019 声学学报 44 834Google Scholar

    Wang Z M, Rao W, Li D Y 2019 Acta Acust. 44 834Google Scholar

    [4]

    刘海涛, 郑四发, 连小珉, 但佳壁 2014 声学学报 39 353Google Scholar

    Liu H T, Zheng S F, Lian X M, Dan J B 2014 Acta Acust. 39 353Google Scholar

    [5]

    Bai C G, Wu F M, Wang J J, Jiang J X, Yang B 2022 J. Vib. Control. 29 2

    [6]

    苏胜利, 张苗, 曹为午 2014 舰船科学技术 36 128Google Scholar

    Su S L, Zhang M, Cao W W 2014 Ship Sci. Technol. 36 128Google Scholar

    [7]

    Romero-García V, Theocharis O, Merkel A, Tournat V, Pagneux V 2016 Sci. Rep. 6 1Google Scholar

    [8]

    Jiménez N, Huang W, Romero-García V, Pagneux V, Groby J P 2016 Appl. Phys. Lett. 109 121902Google Scholar

    [9]

    Duan M Y, Yu C L, Xu Z M, Xin F X, Lu T J 2020 Appl. Phys. Lett. 117 151904Google Scholar

    [10]

    Nguyen H, Wu Q, Xu X, Chen H, Tracy Sharon, Huang G L 2020 Appl. Phys. Lett. 117 134103Google Scholar

    [11]

    Mao Q B, Li S Q, Liu W W 2018 Appl. Acoust. 141 348Google Scholar

    [12]

    Duan H Q, Shen X M, Wang Y S, Yang F, Zhang X N, Yin Q 2021 Appl. Phys. Lett. 118 241904Google Scholar

    [13]

    Zhang L, Xin F X 2022 J. Acoust. Soc. Am. 151 1191Google Scholar

    [14]

    Liu G S, Peng Y Y, Liu M H, Zou X Y, Cheng J C 2018 Appl. Phys. Lett. 113 153503Google Scholar

    [15]

    Duan M Y, Yu C L, Xin F X, Lu T J 2021 Appl. Phys. Lett. 118 071904Google Scholar

    [16]

    Chang H T, Liu L, Zhang C, Xu X H 2018 AIP Adv. 8 045115Google Scholar

    [17]

    Yang D, Wang X L, Zhu M 2014 J. Sound Vib. 333 6843Google Scholar

    [18]

    Huang S B, Fang X S, Wang X S, Assouar Badreddine, Cheng Q, Li Y 2019 J. Acoust. Soc. Am. 145 254Google Scholar

    [19]

    Guo J W, Zhang X, Fang Y, Jiang Z Y 2020 Appl. Phys. Lett. 117 221902Google Scholar

    [20]

    Duan M Y, Yu C L, Xin F X, Lu T J 2021 J. Appl. Phys. 130 135102Google Scholar

    [21]

    Song S Y, Yang X H, Xin F X, Lu T J 2018 Phys. Fluids 30 023604Google Scholar

    [22]

    Xu Z M, Peng X J, Liu X W, Xin F X, Lu T J 2019 EPL 125 34004Google Scholar

    [23]

    Pride S R, Morgan F D, Gangi A F 1993 Phys. Rev. B 47 4964Google Scholar

    [24]

    Long H, Cheng Y, Liu X 2018 Sci. Rep. 8 15678Google Scholar

    [25]

    Hong Z H, Wu F M, Bai C G, An K X, Wang J J, Yang B 2022 Appl. Acoust. 192 108730Google Scholar

  • 图 1  (a) 粗糙直管与光滑直管对比; (b) 直角坐标系下两种直管结构对比; (c) 光滑颈管亥姆霍兹共振器吸声体结构; (d) 粗糙弯曲管与光滑弯曲管结构对比; (e) 极坐标系下两种弯曲管内壁曲线函数; (f) 粗糙颈管亥姆霍兹共振器吸声体结构

    Fig. 1.  (a) Comparison of rough and smooth straight pipes; (b) comparison of two kinds of straight pipe structures in cartesian coordinate system; (c) sound absorber structure of smooth neck Helmholtz resonator; (d) comparison of rough-curved and smooth-curved tubes; (e) curve function of two kinds of bending tube inwall in polar coordinate system; (f) sound absorber structure of rough neck Helmholtz resonator.

    图 2  结构有限元仿真 (a) 有限元网格划分模型; (b) 两种结构理论及仿真吸声曲线对比; (c) 两种结构相对阻抗实部对比; (d) 两种结构相对阻抗实部对比

    Fig. 2.  Finite element simulation of structures: (a) Finite element meshing model; (b) comparison of two structural theories and simulation sound absorption curves; (c) comparison of the relative impedance realities of the two structures; (d) comparison of the relative impedance imaginary parts of the two structures.

    图 3  粗糙颈管亥姆霍兹共振器吸声体吸声机理 (a) 粗糙颈管的声能耗散密度; (b)粗糙颈管的粒子振动速度分布; (c)光滑颈管的声能耗散密度; (d)光滑颈管的粒子振动速度分布

    Fig. 3.  Sound absorption mechanism of Helmholtz resonator sound-absorber in rough neck tube: (a) Distribution of particle vibration velocity in smooth neck canal; (b) distribution of particle vibration velocity in rough neck canals; (c) acoustic energy dissipation density of smooth neck tubes; (d) acoustic dissipation density of the rough neck tube.

    图 4  粗糙度对吸声性能的影响 (a)不同轴向粗糙度下的吸收谱; (b)不同径向粗糙度下的吸收谱

    Fig. 4.  Effect of roughness on sound absorption performance: (a) Absorption spectra at different axial roughness; (b) absorption spectra at different radial roughness.

    图 5  (a) LBVA单元的二维示意图; (b) R-LBVA单元的二维示意图

    Fig. 5.  (a) 2D schematic diagram of LBVA cell; (b) 2D schematic diagram of R-LBVA cell.

    图 6  结构及结果 (a) LBVA三维截面视图; (b) LBVA-3D打印结构图; (c) 有限元仿真及阻抗管测试所得R-LBVA和各个吸声单元的吸声曲线; (d) R-LBVA三维截面视图; (e) R-LBVA-3D打印结构图; (f)有限元仿真及阻抗管测试所得LBVA和R-LBVA的吸声曲线

    Fig. 6.  Structure and results: (a) LBVA 3D section view; (b) LBVA-3D printing structure diagram; (c) R-LBVA and absorption curves of each absorption unit obtained by finite element simulation and impedance tube measurement; (d) R-LBVA 3D section view; (e) R-LBVA-3D printing structure diagram; (f) LBVA and R-LBVA obtained by finite element simulation and impedance tube measurement.

    图 7  (a) R-LBVA各峰值频率下的相对声压分布; (b) 1109 Hz处R-LBVA第8个吸声单元颈部的粒子振动速度分布; (c) 1109 Hz处R-LBVA第8个吸声单元颈部的声能耗散密度分布; (d) R-LBVA的相对阻抗虚部; (e) R-LBVA的相对阻抗实部

    Fig. 7.  (a) Relative sound pressure distribution at each peak frequency of R-LBVA; (b) particle vibration velocity distribution at the neck of R-LBVA sound absorption unit 8 at 1109 Hz; (c) sound energy dissipation density distribution at the neck of R-LBVA sound absorption unit 8 at 1109 Hz; (d) imaginary part of relative impedance of R-LBVA; (e) real part of relative impedance of R-LBVA.

    表 1  LBVA单元的几何参数(单位: mm)

    Table 1.  Geometric parameters of R-LBVA units (in: mm).

    Unit1Unit2Unit3Unit4Unit5Unit6Unit7Unit8
    d22222222
    Rc1620.523.526.5283135.538.5
    h44444444
    w26.32422.21917.514.19.87.7
    l9085807570656055
    d55555555
    δ11111111
    下载: 导出CSV
    Baidu
  • [1]

    马大猷 1993 物理 22 8

    Ma D Y 1993 Physics 22 8

    [2]

    马大猷 2002 声学技术 1 2Google Scholar

    Ma D Y 2002 Tech. Acoust. 1 2Google Scholar

    [3]

    王正敏, 饶伟, 李德玉 2019 声学学报 44 834Google Scholar

    Wang Z M, Rao W, Li D Y 2019 Acta Acust. 44 834Google Scholar

    [4]

    刘海涛, 郑四发, 连小珉, 但佳壁 2014 声学学报 39 353Google Scholar

    Liu H T, Zheng S F, Lian X M, Dan J B 2014 Acta Acust. 39 353Google Scholar

    [5]

    Bai C G, Wu F M, Wang J J, Jiang J X, Yang B 2022 J. Vib. Control. 29 2

    [6]

    苏胜利, 张苗, 曹为午 2014 舰船科学技术 36 128Google Scholar

    Su S L, Zhang M, Cao W W 2014 Ship Sci. Technol. 36 128Google Scholar

    [7]

    Romero-García V, Theocharis O, Merkel A, Tournat V, Pagneux V 2016 Sci. Rep. 6 1Google Scholar

    [8]

    Jiménez N, Huang W, Romero-García V, Pagneux V, Groby J P 2016 Appl. Phys. Lett. 109 121902Google Scholar

    [9]

    Duan M Y, Yu C L, Xu Z M, Xin F X, Lu T J 2020 Appl. Phys. Lett. 117 151904Google Scholar

    [10]

    Nguyen H, Wu Q, Xu X, Chen H, Tracy Sharon, Huang G L 2020 Appl. Phys. Lett. 117 134103Google Scholar

    [11]

    Mao Q B, Li S Q, Liu W W 2018 Appl. Acoust. 141 348Google Scholar

    [12]

    Duan H Q, Shen X M, Wang Y S, Yang F, Zhang X N, Yin Q 2021 Appl. Phys. Lett. 118 241904Google Scholar

    [13]

    Zhang L, Xin F X 2022 J. Acoust. Soc. Am. 151 1191Google Scholar

    [14]

    Liu G S, Peng Y Y, Liu M H, Zou X Y, Cheng J C 2018 Appl. Phys. Lett. 113 153503Google Scholar

    [15]

    Duan M Y, Yu C L, Xin F X, Lu T J 2021 Appl. Phys. Lett. 118 071904Google Scholar

    [16]

    Chang H T, Liu L, Zhang C, Xu X H 2018 AIP Adv. 8 045115Google Scholar

    [17]

    Yang D, Wang X L, Zhu M 2014 J. Sound Vib. 333 6843Google Scholar

    [18]

    Huang S B, Fang X S, Wang X S, Assouar Badreddine, Cheng Q, Li Y 2019 J. Acoust. Soc. Am. 145 254Google Scholar

    [19]

    Guo J W, Zhang X, Fang Y, Jiang Z Y 2020 Appl. Phys. Lett. 117 221902Google Scholar

    [20]

    Duan M Y, Yu C L, Xin F X, Lu T J 2021 J. Appl. Phys. 130 135102Google Scholar

    [21]

    Song S Y, Yang X H, Xin F X, Lu T J 2018 Phys. Fluids 30 023604Google Scholar

    [22]

    Xu Z M, Peng X J, Liu X W, Xin F X, Lu T J 2019 EPL 125 34004Google Scholar

    [23]

    Pride S R, Morgan F D, Gangi A F 1993 Phys. Rev. B 47 4964Google Scholar

    [24]

    Long H, Cheng Y, Liu X 2018 Sci. Rep. 8 15678Google Scholar

    [25]

    Hong Z H, Wu F M, Bai C G, An K X, Wang J J, Yang B 2022 Appl. Acoust. 192 108730Google Scholar

  • [1] 隋玉梅, 何兆剑, 毕仁贵, 孔鹏, 吴吉恩, 赵鹤平, 邓科. 基于亥姆霍兹共振的超薄弧形声学超表面地毯斗篷.  , 2024, 73(6): 064301. doi: 10.7498/aps.73.20231706
    [2] 贾静, 肖勇, 王勋年, 王帅星, 温激鸿. 内插缝Helmholtz共振腔吸声超结构的机理分析与优化设计.  , 2024, 73(11): 114301. doi: 10.7498/aps.73.20240250
    [3] 白宇, 张振方, 杨海滨, 蔡力, 郁殿龙. 基于非对称吸声器的发动机声学超表面声衬.  , 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [4] 王蕾, 马玺越, 陈克安, 刘韬. 自由场中大尺寸有源微穿孔板吸声器的低频吸声性能.  , 2023, 72(6): 064304. doi: 10.7498/aps.72.20222151
    [5] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器.  , 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [6] 种涛, 王桂吉, 谭福利, 赵剑衡, 唐志平. 窗口声阻抗对锆相变动力学的影响.  , 2018, 67(7): 070204. doi: 10.7498/aps.67.20172198
    [7] 王春妮, 王亚, 马军. 基于亥姆霍兹定理计算动力学系统的哈密顿能量函数.  , 2016, 65(24): 240501. doi: 10.7498/aps.65.240501
    [8] 桑永杰, 蓝宇, 丁玥文. Helmholtz水声换能器弹性壁液腔谐振频率研究.  , 2016, 65(2): 024301. doi: 10.7498/aps.65.024301
    [9] 梁国龙, 庞福滨, 张光普. 吸声材料对水下小平台上矢量传感器声学特性的影响研究.  , 2014, 63(3): 034303. doi: 10.7498/aps.63.034303
    [10] 杨海滨, 李岳, 赵宏刚, 温激鸿, 温熙森. 一种含圆柱形谐振散射体的黏弹材料低频吸声机理研究.  , 2013, 62(15): 154301. doi: 10.7498/aps.62.154301
    [11] 高东宝, 曾新吾, 周泽民, 田章福. 一维亥姆霍兹共振腔声子晶体中缺陷模式的实验研究.  , 2013, 62(9): 094304. doi: 10.7498/aps.62.094304
    [12] 刘敏, 侯志林, 傅秀军. 二维正方排列圆柱状亥姆赫兹共振腔阵列局域共振声带隙的研究.  , 2012, 61(10): 104302. doi: 10.7498/aps.61.104302
    [13] 吕林梅, 温激鸿, 赵宏刚, 孟浩, 温熙森. 内嵌不同形状散射子的局域共振型黏弹性覆盖层低频吸声性能研究.  , 2012, 61(21): 214302. doi: 10.7498/aps.61.214302
    [14] 毛义军, 祁大同. 开口/封闭薄壳体声辐射和散射的统一边界积分方程解法.  , 2009, 58(10): 6764-6769. doi: 10.7498/aps.58.6764
    [15] 丁昌林, 赵晓鹏. 可听声频段的声学超材料.  , 2009, 58(9): 6351-6355. doi: 10.7498/aps.58.6351
    [16] 王泽锋, 胡永明, 罗洪, 孟洲, 倪明, 熊水东. 腔壁弹性对水下小型圆柱形亥姆霍兹共振器共振频率的影响.  , 2009, 58(4): 2507-2512. doi: 10.7498/aps.58.2507
    [17] 李明轩. 声阻法中检测阻抗的测量和提高检测器灵敏度的设计.  , 1974, 23(3): 3-12. doi: 10.7498/aps.23.3-2
    [18] 魏荣爵, 余崇智. 国产吸声材料的吸声系数测定的初步报告.  , 1957, 13(5): 365-387. doi: 10.7498/aps.13.365
    [19] 朱物华, 张仲桂. 低频与高频滤波器之瞬流.  , 1936, 2(2): 154-168. doi: 10.7498/aps.2.154
    [20] 朱物华, 张仲桂. 低频滤波器之瞬流.  , 1936, 2(1): 76-105. doi: 10.7498/aps.2.76
计量
  • 文章访问数:  3821
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-27
  • 修回日期:  2023-10-08
  • 上网日期:  2023-10-12
  • 刊出日期:  2023-11-20

/

返回文章
返回
Baidu
map