搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自旋混合库珀对引起的Josephson电流

孟豪 吴修强

引用本文:
Citation:

自旋混合库珀对引起的Josephson电流

孟豪, 吴修强

Josephson current induced by spin-mixing Cooper pairs

Meng Hao, Wu Xiu-Qiang
PDF
HTML
导出引用
  • 通过求解Bogoliubov-de Gennes方程研究一维S/FL-F-FR/S结中Josephson电流的输运特性, 其中S和F分别是超导体和铁磁体, FL,R是左右两侧具有非共线磁矩的界面层. 研究发现, FL和FR界面能够产生自旋混合和自旋翻转效应, 该效应能够将S内一部分自旋单重对转化为F内自旋相同的三重对. 对于短S/FL-F-FR/S结, F层内同时存在自旋单重对和自旋相同的三重对. 于是, 随着铁磁交换场和界面磁矩偏转角度差的增加, 临界电流在一个基准面上振荡. 若F转变为半金属, 则F内仅剩自旋相同的三重对, 临界电流的振荡特征消失. 此外, FL和FR界面还能起到普通势垒的作用. 这将导致临界电流随着铁磁厚度的增加展现出双重振荡行为, 其中长波振荡源于铁磁体内自旋单重对的位相变化, 短波振荡是由自旋单重对和自旋相同的三重对经过两个界面势垒时的共振隧穿效应引起的.
    Based on the Bogoliubov-de Gennes equations, we investigate the transport of the Josephson current in a one-dimensional S/FL-F-FR/S junction, where S and F are superconductor and ferromagnet, and FL,R are the left and right interfaces with noncollinear magnetizations. It is found that the FL and FR interfaces can induce spin-mixing and spin-flip effects, which can transform a part of spin-singlet pairs in the S into equal-spin triplet pairs in the F. For the short S/FL-F-FR/S junction, the spin-singlet pairs and the equal-spin triplet pairs can survive in the F layer. Therefore, with the increase of the ferromagnetic exchange field and the angle difference of interface magnetization rotation, the critical current oscillates on a base level. If the F is transformed into half-metal, only the equal-spin triple pairs exist in the F layer, and the oscillation characteristic of critical current disappears. In addition, the FL and FR interfaces can work as conventional potential barriers. As a result, the critical current exhibits double oscillation behaviors with the increase of ferromagnetic thickness, in which the long-wave oscillation arises from the phase change of the spin-singlet pairs in the ferromagnetic layer, and the short-wave oscillation is caused by the resonant tunneling effect when the spin-singlet pairs and the equal-spin triplet pairs pass through two interfacial barriers.
      通信作者: 孟豪, menghao2021@163.com
    • 基金项目: 国家自然科学基金(批准号: 12174238)、陕西省自然科学基础研究计划(批准号: 2020JM-597, 2023-JC-YB-025)、陕西理工大学科研基金(批准号: SLGKY2006)、陕西高校青年创新团队(批准号: 2022-94)和陕西理工大学校级青年拔尖创新团队资助的课题.
      Corresponding author: Meng Hao, menghao2021@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174238), the Natural Science Basic Research Program of Shaanxi Province, China (Grant Nos. 2020JM-597, 2023-JC-YB-025), the Scientific Research Foundation of Shaanxi University of Technology, China (Grant No. SLGKY2006), the Innovation Team of Shaanxi Universities, China (Grant No. 2022-94), and the School-level Youth Innovation Team of Shaanxi University of Technology, China.
    [1]

    Golubov A A, Kupriyanov M Y, Il’ichev E 2004 Rev. Mod. Phys. 76 411Google Scholar

    [2]

    Buzdin A I 2005 Rev. Mod. Phys. 77 935Google Scholar

    [3]

    Bergeret F S, Volkov A F, Efetov K B 2005 Rev. Mod. Phys. 77 1321Google Scholar

    [4]

    Eschrig M 2011 Phys. Today 64 43Google Scholar

    [5]

    Blamire M G, Robinson J W A 2014 J. Phys. Condens. Matter 26 453201Google Scholar

    [6]

    Linder J, Robinson J W A 2015 Nat. Phys. 11 307Google Scholar

    [7]

    Eschrig M 2015 Rep. Prog. Phys. 78 104501Google Scholar

    [8]

    Mel'nikov A S, Mironov S V, Samokhvalov A V, Buzdin A I 2022 Physics-Uspekhi 65 1248Google Scholar

    [9]

    Kimura T, Otani Y, Hamrle J 2006 Phys. Rev. Lett. 96 037201Google Scholar

    [10]

    Keizer R S, Goennenwein S T B, Klapwijk T M, Miao G, Xiao G, Gupta A 2006 Nature 439 825Google Scholar

    [11]

    Anwar M S, Czeschka F, Hesselberth M, Porcu M, Aarts J 2010 Phys. Rev. B 82 100501(RGoogle Scholar

    [12]

    Kontos T, Aprili M, Lesueur J, Genêt F, Stephanidis B, Boursier R 2002 Phys. Rev. Lett. 89 137007Google Scholar

    [13]

    Jiang J S, Davidović D, Reich D H, Chien C L 1995 Phys. Rev. Lett. 74 314Google Scholar

    [14]

    Blum Y, Tsukernik A, Karpovski M, Palevski A 2002 Phys. Rev. Lett. 89 187004Google Scholar

    [15]

    Ryazanov V V, Oboznov V A, Rusanov A Yu, Veretennikov A V, Golubov A A, Aarts J 2001 Phys. Rev. Lett. 86 2427Google Scholar

    [16]

    Oboznov V A, Bol’ginov V V, Feofanov A K, Ryazanov V V, Buzdin A I 2006 Phys. Rev. Lett. 96 197003Google Scholar

    [17]

    Yamashita T, Takahashi S, Maekawa S 2006 Appl. Phys. Lett. 88 132501Google Scholar

    [18]

    Bergeret F S, Volkov A F, Efetov K B 2001 Phys. Rev. Lett. 86 4096Google Scholar

    [19]

    Kadigrobov A, Shekhter R I, Jonson M 2001 Europhys. Lett. 54 394Google Scholar

    [20]

    Eschrig M, Kopu J, Cuevas J C, Gerd Schön 2003 Phys. Rev. Lett. 90 137003Google Scholar

    [21]

    Houzet M, Buzdin A I 2007 Phys. Rev. B 76 060504(RGoogle Scholar

    [22]

    Asano Y, Tanaka Y, Golubov A A 2007 Phys. Rev. Lett. 98 107002Google Scholar

    [23]

    Sosnin I, Cho H, Petrashov V T, Volkov A F 2006 Phys. Rev. Lett. 96 157002Google Scholar

    [24]

    Robinson J W A, Witt J D S, Blamire M G 2010 Science 329 59Google Scholar

    [25]

    Khaire T S, Khasawneh M A, Pratt W P, Birge N O 2010 Phys. Rev. Lett. 104 137002Google Scholar

    [26]

    Klose C, Khaire T S, Wang Y X, et al. 2012 Phys. Rev. Lett. 108 127002Google Scholar

    [27]

    Martinez W M, Pratt W P, Birge N O 2016 Phys. Rev. Lett. 116 077001Google Scholar

    [28]

    Sanchez-Manzano D, Mesoraca S, Cuellar F A, et al. 2022 Nat. Mater. 21 188Google Scholar

    [29]

    De Gennes P G 1966 Superconductivity of Metals and Alloys (New York: Benjamin) pp137–170

    [30]

    Bagwell P F 1992 Phys. Rev. B 46 12573Google Scholar

    [31]

    Beenakker C W J 1991 Phys. Rev. Lett. 67 3836Google Scholar

    [32]

    Bardeen J, Kümmel R, Jacobs A E, Tewordt L 1969 Phys. Rev. 187 556Google Scholar

    [33]

    Cayssol J, Montambaux G 2004 Phys. Rev. B 70 224520Google Scholar

    [34]

    Bulaevskii L N, Buzdin A I, Kulić M L, Panyukov S V 1985 Adv. Phys. 34 175Google Scholar

    [35]

    Meng H, Wu X Q, Ren Y J, Wu J S 2022 Phys. Rev. B 106 174502Google Scholar

    [36]

    Markos P, Soukoulis C M 2008 Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials (Princeton: Princeton University Press) pp56–73

    [37]

    Cohen-Tannoudji C, Diu B, Laloë F 2019 Quantum Mechanics (Vol. 1) (Weinheim: Wiley-VCH) pp2–32

    [38]

    Iogansen L V 1964 Sov. Phys.-JETP 18 146

    [39]

    Meng H, Wu X Q, Zheng Z M 2013 Europhys. Lett. 104 37003Google Scholar

    [40]

    Meng H, Wu J S, Wu X Q, Ren M Y, Ren Y J 2016 Sci. Rep. 6 21308Google Scholar

  • 图 1  (a) S/FL-F-FR/S结的结构示意图, 其中F内的粗箭头表示交换场方向, FL和FR为具有非共线磁矩的自旋活性界面; (b) Fj界面处磁矩$ {{\boldsymbol{\rho}}}_{j} $的磁化方向, 其中$ {j}=\rm{L} $, $ \rm{R} $分别对应左侧和右侧界面. $ \theta_{j} $$ \chi_{j} $分别表示Fj界面的极化角和方位角

    Fig. 1.  (a) Schematic diagram of the S/FL-F-FR/S junction, where thick arrow in F indicates the directions of the exchange field, and the FL and FR are spin-active interfaces with non-collinear magnetic moments; (b) the direction of magnetization $ {{\boldsymbol{\rho}}}_{j} $ at the Fj interface, where $ {j}=\rm{L} $ and $ \rm{R} $ correspond to the left and right interfaces, respectively. $ \theta_{j} $ and $ \chi_{j} $ denote polar and azimuthal angles of the Fj interface, respectively

    图 2  S/F/S结中Josephson电流随铁磁特征的变化 (a)临界电流$ I_{{\rm{c}}} $随铁磁交换场$ h_{z} $和铁磁厚度d的变化特征; (b)不同交换场下$ I_{{\rm{c}}} $d的变化特征; (c)不同铁磁厚度时$ I_{{\rm{c}}} $$ h_{z} $的变化特征; $ h_{z}/E_{{\rm{F}}} = 0.15 $时的(d)Andreev能谱$ E_{\rm{A}}(\phi) $和(e)电流-位相关系$ I(\phi) $. 在所有图形中, 界面极化强度取$ P_{{\rm{L}}}=P_{{\rm{R}}} = 0 $

    Fig. 2.  Variation of Josephson current with ferromagnetic characteristics in the S/F/S junction: (a) Critical current $ I_{{\rm{c}}} $ versus exchange field $ h_z $ and ferromagnetic thickness d; (b) dependence of $ I_{{\rm{c}}} $ on d for different exchange fields; (c) dependence of $ I_{{\rm{c}}} $ on $ h_z $ for different ferromagnetic thicknesses; (d) Andreev energy spectrum $ E_{\rm{A}}(\phi) $ and (e) current-phase relation $ I(\phi) $ for $ h_{z}/E_{{\rm{F}}} = $$ 0.15 $. In all panels, the strengths of interfacial polarization are taken as $ P_{{\rm{L}}}=P_{{\rm{R}}} = 0 $

    图 3  临界电流$ I_{\rm{c}} $随铁磁交换场$ h_z $和界面磁矩偏转角度差$ {\text{δ}}\chi $的变化特征 (a) kFd = 25; (b) kFd = 50; (c) kFd = 70. 在所有图形中, 界面极化强度取$ P_{{\rm{L}}}=P_{{\rm{R}}} = 1 $

    Fig. 3.  The critical current $ I_{{\rm{c}}} $ versus exchange field $ h_z $ and angle difference of interface magnetization rotation $ {\text{δ}}\chi $: (a) kFd = 25; (b) kFd = 50; (c) kFd = 70. In all panels, the strengths of interfacial polarization are taken as $ P_{{\rm{L}}}=P_{{\rm{R}}} = 1 $

    图 4  临界电流$ I_{\rm{c}} $随铁磁层厚度d和界面磁矩偏转角度差$ {\text{δ}}\chi $的变化特征 (a), (c), (e) 电流变化的侧视图; (b), (d), (f) 电流变化的俯视图. (a), (b) $ h_z/E_{{\rm{F}}} = 0.1 $; (c), (d) $ h_z/E_{{\rm{F}}} = 0.5 $; (e), (f) $ h_z/E_{\rm{F}} = 1.01 $. 在所有图形中, 界面极化强度取$ P_{{\rm{L}}}=P_{{\rm{R}}} = 1 $

    Fig. 4.  Variation of the critical current with ferromagnetic thickness d and angle difference of interface magnetization rotation $ {\text{δ}}\chi $: (a), (c), (e) Side view of current changes; (b), (d), (f) top view of current changes. (a), (b) $ h_z/E_{{\rm{F}}} = 0.1 $; (c), (d) $ h_z/E_{{\rm{F}}} = 0.5 $; (e), (f) $ h_z/E_{\rm{F}} = 1.01 $. In all panels, the strengths of interfacial polarization are taken as $ P_{{\rm{L}}}=P_{{\rm{R}}} = 1 $.

    图 5  (a)$ {\text{δ}}\chi $取3个特殊值时临界电流$ I_{\rm{c}} $随铁磁层厚度d的变化特征; (b), (c) $ {\text{δ}}\chi = 0 $时的Andreev能谱$ E_{\rm{A}}(\phi)$和电流-位相关系$ I(\phi) $ (图(b)插图描述了$ I_{\rm{c }}$$ {\text{δ}}\chi $的变化); (d), (e) $ k_{{\rm{F}}}d = 29.9 $时的Andreev能谱$ E_{\rm{A}}(\phi) $和电流-位相关系$ I(\phi) $. 在所有图形中, 其他参数为$ h_{z}/E_{{\rm{F}}} = 0.1 $$ P_{{\rm{L}}}=P_{{\rm{R}}} = 1 $

    Fig. 5.  (a) Variation of the critical current with ferromagnetic thickness d when $ {\text{δ}}\chi $ takes three special values; (b), (c) Andreev energy spectrum $ E_{\rm{A}}(\phi) $ and current-phase relation $ I(\phi) $ for $ {\text{δ}}\chi = 0 $ (the inset in panel (b) illustrates the dependence of $ I_{\rm{c}} $ on $ {\text{δ}}\chi $); (d), (e) Andreev energy spectrum $ E_{\rm{A}}(\phi) $ and current-phase relation $ I(\phi) $ for $ k_{{\rm{F}}}d = 29.9 $. In all panels, other parameters are $ h_{z}/E_{{\rm{F}}} = 0.1 $ and $ P_{{\rm{L}}}=P_{{\rm{R}}} = 1 $.

    图 6  $ {\text{δ}}\chi = 0 $时不同铁磁交换场下临界电流$ I_{\rm{c}} $随界面极化强度$ P_{{\rm{L}}} $$ P_{{\rm{R}}} $的变化特征 (a) $ h_z/E_{{\rm{F}}} $ = 0.1; (b) $ h_z/E_{{\rm{F}}} $ = 0.5; (c) $ h_z/E_{{\rm{F}}} $ = 1.01. 所有图形中, F层厚度取$ k_{{\rm{F}}}d = 50 $

    Fig. 6.  Variation of the critical current with the strengths of interfacial polarization $ P_{{\rm{L}}} $ and $ P_{{\rm{R}}} $ for three different exchange fields in the case of $ {\text{δ}}\chi = 0 $: (a) $ h_z/E_{{\rm{F}}} $ = 0.1; (b) $ h_z/E_{{\rm{F}}} $ = 0.5; (c) $ h_z/E_{{\mathrm{F}}} $ = 1.01. In all panels, the thickness of the F layer is taken as $ k_{{\rm{F}}}d = 50 $

    Baidu
  • [1]

    Golubov A A, Kupriyanov M Y, Il’ichev E 2004 Rev. Mod. Phys. 76 411Google Scholar

    [2]

    Buzdin A I 2005 Rev. Mod. Phys. 77 935Google Scholar

    [3]

    Bergeret F S, Volkov A F, Efetov K B 2005 Rev. Mod. Phys. 77 1321Google Scholar

    [4]

    Eschrig M 2011 Phys. Today 64 43Google Scholar

    [5]

    Blamire M G, Robinson J W A 2014 J. Phys. Condens. Matter 26 453201Google Scholar

    [6]

    Linder J, Robinson J W A 2015 Nat. Phys. 11 307Google Scholar

    [7]

    Eschrig M 2015 Rep. Prog. Phys. 78 104501Google Scholar

    [8]

    Mel'nikov A S, Mironov S V, Samokhvalov A V, Buzdin A I 2022 Physics-Uspekhi 65 1248Google Scholar

    [9]

    Kimura T, Otani Y, Hamrle J 2006 Phys. Rev. Lett. 96 037201Google Scholar

    [10]

    Keizer R S, Goennenwein S T B, Klapwijk T M, Miao G, Xiao G, Gupta A 2006 Nature 439 825Google Scholar

    [11]

    Anwar M S, Czeschka F, Hesselberth M, Porcu M, Aarts J 2010 Phys. Rev. B 82 100501(RGoogle Scholar

    [12]

    Kontos T, Aprili M, Lesueur J, Genêt F, Stephanidis B, Boursier R 2002 Phys. Rev. Lett. 89 137007Google Scholar

    [13]

    Jiang J S, Davidović D, Reich D H, Chien C L 1995 Phys. Rev. Lett. 74 314Google Scholar

    [14]

    Blum Y, Tsukernik A, Karpovski M, Palevski A 2002 Phys. Rev. Lett. 89 187004Google Scholar

    [15]

    Ryazanov V V, Oboznov V A, Rusanov A Yu, Veretennikov A V, Golubov A A, Aarts J 2001 Phys. Rev. Lett. 86 2427Google Scholar

    [16]

    Oboznov V A, Bol’ginov V V, Feofanov A K, Ryazanov V V, Buzdin A I 2006 Phys. Rev. Lett. 96 197003Google Scholar

    [17]

    Yamashita T, Takahashi S, Maekawa S 2006 Appl. Phys. Lett. 88 132501Google Scholar

    [18]

    Bergeret F S, Volkov A F, Efetov K B 2001 Phys. Rev. Lett. 86 4096Google Scholar

    [19]

    Kadigrobov A, Shekhter R I, Jonson M 2001 Europhys. Lett. 54 394Google Scholar

    [20]

    Eschrig M, Kopu J, Cuevas J C, Gerd Schön 2003 Phys. Rev. Lett. 90 137003Google Scholar

    [21]

    Houzet M, Buzdin A I 2007 Phys. Rev. B 76 060504(RGoogle Scholar

    [22]

    Asano Y, Tanaka Y, Golubov A A 2007 Phys. Rev. Lett. 98 107002Google Scholar

    [23]

    Sosnin I, Cho H, Petrashov V T, Volkov A F 2006 Phys. Rev. Lett. 96 157002Google Scholar

    [24]

    Robinson J W A, Witt J D S, Blamire M G 2010 Science 329 59Google Scholar

    [25]

    Khaire T S, Khasawneh M A, Pratt W P, Birge N O 2010 Phys. Rev. Lett. 104 137002Google Scholar

    [26]

    Klose C, Khaire T S, Wang Y X, et al. 2012 Phys. Rev. Lett. 108 127002Google Scholar

    [27]

    Martinez W M, Pratt W P, Birge N O 2016 Phys. Rev. Lett. 116 077001Google Scholar

    [28]

    Sanchez-Manzano D, Mesoraca S, Cuellar F A, et al. 2022 Nat. Mater. 21 188Google Scholar

    [29]

    De Gennes P G 1966 Superconductivity of Metals and Alloys (New York: Benjamin) pp137–170

    [30]

    Bagwell P F 1992 Phys. Rev. B 46 12573Google Scholar

    [31]

    Beenakker C W J 1991 Phys. Rev. Lett. 67 3836Google Scholar

    [32]

    Bardeen J, Kümmel R, Jacobs A E, Tewordt L 1969 Phys. Rev. 187 556Google Scholar

    [33]

    Cayssol J, Montambaux G 2004 Phys. Rev. B 70 224520Google Scholar

    [34]

    Bulaevskii L N, Buzdin A I, Kulić M L, Panyukov S V 1985 Adv. Phys. 34 175Google Scholar

    [35]

    Meng H, Wu X Q, Ren Y J, Wu J S 2022 Phys. Rev. B 106 174502Google Scholar

    [36]

    Markos P, Soukoulis C M 2008 Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials (Princeton: Princeton University Press) pp56–73

    [37]

    Cohen-Tannoudji C, Diu B, Laloë F 2019 Quantum Mechanics (Vol. 1) (Weinheim: Wiley-VCH) pp2–32

    [38]

    Iogansen L V 1964 Sov. Phys.-JETP 18 146

    [39]

    Meng H, Wu X Q, Zheng Z M 2013 Europhys. Lett. 104 37003Google Scholar

    [40]

    Meng H, Wu J S, Wu X Q, Ren M Y, Ren Y J 2016 Sci. Rep. 6 21308Google Scholar

  • [1] 吴海滨, 刘迎娣, 刘彦军, 李金花, 刘建军. 量子点耦合强度对手性Majorana费米子共振交换的调制.  , 2024, 73(13): 130502. doi: 10.7498/aps.73.20240739
    [2] 曾绍龙, 李玲, 谢征微. 双自旋过滤隧道结中的隧穿时间.  , 2016, 65(22): 227302. doi: 10.7498/aps.65.227302
    [3] 黎明, 陈军, 宫箭. InAs/InP柱型量子线中隧穿时间和逃逸问题的研究.  , 2014, 63(23): 237303. doi: 10.7498/aps.63.237303
    [4] 金霞, 董正超, 梁志鹏, 仲崇贵. 磁性d波超导/铁磁/磁性d波超导结中的约瑟夫森效应.  , 2013, 62(4): 047401. doi: 10.7498/aps.62.047401
    [5] 何锐. 基于超导量子干涉仪与介观LC共振器耦合电路的量子通信.  , 2012, 61(3): 030303. doi: 10.7498/aps.61.030303
    [6] 宋戈, 许静平, 羊亚平. 三层单负材料结构中电磁波模分析.  , 2011, 60(7): 074101. doi: 10.7498/aps.60.074101
    [7] 陈静, 蒋震宗, 陆加佳, 刘永生, 朱燕艳. 纳米硅结构中分裂能级对光电输运特性的影响.  , 2010, 59(12): 8862-8869. doi: 10.7498/aps.59.8862
    [8] 李巧华, 张振华, 刘新海, 邱明, 丁开和. 分子电子器件简化模型的电子透射谱的计算.  , 2009, 58(10): 7204-7210. doi: 10.7498/aps.58.7204
    [9] 汤乃云. GaMnN铁磁共振隧穿二极管自旋电流输运以及极化效应的影响.  , 2009, 58(5): 3397-3401. doi: 10.7498/aps.58.3397
    [10] 朱 林, 陈卫东, 谢征微, 李伯臧. NM/FI/NI/FI/NM新型双自旋过滤隧道结的隧穿电导和隧穿磁电阻.  , 2006, 55(10): 5499-5505. doi: 10.7498/aps.55.5499
    [11] 李晓薇. 铁磁超导态/绝缘层/自旋三重态p波超导体结的直流Josephson电流.  , 2006, 55(12): 6637-6642. doi: 10.7498/aps.55.6637
    [12] 许静平, 王立刚, 羊亚平. 利用含负折射率材料的光子晶体实现角度滤波器.  , 2006, 55(6): 2765-2770. doi: 10.7498/aps.55.2765
    [13] 孙宇航, 李福利. 单个二能级超冷原子在多个单模腔场间的共振隧穿和光子辐射.  , 2006, 55(3): 1153-1159. doi: 10.7498/aps.55.1153
    [14] 成泰民, 鲜于泽, 杜 安, 邹君鼎. 低温下二维绝缘铁磁体的磁振子软化.  , 2005, 54(5): 2239-2246. doi: 10.7498/aps.54.2239
    [15] 成泰民, 鲜于泽, 杜 安. 低温下二维绝缘铁磁体的磁振子寿命.  , 2005, 54(11): 5314-5323. doi: 10.7498/aps.54.5314
    [16] 胡振华, 黄德修. 用Ξ形四能级模型研究非对称耦合量子阱非定域激子复合发光.  , 2004, 53(4): 1195-1200. doi: 10.7498/aps.53.1195
    [17] 朱 莉, 郑厚植, 谭平恒, 周 霞, 姬 扬, 杨富华, 李桂荣, 曾宇昕. 能级填充对量子阱光学性质的影响.  , 2004, 53(12): 4334-4340. doi: 10.7498/aps.53.4334
    [18] 李晓薇. 超导体/铁磁体绝缘层-超导体隧道结的直流Josephson效应.  , 2002, 51(8): 1821-1825. doi: 10.7498/aps.51.1821
    [19] 赵继刚, 邵彬, 王太宏. InAs自组装量子点GaAs肖特基二级管的电学特性研究.  , 2002, 51(6): 1355-1359. doi: 10.7498/aps.51.1355
    [20] 王传奎, 江兆潭. 一类弯曲量子线的量子束缚态.  , 2000, 49(8): 1574-1579. doi: 10.7498/aps.49.1574
计量
  • 文章访问数:  2013
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-19
  • 修回日期:  2023-07-18
  • 上网日期:  2023-09-12
  • 刊出日期:  2023-11-20

/

返回文章
返回
Baidu
map