搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用热激子反向系间窜越的特征磁响应探测界面型OLED中的Dexter能量传递过程

魏福贤 刘俊宏 彭腾 汪波 朱洪强 陈晓莉 熊祖洪

引用本文:
Citation:

利用热激子反向系间窜越的特征磁响应探测界面型OLED中的Dexter能量传递过程

魏福贤, 刘俊宏, 彭腾, 汪波, 朱洪强, 陈晓莉, 熊祖洪

Detection of Dexter energy transfer process in interface-type OLED via utilizing the characteristic magneto-electroluminescence response of hot exciton reverse intersystem crossing

Wei Fu-Xian, Liu Jun-Hong, Peng Teng, Wang Bo, Zhu Hong-Qiang, Chen Xiao-Li, Xiong Zu-Hong
PDF
HTML
导出引用
  • 基于界面激基复合物作为主体的主-客体型有机发光二极管(organic light emitting diodes, OLEDs)的外量子效率已经突破36%, 但其主-客体间能量传递过程还有待深入研究. 本文提出一种基于客体Rubrene热激子反向系间窜越(T2,Rub → S1,Rub)的特征磁响应探测界面激基复合物型OLEDs中能量传递过程的实验策略. 具体通过表征主、客体材料的光物理特性, 证明了主-客体单重态激子间的Förster共振能量传递过程; 通过研究界面激基复合物型器件的磁电致发光响应曲线, 可视化了主-客体三重态激子间的Dexter能量传递过程, 且该过程有效发生对于器件电致发光具有不可忽视的促进作用. 本研究不仅为探测OLEDs中Dexter能量传递过程提供切实可行的理论方法, 还为进一步设计高性能热激子型OLEDs提供新的实验参考.
    The maximum external quantum efficiency of the host-guest-type organic light-emitting diodes (OLEDs) with interface exciplex as the host has been over 36%. However, studies about the energy transfer processes occurring from the host to guest remain lacking. Herein, a strategy is proposed to probe the energy transfer processes in interface-type OLEDs by utilizing the characteristic magneto-electroluminescence (MEL) response from the hot exciton reverse intersystem crossing (T2,Rub → S1,Rub) of rubrene. Specifically, a donor/spacer/accepter (D/S/A)-type interface exciplex device and a D/spacer:x% Emitter/A (D/S:3% Rubrene/A)-type Rubrene-doped device are fabricated. The Förster resonance energy transfer (FRET) process occurring between the singlet state of the exciplex-host and the singlet state of Rubrene-guest is demonstrated by characterizing the photophysical properties of the donor, accepter, and guest materials. The Dexter energy transfer (DET, T1,Host → T2,Rub) process between the triplet state of the host and the triplet state of guest is visualized by the comparative studying of the current- and temperature-dependent MEL response curves of D/S/A and D/S:3% Rubrene/A devices, respectively. More importantly, the occurrence of the DET process greatly promotes the electroluminescence intensity of the D/S:3% Rubrene/A device. Furthermore, we also investigate the differences in the electroluminescence performance of devices at low temperature to demonstrate again the co-existence of FRET and DET process in the D/S:3% Rubrene/A system. Obviously, this work not only provides a promising strategy for probing the DET process in OLEDs, but also paves a new way for designing high-performance “hot exciton” type OLEDs.
      通信作者: 朱洪强, 20132013@cqnu.edu.cn ; 熊祖洪, zhxiong@swu.edu.cn
    • 基金项目: 重庆市教委科技项目(批准号: KJQN202200569)、国家自然科学基金(批准号: 12104076, 11874305)、重庆自然科学基金(批准号: cstc2019jcyj-msxmX0560)和重庆师范大学校级基金(批准号: 21XLB050)资助的课题.
      Corresponding author: Zhu Hong-Qiang, 20132013@cqnu.edu.cn ; Xiong Zu-Hong, zhxiong@swu.edu.cn
    • Funds: Project supported by the Foundation from the Education Commission of Chongqing, China (Grant No. KJQN202200569), the National Natural Science Foundation of China (Grant Nos. 12104076, 11874305), the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyj-msxmX0560), and the University-level Foundation of Chongqing Normal University, China (Grant No. 21XLB050).
    [1]

    Gu J N, Tang Z Y, Guo H Q, Chen Y, Xiao J, Chen Z J, Xiao L X 2022 J. Mater. Chem. C 10 4521Google Scholar

    [2]

    Shao J H, Chen C, Zhao W C, Zhang E D, Ma W J, Sun Y P, Chen P, Sheng R 2022 Micromachines 13 298Google Scholar

    [3]

    梁宝炎, 庄旭鸣, 宋小贤, 梁洁, 毕海, 王悦 2023 发光学报 44 61Google Scholar

    Liang B Y, Zhuang X M, Song X X, Liang J, Bi H, Wang Y 2023 Chin. J. Lumin. 44 61Google Scholar

    [4]

    Hung W Y, Fang G C, Chang Y C, Kuo T Y, Chou P T, Lin S W, Wong K T 2013 ACS Appl. Mater. Interfaces 5 6826Google Scholar

    [5]

    Nakanotani H, Furukawa T, Morimoto K, Adachi C 2016 Sci. Adv. 2 e1501470Google Scholar

    [6]

    Song X Z, Zhang D D, Huang T Y, Cai M H, Duan L 2018 Sci. China Chem. 61 836Google Scholar

    [7]

    Ying S, Xiao S, Peng L, Sun Q, Dai Y F, Qiao X F, Yang D Z, Chen J S, Ma D G 2022 ACS Appl. Electron. Mater. 4 3088Google Scholar

    [8]

    Han S H, Lee J Y 2018 J. Mater. Chem. C 6 1504Google Scholar

    [9]

    Tang X T, Pan R H, Zhao X, Jia W Y, Wang Y, Ma C H, Tu L Y, Xiong Z H 2020 Adv. Funct. Mater. 30 2005765Google Scholar

    [10]

    Xu Y W, Liang X M, Zhou X H, Yuan P S, Zhou J D, Wang C, Li B B, Hu D H, Qiao X F, Jiang X F, Liu L L, Su S J, Ma D G, Ma Y G 2019 Adv. Mater. 31 1807388Google Scholar

    [11]

    Kim H B, Kim J J 2020 Phys. Rev. Appl. 13 024006Google Scholar

    [12]

    Huh D H, Kim G W, Kim G H, Kulshreshtha C, Kwon J H 2013 Synth. Met. 180 79Google Scholar

    [13]

    宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪 2022 71 087201Google Scholar

    Ning Y R, Zhao X, Tang X T, Chen J, Wu F J, Jia W Y, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 087201Google Scholar

    [14]

    Ying S, Pang P Y, Zhang S, Sun Q, Dai Y F, Qiao X F, Yang D Z, Chen J S, Ma D G 2019 ACS Appl. Mater. Interfaces 11 31078Google Scholar

    [15]

    Matsumoto N, Nishiyama M, Adachi C 2008 J. Phys. Chem. C 112 7735Google Scholar

    [16]

    Zhang T Y, Chu B, Li W L, Su Z S, Peng Q M, Zhao B, Luo Y S, Jin F M, Yan X W, Gao Y, Wu H R, Zhang F, Fan D, Wang J B 2014 ACS Appl. Mater. Interfaces 6 11907Google Scholar

    [17]

    Zhao B, Miao Y Q, Wang Z Q, Chen W H, Wang K X, Wang H, Hao Y Y, Xu B S, Li W L 2016 Org. Electron. 37 1Google Scholar

    [18]

    Song X Z, Zhang D D, Li H Y, Cai M H, Huang T Y, Duan L 2019 ACS Appl. Mater. Interfaces 11 22595Google Scholar

    [19]

    黄维, 密保秀, 高志强 2011 有机电子学 (北京: 科学出版社) 第 52页

    Huang W, Mi B X, Gao Z Q 2011 Organic Electronic (Beijing: Science Press) p52

    [20]

    Kim K H, Yoo S J, Kim J J 2016 Chem. Mater. 28 1936Google Scholar

    [21]

    Tang X T, Tu L Y, Zhao X, Chen J, Ning Y R, Wu F J, Xiong Z H 2022 J. Phys. Chem. C 126 9456Google Scholar

    [22]

    汤仙童, 潘睿亨, 熊祖洪 2023 科学通报 68 2401Google Scholar

    Tang X T, Pan R H, Xiong Z H 2023 Chin. Sci. Bull 68 2401Google Scholar

    [23]

    Tsai K W, Lee T H, Wu J H, Jhou J Y, Huang W S, Hsieh S N, Wen T C, Guo T F, Huang J C A 2013 Org. Electron. 14 1376Google Scholar

    [24]

    Yuan P S, Qiao X F, Yan D H, Ma D G 2018 J. Mater. Chem. C 6 5721Google Scholar

    [25]

    Zhao X, Tang X T, Zhu H Q, Ma C H, Wang Y, Ye S N, Tu L Y, Xiong Z H 2021 ACS Appl. Electron. Mater. 3 3034Google Scholar

    [26]

    Tang X T, Pan R H, Zhao X, Zhu H Q, Xiong Z H 2020 J. Phys. Chem. Lett. 11 2804Google Scholar

    [27]

    王辉耀, 宁亚茹, 吴凤娇, 赵茜, 陈敬, 朱洪强, 魏福贤, 吴雨廷, 熊祖洪 2022 71 217201Google Scholar

    Wang H Y, Ning Y R, Wu F J, Zhao X, Chen J, Zhu H Q, Wei F X, Wu Y T, Xiong Z H 2022 Acta Phys. Sin. 71 217201Google Scholar

    [28]

    Goushi K, Yoshida K, Sato K, Adachi C 2012 Nat. Photonics 6 253Google Scholar

    [29]

    Crooker S A, Liu F, Kelley M R, Martinez N J D, Nie W, Mohite A, Nayyar I H, Tretiak S, Smith D L, Ruden P P 2014 Appl. Phys. Lett. 105 153304Google Scholar

  • 图 1  (a) 器件所涉及有机材料的化学分子结构; (b) 器件能级结构图; (c) 固态薄膜的PL谱和Rubrene的吸收谱

    Fig. 1.  (a) Chemical molecular structures of organic materials involved in devices; (b) schematic diagram of the energy level structure of devices; (c) PL spectra of solid-state films and the absorption spectrum of Rubrene.

    图 2  (a) 室温下器件1—3的归一化EL谱; (b) 室温下器件1—3的I-B曲线; (c)不同工作温度下, 器件2在100 μA偏置电流时的EL谱; (d) 器件2在不同工作温度下的I-B曲线; (e) 不同工作温度下, 器件3在100 μA偏置电流时的EL谱; (f) 器件3在不同工作温度下的I-B曲线

    Fig. 2.  (a) Normalized EL spectra of devices 1–3 at room temperature; (b) I-B curves of devices 1–3 at room temperature; (c) EL spectra of Dev. 2 at bias current of 100 μA with different operating temperatures; (d) I-B curves of Dev. 2 at different operating temperatures; (e) EL spectra of Dev. 3 at bias current of 100 μA with different operating temperatures; (f) I-B curves of Dev. 3 at different operating temperatures.

    图 3  (a), (b) 器件2电流与温度依赖的MEL曲线; (c), (d) 器件3电流与温度依赖的MEL曲线

    Fig. 3.  (a), (b) Current- and temperature-dependent MEL curves of Dev. 2; (c), (d) current- and temperature-dependent MEL curves of Dev. 3.

    图 4  (a) 器件2中材料分子的分布图; (b) 器件2在电激发下载流子迁移和复合的示意图; (c) 器件2中发生的微观演化过程

    Fig. 4.  (a) Schematic diagram of the distribution of material molecules in Dev. 2; (b) schematic diagram of charge-carrier transport and recombination in Dev. 2; (c) microscopic evolutionary processes occurring in Dev. 2.

    图 5  (a) 器件3中材料分子的分布图; (b) 器件3中载流子输运和复合的示意图; (c) 器件3中发生的微观演化过程

    Fig. 5.  (a) Diagram showing the distribution of material molecules in Dev. 3; (b) schematic diagram of charge-carrier transport and recombination in Dev. 3; (c) microscopic evolutionary processes occurring in Dev. 3.

    表 1  有机发光器件1—3的具体结构

    Table 1.  Specific structure of organic light-emitting devices 1–3.

    Device name Structure
    Dev. 1 ITO/PEDOT:PSS/TCTA (50 nm)/PO-T2T (70 nm)/LiF (1 nm)/Al
    Dev. 2 ITO/PEDOT:PSS/TCTA (50 nm)/DPEPO (4 nm)/PO-T2T (70 nm)/LiF (1 nm)/Al
    Dev. 3 ITO/PEDOT:PSS/TCTA (50 nm)/DPEPO:3% Rubrene (4 nm)/PO-T2T (70 nm)/LiF (1 nm)/Al
    下载: 导出CSV
    Baidu
  • [1]

    Gu J N, Tang Z Y, Guo H Q, Chen Y, Xiao J, Chen Z J, Xiao L X 2022 J. Mater. Chem. C 10 4521Google Scholar

    [2]

    Shao J H, Chen C, Zhao W C, Zhang E D, Ma W J, Sun Y P, Chen P, Sheng R 2022 Micromachines 13 298Google Scholar

    [3]

    梁宝炎, 庄旭鸣, 宋小贤, 梁洁, 毕海, 王悦 2023 发光学报 44 61Google Scholar

    Liang B Y, Zhuang X M, Song X X, Liang J, Bi H, Wang Y 2023 Chin. J. Lumin. 44 61Google Scholar

    [4]

    Hung W Y, Fang G C, Chang Y C, Kuo T Y, Chou P T, Lin S W, Wong K T 2013 ACS Appl. Mater. Interfaces 5 6826Google Scholar

    [5]

    Nakanotani H, Furukawa T, Morimoto K, Adachi C 2016 Sci. Adv. 2 e1501470Google Scholar

    [6]

    Song X Z, Zhang D D, Huang T Y, Cai M H, Duan L 2018 Sci. China Chem. 61 836Google Scholar

    [7]

    Ying S, Xiao S, Peng L, Sun Q, Dai Y F, Qiao X F, Yang D Z, Chen J S, Ma D G 2022 ACS Appl. Electron. Mater. 4 3088Google Scholar

    [8]

    Han S H, Lee J Y 2018 J. Mater. Chem. C 6 1504Google Scholar

    [9]

    Tang X T, Pan R H, Zhao X, Jia W Y, Wang Y, Ma C H, Tu L Y, Xiong Z H 2020 Adv. Funct. Mater. 30 2005765Google Scholar

    [10]

    Xu Y W, Liang X M, Zhou X H, Yuan P S, Zhou J D, Wang C, Li B B, Hu D H, Qiao X F, Jiang X F, Liu L L, Su S J, Ma D G, Ma Y G 2019 Adv. Mater. 31 1807388Google Scholar

    [11]

    Kim H B, Kim J J 2020 Phys. Rev. Appl. 13 024006Google Scholar

    [12]

    Huh D H, Kim G W, Kim G H, Kulshreshtha C, Kwon J H 2013 Synth. Met. 180 79Google Scholar

    [13]

    宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪 2022 71 087201Google Scholar

    Ning Y R, Zhao X, Tang X T, Chen J, Wu F J, Jia W Y, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 087201Google Scholar

    [14]

    Ying S, Pang P Y, Zhang S, Sun Q, Dai Y F, Qiao X F, Yang D Z, Chen J S, Ma D G 2019 ACS Appl. Mater. Interfaces 11 31078Google Scholar

    [15]

    Matsumoto N, Nishiyama M, Adachi C 2008 J. Phys. Chem. C 112 7735Google Scholar

    [16]

    Zhang T Y, Chu B, Li W L, Su Z S, Peng Q M, Zhao B, Luo Y S, Jin F M, Yan X W, Gao Y, Wu H R, Zhang F, Fan D, Wang J B 2014 ACS Appl. Mater. Interfaces 6 11907Google Scholar

    [17]

    Zhao B, Miao Y Q, Wang Z Q, Chen W H, Wang K X, Wang H, Hao Y Y, Xu B S, Li W L 2016 Org. Electron. 37 1Google Scholar

    [18]

    Song X Z, Zhang D D, Li H Y, Cai M H, Huang T Y, Duan L 2019 ACS Appl. Mater. Interfaces 11 22595Google Scholar

    [19]

    黄维, 密保秀, 高志强 2011 有机电子学 (北京: 科学出版社) 第 52页

    Huang W, Mi B X, Gao Z Q 2011 Organic Electronic (Beijing: Science Press) p52

    [20]

    Kim K H, Yoo S J, Kim J J 2016 Chem. Mater. 28 1936Google Scholar

    [21]

    Tang X T, Tu L Y, Zhao X, Chen J, Ning Y R, Wu F J, Xiong Z H 2022 J. Phys. Chem. C 126 9456Google Scholar

    [22]

    汤仙童, 潘睿亨, 熊祖洪 2023 科学通报 68 2401Google Scholar

    Tang X T, Pan R H, Xiong Z H 2023 Chin. Sci. Bull 68 2401Google Scholar

    [23]

    Tsai K W, Lee T H, Wu J H, Jhou J Y, Huang W S, Hsieh S N, Wen T C, Guo T F, Huang J C A 2013 Org. Electron. 14 1376Google Scholar

    [24]

    Yuan P S, Qiao X F, Yan D H, Ma D G 2018 J. Mater. Chem. C 6 5721Google Scholar

    [25]

    Zhao X, Tang X T, Zhu H Q, Ma C H, Wang Y, Ye S N, Tu L Y, Xiong Z H 2021 ACS Appl. Electron. Mater. 3 3034Google Scholar

    [26]

    Tang X T, Pan R H, Zhao X, Zhu H Q, Xiong Z H 2020 J. Phys. Chem. Lett. 11 2804Google Scholar

    [27]

    王辉耀, 宁亚茹, 吴凤娇, 赵茜, 陈敬, 朱洪强, 魏福贤, 吴雨廷, 熊祖洪 2022 71 217201Google Scholar

    Wang H Y, Ning Y R, Wu F J, Zhao X, Chen J, Zhu H Q, Wei F X, Wu Y T, Xiong Z H 2022 Acta Phys. Sin. 71 217201Google Scholar

    [28]

    Goushi K, Yoshida K, Sato K, Adachi C 2012 Nat. Photonics 6 253Google Scholar

    [29]

    Crooker S A, Liu F, Kelley M R, Martinez N J D, Nie W, Mohite A, Nayyar I H, Tretiak S, Smith D L, Ruden P P 2014 Appl. Phys. Lett. 105 153304Google Scholar

  • [1] 李万娇, 关云霞, 保希, 王成, 宋家一, 徐爽, 彭柯敖, 陈丽佳, 牛连斌. Alq3/HAT-CN叠层电致发光器件的激子调控机制探究.  , 2023, 72(21): 217201. doi: 10.7498/aps.72.20230973
    [2] 王辉耀, 魏福贤, 吴雨廷, 彭腾, 刘俊宏, 汪波, 熊祖洪. 激基复合物有机发光二极管中平衡载流子增强电荷转移态的反向系间窜越过程.  , 2023, 72(17): 177201. doi: 10.7498/aps.72.20230949
    [3] 赵茜, 陈敬, 彭腾, 刘俊宏, 汪波, 陈晓莉, 熊祖洪. 激基复合物有机发光二极管中系间窜越和反向系间窜越过程的非单调电流依赖关系.  , 2023, 72(16): 167201. doi: 10.7498/aps.72.20230765
    [4] 宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪. 利用发光磁效应研究同分异构体mCBP和CBP作为给体的激基复合物器件的微观过程.  , 2022, 71(8): 087201. doi: 10.7498/aps.71.20212068
    [5] 王辉耀, 宁亚茹, 吴凤娇, 赵茜, 陈敬, 朱洪强, 魏福贤, 吴雨廷, 熊祖洪. 纯红荧烯器件中极化子对的系间窜越与高能三重态激子的反向系间窜越过程“消失”的原因.  , 2022, 71(21): 217201. doi: 10.7498/aps.71.20221060
    [6] 吴雨廷, 朱洪强, 魏福贤, 王辉耀, 陈敬, 宁亚茹, 吴凤娇, 陈晓莉, 熊祖洪. 激基复合物与电致激基复合物共存体系中Dexter能量传递导致的负磁效率.  , 2022, 71(22): 227201. doi: 10.7498/aps.71.20221288
    [7] 王润, 贾亚兰, 张月, 马兴娟, 徐强, 朱志新, 邓艳红, 熊祖洪, 高春红. 基于激子阻挡层的高效率绿光钙钛矿电致发光二极管.  , 2020, 69(3): 038501. doi: 10.7498/aps.69.20191263
    [8] 刘康, 孙华锐. 基于拉曼热测量技术的铜基复合物法兰GaN基晶体管的热阻分析.  , 2020, 69(2): 028501. doi: 10.7498/aps.69.20190921
    [9] 何月娣, 徐征, 赵谡玲, 刘志民, 高松, 徐叙瑢. 混合量子点器件电致发光的能量转移研究.  , 2014, 63(17): 177301. doi: 10.7498/aps.63.177301
    [10] 毕长虹, 孟庆裕. CaWO4:Sm3+荧光粉的发光性质及其能量传递机理.  , 2013, 62(19): 197804. doi: 10.7498/aps.62.197804
    [11] 沈应龙, 唐春梅, 盛秋春, 刘双, 李文涛, 王龙飞, 陈丹平. 铈铕共掺高钆氧化物玻璃的发光性能及能量传递效应.  , 2013, 62(11): 117803. doi: 10.7498/aps.62.117803
    [12] 陈苏杰, 于军胜, 文雯, 蒋亚东. NPB:CBP复合空穴传输层对黄色有机电致发光器件的影响.  , 2011, 60(3): 037202. doi: 10.7498/aps.60.037202
    [13] 乔士柱, 赵俊卿, 贾振锋, 张宁玉, 王凤翔, 付刚, 季燕菊. 自旋极化有机电致发光器件中单线态与三线态激子的形成及调控.  , 2010, 59(5): 3564-3570. doi: 10.7498/aps.59.3564
    [14] 郑瑞伦. 圆柱状量子点量子导线复合系统的激子能量和电子概率分布.  , 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [15] 李宏建, 彭景翠, 许雪梅, 瞿述, 夏辉, 罗小华. 有机电致发光器件中载流子的输运和复合发光.  , 2002, 51(2): 430-433. doi: 10.7498/aps.51.430
    [16] 王殿元, 谢平波, 张慰萍, 楼立人, 夏上达. 稀土离子发光体系中能量传递和迁移模型的研究.  , 2001, 50(2): 329-334. doi: 10.7498/aps.50.329
    [17] 李宏建, 彭景翠, 许雪梅, 瞿述, 夏辉. 聚合物发光器件中激子的解离与复合效率.  , 2001, 50(11): 2247-2251. doi: 10.7498/aps.50.2247
    [18] 邓朝勇, 赵辉, 王永生. 薄膜电致发光器件电子能量的空间分布.  , 2001, 50(7): 1385-1389. doi: 10.7498/aps.50.1385
    [19] 陈晓波, N.Sawanobori, 聂玉昕. 氟氧化物玻璃陶瓷中交叉能量传递与荧光防伪的初步研究.  , 2000, 49(12): 2488-2493. doi: 10.7498/aps.49.2488
    [20] 韩大星, 王万录, 张 智. 非晶硅电致发光机理及用电致发光谱研究太阳能电池本征层中的缺陷态能量分布.  , 1999, 48(8): 1484-1490. doi: 10.7498/aps.48.1484
计量
  • 文章访问数:  3138
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-16
  • 修回日期:  2023-07-07
  • 上网日期:  2023-07-13
  • 刊出日期:  2023-09-20

/

返回文章
返回
Baidu
map