-
磁性拓扑绝缘体是过去十年里凝聚态物理学领域的一个重要研究方向, 其拓扑非平庸能带结构与自旋、轨道、电荷、维度等自由度之间的相互作用可以产生丰富的拓扑量子物态和拓扑相变现象. 对磁性拓扑绝缘体输运性质的研究是探索其新奇物性的重要手段, 对于深入理解拓扑量子物态以及开发新型低功耗电子学器件具有重要意义. 本文回顾了近年来磁性拓扑绝缘体输运实验方面的重要研究进展, 包括磁性掺杂拓扑绝缘体中的量子反常霍尔效应和拓扑量子相变现象、本征反铁磁拓扑绝缘体MnBi2Te4中的量子反常霍尔相、轴子绝缘体相和陈绝缘体相, 以及在脉冲强磁场下陈绝缘体演化出的螺旋式拓扑物态. 最后, 本文对未来磁性拓扑绝缘体研究的方向和该体系中尚未充分理解的输运现象进行了分析和展望.In the past decade, magnetic topological insulators have been an important focus in condensed matter physics research. The intricate interplay between the nontrivial band topology and spin, orbit, charge, and dimensionality degrees of freedom can give rise to abundant exotic topological quantum states and topological phase transitions. Measuring the transport properties of magnetic topological insulators is a crucial approach to exploring their exotic properties, which is of significant scientific importance in deepening our understanding of topological quantum states. Simultaneously, it also holds substantial potential applications in the development of novel low-power electronic devices. In this work, experimental progress of transport researches of magnetic topological insulators is reviewed, including quantum anomalous Hall effect and topological quantum phase transitions in magnetically doped topological insulators, the quantum anomalous Hall phase, axion insulator phase and Chern insulator phase in intrinsic antiferromagnetic topological insulator MnBi2Te4, as well as the helical phase emerged from the Chern insulator in pulsed high magnetic fields. Finally, this work analyzes the future direction of development in magnetic topological insulators, and the transport phenomena that have not been understood in these systems, offering an insight into and perspectives on the potential breakthroughs to be achieved in this area of research.
-
Keywords:
- topological insulator /
- topological phase transition /
- quantum anomalous Hall effect /
- axion insulator
[1] Klitzing K v, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar
[2] Klitzing K v 1986 Rev. Mod. Phys. 58 519Google Scholar
[3] Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar
[4] Thouless D J, Kohmoto M, Nightingale M P, Dennijs M 1982 Phys. Rev. Lett. 49 405Google Scholar
[5] Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar
[6] Haldane F D M 2017 Rev. Mod. Phys. 89 040502Google Scholar
[7] Onoda M, Nagaosa N 2003 Phys. Rev. Lett. 90 206601Google Scholar
[8] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar
[9] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar
[10] Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar
[11] Bernevig B A, Zhang S C 2006 Phys. Rev. Lett. 96 106802Google Scholar
[12] Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar
[13] Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar
[14] Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803Google Scholar
[15] Qi X L, Hughes T L, Zhang S C 2008 Phys. Rev. B 78 195424Google Scholar
[16] Niemi A J, Semenoff G W 1983 Phys. Rev. Lett. 51 2077Google Scholar
[17] Semenoff G W 1984 Phys. Rev. Lett. 53 2449Google Scholar
[18] Fradkin E, Dagotto E, Boyanovsky D 1986 Phys. Rev. Lett. 57 2967Google Scholar
[19] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science 329 61Google Scholar
[20] Nomura K, Nagaosa N 2011 Phys. Rev. Lett. 106 166802Google Scholar
[21] Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2008 Phys. Rev. Lett. 101 146802Google Scholar
[22] Wilczek F 1987 Phys. Rev. Lett. 58 1799Google Scholar
[23] Li R D, Wang J, Qi X L, Zhang S C 2010 Nat. Phys. 6 284Google Scholar
[24] Qi X L, Witten E, Zhang S C 2013 Phys. Rev. B 87 134519
[25] Wang J, Lian B, Zhang S C 2016 Phys. Rev. B 93 045115
[26] Zirnstein H G, Rosenow B 2017 Phys. Rev. B 96 201112(R
[27] Wang J, Lian B, Qi X L, Zhang S C 2015 Phys. Rev. B 92 081107Google Scholar
[28] Morimoto T, Furusaki A, Nagaosa N 2015 Phys. Rev. B 92 085113Google Scholar
[29] Zhou Z H, Chien Y J, Uher C 2006 Phys. Rev. B 74 224418Google Scholar
[30] Hor Y S, Roushan P, Beidenkopf H, Seo J, Qu D, Checkelsky J G, Wray L A, Hsieh D, Xia Y, Xu S Y, Qian D, Hasan M Z, Ong N P, Yazdani A, Cava R J 2010 Phys. Rev. B 81 195203Google Scholar
[31] Checkelsky J G, Ye J T, Onose Y, Iwasa Y, Tokura Y 2012 Nat. Phys. 8 729Google Scholar
[32] Zhang D M, Richardella A, Rench D W, Xu S Y, Kandala A, Flanagan T C, Beidenkopf H, Yeats A L, Buckley B B, Klimov P V, Awschalom D D, Yazdani A, Schiffer P, Hasan M Z, Samarth N 2012 Phys. Rev. B 86 205127Google Scholar
[33] Chang C Z, Zhang J S, Liu M H, Zhang Z C, Feng X, Li K, Wang L L, Chen X, Dai X, Fang Z, Qi X L, Zhang S C, Wang Y Y, He K, Ma X C, Xue Q K 2013 Adv. Mater. 25 1065Google Scholar
[34] Kou X F, Lang M R, Fan Y B, Jiang Y, Nie T X, Zhang J M, Jiang W J, Wang Y Y, Yao Y G, He L, Wang K L 2013 Acs Nano 7 9205Google Scholar
[35] Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar
[36] Checkelsky J G, Yoshimi R, Tsukazaki A, Takahashi K S, Kozuka Y, Falson J, Kawasaki M, Tokura Y 2014 Nat. Phys. 10 731Google Scholar
[37] Kou X, Guo S T, Fan Y, Pan L, Lang M, Jiang Y, Shao Q, Nie T, Murata K, Tang J, Wang Y Y, He L, Lee T K, Lee W L, Wang K L 2014 Phys. Rev. Lett. 113 137201Google Scholar
[38] Chang C Z, Zhao W, Kim D Y, Zhang H, Assaf B A, Heiman D, Zhang S C, Liu C, Chan M H, Moodera J S 2015 Nat. Mater. 14 473Google Scholar
[39] Mogi M, Yoshimi R, Tsukazaki A, Yasuda K, Kozuka Y, Takahashi K S, Kawasaki M, Tokura Y 2015 Appl. Phys. Lett. 107 182401
[40] Ou Y B, Liu C, Jiang G Y, Feng Y, Zhao D Y, Wu W X, Wang X X, Li W, Song C L, Wang L L, Wang W B, Wu W D, Wang Y Y, He K, Ma X C, Xue Q K 2018 Adv. Mater. 30 1703062Google Scholar
[41] Lee I, Kim C K, Lee J, Billinge S J L, Zhong R D, Schneeloch J A, Liu T S, Valla T, Tranquada J M, Gu G D, Davis J C S 2015 Proc. Natl. Acad. Sci. U. S. A. 112 1316Google Scholar
[42] Lachman E O, Young A F, Richardella A, et al. 2015 Sci. Adv. 1 e1500740Google Scholar
[43] Wang W B, Ou Y B, Liu C, Wang Y Y, He K, Xue Q K, Wu W D 2018 Nat. Phys. 14 791Google Scholar
[44] Yue Z, Raikh M E 2016 Phys. Rev. B 94 155313Google Scholar
[45] Xing Y X, Xu F M, Cheung K T, Sun Q F, Wang J, Yao Y G 2018 New J. Phys. 20 043011Google Scholar
[46] Chen C Z, Liu H, Xie X C 2019 Phys. Rev. Lett. 122 026601Google Scholar
[47] Haim A, Ilan R, Alicea J 2019 Phys. Rev. Lett. 123 046801Google Scholar
[48] Kudla S, Dyrdal A, Dugaev V K, Berakdar J, Barnas J 2019 Phys. Rev. B 100 205428Google Scholar
[49] Otrokov M M, Menshchikova T V, Rusinov I P, Vergniory M G, Kuznetsov V M, Chulkov E V 2017 Jetp. Lett. 105 297Google Scholar
[50] Otrokov M M, Menshchikova T V, Vergniory M G, Rusinov I P, Vyazovskaya A Y, Koroteev Y M, Bihlmayer G, Ernst A, Echenique P M, Arnau A, Chulkov E V 2017 2D Mater 4 025082Google Scholar
[51] Gong Y, Guo J W, Li J H, et al. 2019 Chin. Phys. Lett. 36 076801Google Scholar
[52] Li J, Li Y, Du S, Wang Z, Gu B L, Zhang S C, He K, Duan W, Xu Y 2019 Sci. Adv. 5 eaaw5685Google Scholar
[53] Otrokov M M, Klimovskikh I I, Bentmann H, et al. 2019 Nature 576 416Google Scholar
[54] Rienks E D L, Wimmer S, Sanchez-Barriga J, Caha O, Mandal P S, Ruzicka J, Ney A, Steiner H, Volobuev V V, Groiss H, Albu M, Kothleitner G, Michalicka J, Khan S A, Minar J, Ebert H, Bauer G, Freyse F, Varykhalov A, Rader O, Springholz G 2019 Nature 576 423Google Scholar
[55] Zhang D, Shi M, Zhu T, Xing D, Zhang H, Wang J 2019 Phys. Rev. Lett. 122 206401Google Scholar
[56] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H, Zhang Y 2020 Science 367 895Google Scholar
[57] Liu C, Wang Y C, Li H, Wu Y, Li Y X, Li J H, He K, Xu Y, Zhang J S, Wang Y Y 2020 Nat. Mater. 19 522Google Scholar
[58] Ge J, Liu Y, Li J, Li H, Luo T, Wu Y, Xu Y, Wang J 2020 Natl. Sci. Rev. 7 1280Google Scholar
[59] Zhang R X, Wu F, Sarma S D 2020 Phys. Rev. Lett. 124 136407Google Scholar
[60] Zhang J, Liu Z, Wang J 2019 Phys. Rev. B 100 165117Google Scholar
[61] Li J, Wang C, Zhang Z, Gu B L, Duan W, Xu Y 2019 Phys. Rev. B 100 121103Google Scholar
[62] Bestwick A J, Fox E J, Kou X, Pan L, Wang K L, Goldhaber-Gordon D 2015 Phys. Rev. Lett. 114 187201Google Scholar
[63] Chang C Z, Zhao W, Kim D Y, Wei P, Jain J K, Liu C, Chan M H, Moodera J S 2015 Phys. Rev. Lett. 115 057206Google Scholar
[64] Feng Y, Feng X, Ou Y, Wang J, Liu C, Zhang L, Zhao D, Jiang G, Zhang S C, He K, Ma X, Xue Q K, Wang Y Y 2015 Phys. Rev. Lett. 115 126801Google Scholar
[65] Liu M, Wang W, Richardella A R, Kandala A, Li J, Yazdani A, Samarth N, Ong N P 2016 Sci. Adv. 2 e1600167Google Scholar
[66] Feng X, Feng Y, Wang J, Ou Y B, Hao Z Q, Liu C, Zhang Z C, Zhang L G, Lin C J, Liao J, Li Y Q, Wang L L, Ji S H, Chen X, Ma X C, Zhang S C, Wang Y Y, He K, Xue Q K 2016 Adv. Mater. 28 6386Google Scholar
[67] Chang C Z, Zhao W, Li J, Jain J K, Liu C, Moodera J S, Chan M H 2016 Phys. Rev. Lett. 117 126802Google Scholar
[68] Yasuda K, Wakatsuki R, Morimoto T, Yoshimi R, Tsukazaki A, Takahashi K S, Ezawa M, Kawasaki M, Nagaosa N, Tokura Y 2016 Nat. Phys. 12 555Google Scholar
[69] Liu C, Zang Y Y, Ruan W, Gong Y, He K, Ma X C, Xue Q K, Wang Y Y 2017 Phys. Rev. Lett. 119 176809Google Scholar
[70] Mogi M, Kawamura M, Tsukazaki A, Yoshimi R, Takahashi K S, Kawasaki M, Tokura Y 2017 Sci. Adv. 3 eaao1669Google Scholar
[71] Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y, Shirakawa N, Takahashi K S, Kawasaki M, Tokura Y 2017 Nat. Mater. 16 516Google Scholar
[72] Xiao D, Jiang J, Shin J H, Wang W, Wang F, Zhao Y F, Liu C, Wu W, Chan M H W, Samarth N, Chang C Z 2018 Phys. Rev. Lett. 120 056801Google Scholar
[73] Watanabe R, Yoshimi R, Kawamura M, Mogi M, Tsukazaki A, Yu X Z, Nakajima K, Takahashi K S, Kawasaki M, Tokura Y 2019 Appl. Phys. Lett. 115 102403Google Scholar
[74] Otrokov M M, Rusinov I P, Blanco-Rey M, Hoffmann M, Vyazovskaya A Y, Eremeev S V, Ernst A, Echenique P M, Arnau A, Chulkov E V 2019 Phys. Rev. Lett. 122 107202Google Scholar
[75] Yan J Q, Zhang Q, Heitmann T, Huang Z, Chen K Y, Cheng J G, Wu W, Vaknin D, Sales B C, McQueeney R J 2019 Phys. Rev. Mater. 3 064202Google Scholar
[76] Zhang S, Wang R, Wang X, Wei B, Chen B, Wang H, Shi G, Wang F, Jia B, Ouyang Y, Xie F, Fei F, Zhang M, Wang X, Wu D, Wan X, Song F, Zhang H, Wang B 2020 Nano Lett. 20 709Google Scholar
[77] Liu C, Ou Y B, Feng Y, Jiang G Y, Wu W X, Li S R, Cheng Z J, He K, Ma X C, Xue Q K, Wang Y Y 2020 Phys. Rev. X 10 041063
[78] Liu C, Wang Y C, Yang M, Mao J H, Li H, Li Y X, Li J H, Zhu H P, Wang J F, Li L, Wu Y, Xu Y, Zhang J S, Wang Y Y 2021 Nat. Commun. 12 4647Google Scholar
[79] Qiu J X, Tzschaschel C, Ahn J, Gao A, Li H, Zhang X Y, Ghosh B, Hu C, Wang Y X, Liu Y F, Berube D, Dinh T, Gong Z, Lien S W, Ho S C, Singh B, Watanabe K, Taniguchi T, Bell D C, Lu H Z, Bansil A, Lin H, Chang T R, Zhou B B, Ma Q, Vishwanath A, Ni N, Xu S Y 2023 Nat. Mater. 22 583Google Scholar
[80] Okazaki Y, Oe T, Kawamura M, Yoshimi R, Nakamura S, Takada S, Mogi M, Takahashi K S, Tsukazaki A, Kawasaki M, Tokura Y, Kaneko N H 2022 Nat. Phys. 18 25Google Scholar
[81] Gao A, Liu Y F, Hu C, Qiu J X, et al. 2021 Nature 595 521Google Scholar
[82] Mogi M, Okamura Y, Kawamura M, Yoshimi R, Yasuda K, Tsukazaki A, Takahashi K S, Morimoto T, Nagaosa N, Kawasaki M, Takahashi Y, Tokura Y 2022 Nat. Phys. 18 390Google Scholar
[83] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z, Shen Z X 2009 Science 325 178Google Scholar
[84] Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, Xue Q K 2010 Nat. Phys. 6 584Google Scholar
[85] Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar
[86] Zhang J S, Chang C Z, Zhang Z C, Wen J, Feng X, Li K, Liu M H, He K, Wang L L, Chen X, Xue Q K, Ma X C, Wang Y Y 2011 Nat. Commun. 2 574Google Scholar
[87] Liu Q, Liu C X, Xu C, Qi X L, Zhang S C 2009 Phys. Rev. Lett. 102 156603Google Scholar
[88] Sessi P, Reis F, Bathon T, Kokh K A, Tereshchenko O E, Bode M 2014 Nat. Commun. 5 5349Google Scholar
[89] Li M D, Chang C Z, Wu L J, Tao J, Zhao W W, Chan M H W, Moodera J S, Li J, Zhu Y M 2015 Phys. Rev. Lett. 114 146802Google Scholar
[90] Jiang J, Xiao D, Wang F, Shin J H, Andreoli D, Zhang J, Xiao R, Zhao Y F, Kayyalha M, Zhang L, Wang K, Zang J, Liu C, Samarth N, Chan M H W, Chang C Z 2020 Nat. Mater. 19 732Google Scholar
[91] Dziom V, Shuvaev A, Pimenov A, Astakhov G V, Ames C, Bendias K, Bottcher J, Tkachov G, Hankiewicz E M, Brune C, Buhmann H, Molenkamp L W 2017 Nat. Commun. 8 15197Google Scholar
[92] Okada K N, Takahashi Y, Mogi M, Yoshimi R, Tsukazaki A, Takahashi K S, Ogawa N, Kawasaki M, Tokura Y 2016 Nat. Commun. 7 12245Google Scholar
[93] Wu L, Salehi M, Koirala N, Moon J, Oh S, Armitage N P 2016 Science 354 1124Google Scholar
[94] He Q L, Hughes T L, Armitage N P, Tokura Y, Wang K L 2022 Nat. Mater. 21 15Google Scholar
[95] Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N, Ralph D C 2014 Nature 511 449Google Scholar
[96] Kondou K, Yoshimi R, Tsukazaki A, Fukuma Y, Matsuno J, Takahashi K S, Kawasaki M, Tokura Y, Otani Y 2016 Nat. Phys. 12 1027Google Scholar
[97] Li C H, van 't Erve O M J, Robinson J T, Liu Y, Li L, Jonker B T 2014 Nat. Nanotechnol. 9 218Google Scholar
[98] Gotz M, Fijalkowski K M, Pesel E, Hartl M, Schreyeck S, Winnerlein M, Grauer S, Scherer H, Brunner K, Gould C, Ahlers F J, Molenkamp L W 2018 Appl. Phys. Lett. 112 072102Google Scholar
[99] Okazaki Y, Oe T, Kawamura M, Yoshimi R, Nakamura S, Takada S, Mogi M, Takahashi K S, Tsukazaki A, Kawasaki M, Tokura Y, Kaneko N H 2020 Appl. Phys. Lett. 116 143101
[100] Fox E J, Rosen I T, Yang Y F, Jones G R, Elmquist R E, Kou X F, Pan L, Wang K L, Goldhaber-Gordon D 2018 Phys. Rev. B 98 075145Google Scholar
[101] Lee D S, Kim T H, Park C H, Chung C Y, Lim Y S, Seo W S, Park H H 2013 Crystengcomm 15 5532Google Scholar
[102] Sun H Y, Xia B W, Chen Z J, Zhang Y J, Liu P F, Yao Q S, Tang H, Zhao Y J, Xu H, Liu Q H 2019 Phys. Rev. Lett. 123 096401Google Scholar
[103] Wu J Z, Liu F C, Sasase M, Ienaga K, Obata Y, Yukawa R, Horiba K, Kumigashira H, Okuma S, Inoshita T, Hosono H 2019 Sci. Adv. 5 eaax9989Google Scholar
[104] Chen B, Fei F C, Zhang D Q, et al. 2019 Nat. Commun. 10 4469Google Scholar
[105] Li H, Gao S Y, Duan S F, et al. 2019 Phys. Rev. X 9 041039
[106] Hao Y J, Liu P F, Feng Y, et al. 2019 Phys. Rev. X 9 041038
[107] Chen Y J, Xu L X, Li J H, Li Y W, Zhang C F, Li H, Wu Y, Liang A J, Chen C, Jung S W, Cacho C, Wang H Y, Mao Y H, Liu S, Wang M X, Guo Y F, Xu Y, Liu Z K, Yang L X, Chen Y L 2019 Phys. Rev. X 9 041040
[108] Swatek P, Wu Y, Wang L L, Lee K, Schrunk B, Yan J Q, Kaminski A 2020 Phys. Rev. B 101 161109Google Scholar
[109] Nevola D, Li H X, Yan J Q, Moore R G, Lee H N, Miao H, Johnson P D 2020 Phys. Rev. Lett. 125 117205Google Scholar
[110] Ovchinnikov D, Huang X, Lin Z, Fei Z Y, Cai J Q, Song T C, He M H, Jiang Q N, Wang C, Li H, Wang Y Y, Wu Y, Xiao D, Chu J H, Yan J Q, Chang C Z, Cui Y T, Xu X D 2021 Nano Lett. 21 2544Google Scholar
[111] Cai J Q, Ovchinnikov D, Fei Z Y, He M H, Song T C, Lin Z, Wang C, Cobden D, Chu J H, Cui Y T, Chang C Z, Xiao D, Yan J Q, Xu X D 2022 Nat. Commun. 13 1668Google Scholar
[112] Ying Z, Zhang S, Chen B, Jia B, Fei F, Zhang M, Zhang H, Wang X, Song F 2022 Phys. Rev. B 105 085412Google Scholar
[113] Yang S Q, Xu X L, Zhu Y Z, Niu R R, Xu C Q, Peng Y X, Cheng X, Jia X H, Huang Y, Xu X F, Lu J M, Ye Y 2021 Phys. Rev. X 11 011003
[114] Cui J H, Shi M Z, Wang H H, Yu F H, Wu T, Luo X G, Ying J J, Chen X H 2019 Phys. Rev. B 99 155125Google Scholar
[115] Li H, Liu S, Liu C, Zhang J, Xu Y, Yu R, Wu Y, Zhang Y, Fan S 2020 Phys. Chem. Chem. Phys. 22 556Google Scholar
[116] Yan J-Q, Huang Z, Wu W, May A F 2022 J. Alloy Compd. 906 164327Google Scholar
[117] Hu C, Gao A, Berggren B S, Li H, Kurleto R, Narayan D, Zeljkovic I, Dessau D, Xu S, Ni N 2021 Phys. Rev. Mater. 5 124206Google Scholar
[118] Zhang J S, Chang C Z, Tang P Z, Zhang Z C, Feng X, Li K, Wang L L, Chen X, Liu C, Duan W, He K, Xue Q K, Ma X, Wang Y 2013 Science 339 1582Google Scholar
[119] Li B, Yan J Q, Pajerowski D M, Gordon E, Nedic A M, Sizyuk Y, Ke L Q, Orth P P, Vaknin D, McQueeney R J 2020 Phys. Rev. Lett. 124 167204Google Scholar
[120] Sass P M, Kim J, Vanderbilt D, Yan J Q, Wu W D 2020 Phys. Rev. Lett. 125 037201Google Scholar
[121] Sass P M, Ge W B, Yan J Q, Obeysekera D, Yang J J, Wu W D 2020 Nano Lett 20 2609Google Scholar
[122] Lai Y, Ke L Q, Yan J Q, McDonald R D, McQueeney R J 2021 Phys. Rev. B 103 184429Google Scholar
[123] Estyunin D A, Klimovskikh I I, Shikin A M, Schwier E F, Otrokov M M, Kimura A, Kumar S, Filnov S O, Aliev Z S, Babanly M B, Chulkov E V 2020 APL Mater 8 021105Google Scholar
[124] Li Y, Liu C, Wang Y, Lian Z, Li H, Wu Y, Zhang J, Wang Y 2023 Science Bulletin 68 1252
[125] Shikin A M, Estyunin D A, Zaitsev N L, et al. 2021 Phys. Rev. B 104 115168Google Scholar
[126] Tan H, Yan B 2023 Phys. Rev. Lett. 130 126702Google Scholar
[127] Kivelson S, Lee D H, Zhang S C 1992 Phys. Rev. B 46 2223Google Scholar
[128] Hilke M, Shahar D, Song S H, Tsui D C, Xie Y H, Monroe D 1998 Nature 395 675Google Scholar
[129] Wong L W, Jiang H W, Trivedi N, Palm E 1995 Phys. Rev. B 51 18033Google Scholar
[130] Shahar D, Tsui D C, Shayegan M, Bhatt R N, Cunningham J E 1995 Phys. Rev. Lett. 74 4511Google Scholar
[131] Pan W, Shahar D, Tsui D C, Wei H P, Razeghi M 1997 Phys. Rev. B 55 15431Google Scholar
[132] Kou X F, Pan L, Wang J, Fan Y B, Choi E S, Lee W L, Nie T X, Murata K, Shao Q M, Zhang S C, Wang K L 2015 Nat. Commun. 6 8474Google Scholar
[133] Kawamura M, Mogi M, Yoshimi R, Tsukazaki A, Kozuka Y, Takahashi K S, Kawasaki M, Tokura Y 2018 Phys. Rev. B 98 140404(R
[134] Wu X Y, Xiao D, Chen C Z, Sun J, Zhang L, Chan M H W, Samarth N, Xie X C, Lin X, Chang C Z 2020 Nat. Commun. 11 4532Google Scholar
[135] Kayyalha M, Xiao D, Zhang R X, Shin J, Jiang J, Wang F, Zhao Y F, Xiao R, Zhang L, Fijalkowski K M, Mandal P, Winnerlein M, Gould C, Li Q, Molenkamp L W, Chan M H W, Samarth N, Chang C Z 2020 Science 367 64Google Scholar
[136] Huang Y Y, Setiawan F, Sau J D 2018 Phys. Rev. B 97 100501(R
[137] Ji W J, Wen X G 2018 Phys. Rev. Lett. 120 107002Google Scholar
[138] Wang J, Zhou Q, Lian B A, Zhang S C 2015 Phys. Rev. B 92 064520Google Scholar
[139] Lian B A, Wang J, Sun X Q, Vaezi A, Zhang S C 2018 Phys. Rev. B 97 125408Google Scholar
[140] Lian B, Sun X Q, Vaezi A, Qi X L, Zhang S C 2018 Proc. Natl. Acad. Sci. U. S. A. 115 10938Google Scholar
[141] Liu C, Zang Y Y, Gong Y, He K, Ma X C, Xue Q K, Wang Y Y 2022 Sci. China Phys. Mech. 65 266812Google Scholar
[142] Zhu J J, Yao D X, Zhang S C, Chang K 2011 Phys. Rev. Lett. 106 097201Google Scholar
[143] Xu Z M, Duan W H, Xu Y 2022 Nano Lett. 23 305
[144] Li Y X, Liu C, Wang Y C, Li H, Wu Y, Zhang J S, Wang Y Y 2022 J. Phys. D Appl. Phys. 55 104001Google Scholar
[145] Marsh D J E, Fong K C, Lentz E W, Smejkal L, Ali M N 2019 Phys. Rev. Lett. 123 121601Google Scholar
[146] Nenno D M, Garcia C A C, Gooth J, Felser C, Narang P 2020 Nat. Rev. Phys. 2 682Google Scholar
[147] Sekine A, Nomura K 2021 J. Appl. Phys. 129 141101Google Scholar
[148] Li H L, Chen C Z, Jiang H, Xie X C 2021 Phys. Rev. Lett. 127 236402Google Scholar
[149] Roth A, Brune C, Buhmann H, Molenkamp L W, Maciejko J, Qi X L, Zhang S C 2009 Science 325 294Google Scholar
[150] Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar
[151] Young A F, Sanchez-Yamagishi J D, Hunt B, Choi S H, Watanabe K, Taniguchi T, Ashoori R C, Jarillo-Herrero P 2014 Nature 505 528Google Scholar
[152] Veyrat L, Déprez C, Coissard A, Li X, Gay F, Watanabe K, Taniguchi T, Han Z, Piot B A, Sellier H, Sacépé B 2020 Science 367 781Google Scholar
[153] Chen R, Li S, Sun H P, Liu Q H, Zhao Y, Lu H Z, Xie X C 2021 Phys. Rev. B 103 L241409Google Scholar
[154] Gu M Q, Li J Y, Sun H Y, Zhao Y F, Liu C, Liu J P, Lu H Z, Liu Q H 2021 Nat. Commun. 12 3524Google Scholar
[155] Zhou H M, Li H L, Xu D H, Chen C Z, Sun Q F, Xie X C 2022 Phys. Rev. Lett. 129 096601Google Scholar
[156] Gong M, Liu H W, Jiang H, Chen C Z, Xie X C 2023 Natl. Sci. Rev. 10 nwad025Google Scholar
[157] Zou J Y, Fu B, Wang H W, Hu Z A, Shen S Q 2022 Phys. Rev. B 105 L201106Google Scholar
[158] Sun S, Weng H M, Dai X 2022 Phys. Rev. B 106 L241105Google Scholar
[159] Song Z D, Lian B A, Queiroz R, Ilan R, Bernevig B A, Stern A 2021 Phys. Rev. Lett. 127 016602
[160] Wang J, Lian B, Zhang S C 2014 Phys. Rev. B 89 085106Google Scholar
[161] Liang S, Kushwaha S, Gao T, Hirschberger M, Li J, Wang Z, Stolze K, Skinner B, Bernevig B A, Cava R J, Ong N P 2019 Nat. Mater. 18 443Google Scholar
[162] Bottcher J, Tutschku C, Hankiewicz E M 2020 Phys. Rev. B 101 195433Google Scholar
[163] Bottcher J, Tutschku C, Molenkamp L W, Hankiewicz E M 2019 Phys. Rev. Lett. 123 226602Google Scholar
[164] Lian B, Liu Z C, Zhang Y B, Wang J 2020 Phys. Rev. Lett. 124 126402
-
图 2 磁性拓扑绝缘体结构示意图 (a)磁性掺杂拓扑绝缘体MnxBi2–xTe3晶格结构和磁结构, 红色箭头表示随机分布磁矩的磁化方向; (b)本征反铁磁拓扑绝缘体MnBi2Te4的晶格结构和磁结构, 红色和绿色箭头表示层间反平行排列磁矩的磁化方向
Fig. 2. Schematic layer structure of magnetic topological insulators (TIs): (a) Crystal and magnetic structures of magnetically doped TI MnxBi2–xTe3, the red arrows represent the magnetizations of the randomly distributed magnetic moments; (b) crystal and magnetic structures of the intrinsic AFM TI MnBi2Te4. The red and green arrows denote the magnetization of the oppositely aligned magnetic moments between neighboring layers.
图 3 MnBi2Te4块体和薄膜的基本表征 (a)磁化(沿着c轴方向)和电阻随着温度变化曲线; (b)在2 K温度下, 厚度为4 SL到8 SL的薄膜的反射型磁圆二向色谱信号随着磁场的变化; (c)由拓扑表面态形成的线性狄拉克锥色散关系以及其在狄拉克点附近的放大图; 图(a)和(c)来自文献[107], 图(b)来自文献[110]
Fig. 3. Basic characterization of MnBi2Te4 bulk crystal and thin flakes: (a) Magnetization (with magnetic field applied along c axis) and resistance as functions of T; (b) reflective magnetic circular dichroism (RCMD) measurements as a function of magnetic field for 4 SL to 8 SL flakes at T = 2 K; (c) linear band dispersion with a clear Dirac cone formed by surface states and the enlarged plot of the dispersion near the Dirac point; (a) and (c) are adopted from Ref.[107], (b) is adopted from Ref.[110].
图 4 磁性掺杂拓扑绝缘体中的量子反常霍尔效应 (a), (b) 5-QL厚Cr0.15(Bi0.1Sb0.9)1.85Te3中不同栅极电压下霍尔电阻率ρyx和纵向电阻率ρxx随着磁场的变化; (c)零磁场下霍尔电阻率ρyx(0)(蓝色空心方块)和纵向电阻率ρxx(0)(红色空心圆形)随栅压变化, 以上数据在30 mK温度下采集; (d), (e) 5-QL厚(Cr0.16V0.84)0.19(Bi0.1Sb0.9)1.81Te3在电荷中性点处霍尔电阻率ρyx和纵向电阻率ρxx随着磁场的变化; (f)零磁场下霍尔电阻率ρyx(0)(蓝色实线)和纵向电阻率ρxx(0)(红色实线)随栅压变化, 以上数据在300 mK温度下采集. 图(a)—(c)来自文献[35], 图(d)—(f)来自文献[40]
Fig. 4. The optimization of the QAH effect in magnetically doped TIs. (a), (b) Magnetic field dependences of ρyx and ρxx at different Vg in a 5-QL Cr0.15(Bi0.1Sb0.9)1.85Te3 film; (c) dependence of ρyx(0) (empty blue squares) and ρxx(0) (empty red circles) on Vg, all the above data was measured at T = 30 mK; (d), (e) magnetic field dependences of ρyx and ρxx at the charge neutrality point in a 5-QL (Cr0.16V0.84)0.19(Bi0.1Sb0.9)1.81Te3 thin film; (f) dependence of ρyx(0) (blue line) and ρxx(0) (red line) on Vg. All the data in the Cr- and V-codoped TI was measured at T = 300 mK. (a)–(c) are adopted from Ref.[35], (d)–(f) are adopted Ref.[40].
图 5 磁无序引起的不同量子反常霍尔基态 (a), (b)处于量子反常霍尔相和反常霍尔绝缘体相的两块磁性掺杂拓扑绝缘体的霍尔电阻率ρyx和纵向电阻率ρxx随着磁场的变化, 两块样品的化学组成分别是(Cr0.16V0.84)0.19(Bi0.1Sb0.9)1.81Te3和Cr0.23(Bi0.4Sb0.6)1.77Te3; (c)从82块样品中总结出的峰值纵向电阻率
$ \rho _{xx}^{H{\text{c}}} $ 和零磁场纵向电阻率$ \rho _{xx}^0 $ 之间的关系; (d)处于反常霍尔绝缘体相的样品在不同温度下ρxx随磁场变化曲线; (e)从图(d)中提取出的不同磁场下ρxx随着温度的演化; (f)量子临界点附近关于ρxx的标度行为分析. 当临界指数κ取0.31时所有数据都重合在一条曲线上. 图片来自文献[77]Fig. 5. Distinct QAH ground states induced by magnetic disorder: (a), (b) Magnetic field dependent ρyx and ρxx for magnetically doped TIs in the ground states of QAH state and the AH insulator state, respectively, the chemical compositions of the two magnetically doped TIs are (Cr0.16V0.84)0.19(Bi0.1Sb0.9)1.81Te3 and Cr0.23(Bi0.4Sb0.6)1.77Te3; (c) relationship between peak value of longitudinal resistivity
$ \rho _{xx}^{H{\text{c}}} $ and zero field longitudinal resistivity$ \rho _{xx}^0 $ summarized from the transport results of 82 magnetic TIs; (d) magnetic field dependent ρxx at different T in an AH insulator sample; (e) T-dependent ρxx extracted from (d) at different magnetic fields; (f) finite size scaling analysis of ρxx in the vicinity of the quantum critical point, all the curves collapse together for the critical exponent κ~ 0.31. The figures are adopted from Ref. [77].图 6 两种不同手性的反常霍尔效应 (a)具有逆时针手性的反常霍尔效应回滞曲线, 当磁化方向为正时反常霍尔电阻率
$ \rho _{yx}^0 $ 符号为“+”; (b)具有顺时针手性的反常霍尔效应回滞曲线, 当磁化方向为正时反常霍尔电阻率$ \rho _{yx}^0 $ 符号为“–”; (c), (d)不同磁性掺杂拓扑绝缘体中狄拉克点能隙打开示意图, 对于Mn掺杂体系, 巡游电子自旋方向与Mn2+离子3d轨道占据态电子自旋方向相反, 对于Cr掺杂体系, 巡游电子自旋方向与Cr3+离子3d轨道占据态电子自旋方向相同. 图片来自文献[141]Fig. 6. AH effect with different chirality: (a) AH effect hysteresis with counter-clockwise chirality, the AH resistivity
$ \rho _{yx}^0 $ is “+” when the magnetization is positive; (b) AH effect hysteresis with clockwise chirality, the AH resistivity$ \rho _{yx}^0 $ is “–” when the magnetization is positive; (c), (d) schematic illustrations of the Dirac gap opening process in different magnetic TI systems, for Mn-doped system, the spin of itinerant electrons is antiparallel to the spin of the 3d electrons in the occupied states in Mn2+ ions. Whereas for Cr-doped system, the spin of itinerant electrons is parallel to the spin of the 3d electrons in the occupied states in Cr3+ ions. The figures are adopted from Ref. [141].图 7 厚度为5-SL的MnBi2Te4样品中观测到的量子反常霍尔效应 (a), (b)在1.4 K温度下霍尔电阻Ryx和纵向电阻Rxx随着磁场的变化曲线, 在零磁场条件下, 霍尔电阻达到0.97h/e2, 纵向电阻降至0.061h/e2. 在磁场超过2.5 T条件下, 量子化程度被提升至Ryx ~ 0.998h/e2; (c)通过纵向电阻数值随1/T变化的Arrhenius拟合获得的能隙随着磁场的变化曲线. 图片来自文献[56]
Fig. 7. QAH effect in a five-layer MnBi2Te4 flake: (a), (b) Magnetic field dependent Ryx and Rxx acquired at 1.4 K. Ryx reaches 0.97h/e2 concomitant with Rxx of 0.061h/e2 at zero magnetic field, under magnetic field above 2.5 T, the QAH quantization is improved to Ryx ~ 0.998h/e2; (c) energy gap as a function of magnetic field extracted from fitting the Arrhenius plots of Rxx as a function of 1/T. The figures are adopted from Ref. [56].
图 8 厚度为6-SL的MnBi2Te4在不同电压下的输运行为 (a), (b)在1.6 K温度时不同栅压下霍尔电阻率ρyx和纵向电阻率ρxx随着磁场的变化曲线, 当费米能级被调节到带隙中时(22 V ≤ Vg ≤ 30 V, 如蓝色区间所示), 零磁场巨大的纵向电阻率和很宽的零级霍尔平台揭示了轴子绝缘相存在的重要证据, 在高磁场下, 量子化的霍尔电阻平台和消失的纵向电阻率表明系统进入陈绝缘体相; (b)零磁场纵向电阻率ρxx和霍尔电阻率ρyx在磁场下的斜率随着栅极电压变化图; (c) 磁场–9 T时纵向电阻率ρxx和霍尔电阻率ρyx随着栅极电压变化图; (d)轴子绝缘体相和陈绝缘体相磁结构和电子结构示意图. 图片来自文献[57]
Fig. 8. Gate dependent transport properties in a six-layer MnBi2Te4: (a) Magnetic field dependence of ρyx and ρxx at different gate voltages at T = 1.6 K, when Fermi level EF lies within the band gap for 22 V ≤ Vg ≤ 30 V (blue square envelope), both the large longitudinal resistivity ρxx and wide zero Hall plateau are key signatures of the axion insulator state, at high magnetic field, the nearly quantized Hall plateau and vanishing ρxx are characteristics of a Chern insulator; (b) the Vg dependence of ρxx and the slope of ρyx vs. H measured at T = 1.6 K around zero magnetic field; (c) the evolution of ρxx and ρyx as a function Vg at T = 1.6 K and μ0H = –9 T, which reveals the Chern insulator state; (d) the schematic pictures of the magnetic order and electronic structure of the axion insulator and Chern insulator state. The figures are adopted from Ref. [57].
图 9 磁场极化的铁磁MnBi2Te4中高陈数量子化现象 (a), (b)厚度为10-SL 样品在2—15 K条件下霍尔电阻Ryx和纵向电阻Rxx随着磁场的变化. 在温度为13 K时霍尔电阻Ryx可以达到0.97h/e2; (c)—(e)厚度为7-SL的双栅极MnBi2Te4器件在不同载流子浓度下n1–3霍尔电阻率ρyx随磁场的变化; (f)—(h)纵向电阻率ρxx随磁场的变化, 在载流子浓度为n2时, 超过10 T的磁场可以引起了C = –2的高陈数的量子化现象, 其霍尔电阻率ρyx为0.5h/e2, 纵向电阻率ρxx为0.05h/e2. 图(a)和(b)来自文献[58], 图(c)—(h)来自文献[111]
Fig. 9. Chern insulator quantization with high Chern number in magnetic-field polarized FM MnBi2Te4: (a), (b) Ryx and Rxx as a function of magnetic field at different Ts from 2 K to 15 K in a 10-SL sample, the Hall quantization can reach 0.97h/e2 at 13 K; (c)–(e) ρyx as a function of magnetic field under varied carrier density n1–3 for a 7-SL dual gated MnBi2Te4 devices; (f)–(h) the according variation of ρxx as a function of magnetic field under different carrier density n1–3. A C = –2 state with ρyx = 0.5h/e2 and ρxx = 0.05h/e2 appears when magnetic field is increased to above 10 T for carrier density n2. (a) and (b) are adopted from Ref. [58]. (c)–(h) are adopted from Ref. [111].
图 10 磁场在MnBi2Te4陈绝缘体相中引起的C = 0的螺旋式拓扑态 (a)栅压在1—6 V之间时纵向电阻Rxx和霍尔电阻Ryx随磁场变化曲线, 栅压为4 V时, 30 T的磁场使C = –1陈绝缘体相被完全压制, 并引起一个以极宽零级霍尔平台为主要特征的C = 0态, 黑色虚线标注了零级平台出现位置时纵向电阻上的半整数量子化现象; (b)强磁场下塞曼效应引起的能带反转以及能带结构演化示意图; (c)在磁场引起的C = –1到C = 0拓扑相变过程中边缘态演化情况; (d)不同测量构型下的两端输运、三端输运以及非定域输运测量结果, 其中插图描述了不同的测量构型示意图, 玫红色虚线标记了由Landauer Büttiker公式预言的螺旋式边缘态贡献的量子化电阻数值. 图片来自文献[78]
Fig. 10. Magnetic field driven helical state with C = 0 in a MnBi2Te4 Chern insulator: (a) Magnetic field dependent longitudinal resistance Rxx and Hall resistance Ryx at 1 V ≤ Vg ≤ 6 V, at Vg = 4 V, the C = –1 state is completely suppressed when magnetic field is increased to above 30 T, followed by the C = 0 state characterized with a broad zero Hall plateau, the black dashed line denotes the half-quantized plateau of Rxx = 0.5h/e2; (b) schematic illustration of the electronic band structure evolution in strong magnetic field with Zeeman-effect-induced band inversion; (c) the evolution of edge states in the magnetic field driven topological phase transition between C = –1 and C = 0 phase; (d) two-, three-terminal, and nonlocal measurements in various configurations, the insets display the schematic layouts of the experimental setup, the expected quantized values for R2T, R3T, and RNL derived from the Landauer Büttiker formalisms for helical edge transport are denoted by the broken magenta lines. The figures are adopted from Ref. [78].
-
[1] Klitzing K v, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar
[2] Klitzing K v 1986 Rev. Mod. Phys. 58 519Google Scholar
[3] Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar
[4] Thouless D J, Kohmoto M, Nightingale M P, Dennijs M 1982 Phys. Rev. Lett. 49 405Google Scholar
[5] Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar
[6] Haldane F D M 2017 Rev. Mod. Phys. 89 040502Google Scholar
[7] Onoda M, Nagaosa N 2003 Phys. Rev. Lett. 90 206601Google Scholar
[8] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar
[9] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar
[10] Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar
[11] Bernevig B A, Zhang S C 2006 Phys. Rev. Lett. 96 106802Google Scholar
[12] Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar
[13] Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar
[14] Fu L, Kane C L, Mele E J 2007 Phys. Rev. Lett. 98 106803Google Scholar
[15] Qi X L, Hughes T L, Zhang S C 2008 Phys. Rev. B 78 195424Google Scholar
[16] Niemi A J, Semenoff G W 1983 Phys. Rev. Lett. 51 2077Google Scholar
[17] Semenoff G W 1984 Phys. Rev. Lett. 53 2449Google Scholar
[18] Fradkin E, Dagotto E, Boyanovsky D 1986 Phys. Rev. Lett. 57 2967Google Scholar
[19] Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, Fang Z 2010 Science 329 61Google Scholar
[20] Nomura K, Nagaosa N 2011 Phys. Rev. Lett. 106 166802Google Scholar
[21] Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2008 Phys. Rev. Lett. 101 146802Google Scholar
[22] Wilczek F 1987 Phys. Rev. Lett. 58 1799Google Scholar
[23] Li R D, Wang J, Qi X L, Zhang S C 2010 Nat. Phys. 6 284Google Scholar
[24] Qi X L, Witten E, Zhang S C 2013 Phys. Rev. B 87 134519
[25] Wang J, Lian B, Zhang S C 2016 Phys. Rev. B 93 045115
[26] Zirnstein H G, Rosenow B 2017 Phys. Rev. B 96 201112(R
[27] Wang J, Lian B, Qi X L, Zhang S C 2015 Phys. Rev. B 92 081107Google Scholar
[28] Morimoto T, Furusaki A, Nagaosa N 2015 Phys. Rev. B 92 085113Google Scholar
[29] Zhou Z H, Chien Y J, Uher C 2006 Phys. Rev. B 74 224418Google Scholar
[30] Hor Y S, Roushan P, Beidenkopf H, Seo J, Qu D, Checkelsky J G, Wray L A, Hsieh D, Xia Y, Xu S Y, Qian D, Hasan M Z, Ong N P, Yazdani A, Cava R J 2010 Phys. Rev. B 81 195203Google Scholar
[31] Checkelsky J G, Ye J T, Onose Y, Iwasa Y, Tokura Y 2012 Nat. Phys. 8 729Google Scholar
[32] Zhang D M, Richardella A, Rench D W, Xu S Y, Kandala A, Flanagan T C, Beidenkopf H, Yeats A L, Buckley B B, Klimov P V, Awschalom D D, Yazdani A, Schiffer P, Hasan M Z, Samarth N 2012 Phys. Rev. B 86 205127Google Scholar
[33] Chang C Z, Zhang J S, Liu M H, Zhang Z C, Feng X, Li K, Wang L L, Chen X, Dai X, Fang Z, Qi X L, Zhang S C, Wang Y Y, He K, Ma X C, Xue Q K 2013 Adv. Mater. 25 1065Google Scholar
[34] Kou X F, Lang M R, Fan Y B, Jiang Y, Nie T X, Zhang J M, Jiang W J, Wang Y Y, Yao Y G, He L, Wang K L 2013 Acs Nano 7 9205Google Scholar
[35] Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar
[36] Checkelsky J G, Yoshimi R, Tsukazaki A, Takahashi K S, Kozuka Y, Falson J, Kawasaki M, Tokura Y 2014 Nat. Phys. 10 731Google Scholar
[37] Kou X, Guo S T, Fan Y, Pan L, Lang M, Jiang Y, Shao Q, Nie T, Murata K, Tang J, Wang Y Y, He L, Lee T K, Lee W L, Wang K L 2014 Phys. Rev. Lett. 113 137201Google Scholar
[38] Chang C Z, Zhao W, Kim D Y, Zhang H, Assaf B A, Heiman D, Zhang S C, Liu C, Chan M H, Moodera J S 2015 Nat. Mater. 14 473Google Scholar
[39] Mogi M, Yoshimi R, Tsukazaki A, Yasuda K, Kozuka Y, Takahashi K S, Kawasaki M, Tokura Y 2015 Appl. Phys. Lett. 107 182401
[40] Ou Y B, Liu C, Jiang G Y, Feng Y, Zhao D Y, Wu W X, Wang X X, Li W, Song C L, Wang L L, Wang W B, Wu W D, Wang Y Y, He K, Ma X C, Xue Q K 2018 Adv. Mater. 30 1703062Google Scholar
[41] Lee I, Kim C K, Lee J, Billinge S J L, Zhong R D, Schneeloch J A, Liu T S, Valla T, Tranquada J M, Gu G D, Davis J C S 2015 Proc. Natl. Acad. Sci. U. S. A. 112 1316Google Scholar
[42] Lachman E O, Young A F, Richardella A, et al. 2015 Sci. Adv. 1 e1500740Google Scholar
[43] Wang W B, Ou Y B, Liu C, Wang Y Y, He K, Xue Q K, Wu W D 2018 Nat. Phys. 14 791Google Scholar
[44] Yue Z, Raikh M E 2016 Phys. Rev. B 94 155313Google Scholar
[45] Xing Y X, Xu F M, Cheung K T, Sun Q F, Wang J, Yao Y G 2018 New J. Phys. 20 043011Google Scholar
[46] Chen C Z, Liu H, Xie X C 2019 Phys. Rev. Lett. 122 026601Google Scholar
[47] Haim A, Ilan R, Alicea J 2019 Phys. Rev. Lett. 123 046801Google Scholar
[48] Kudla S, Dyrdal A, Dugaev V K, Berakdar J, Barnas J 2019 Phys. Rev. B 100 205428Google Scholar
[49] Otrokov M M, Menshchikova T V, Rusinov I P, Vergniory M G, Kuznetsov V M, Chulkov E V 2017 Jetp. Lett. 105 297Google Scholar
[50] Otrokov M M, Menshchikova T V, Vergniory M G, Rusinov I P, Vyazovskaya A Y, Koroteev Y M, Bihlmayer G, Ernst A, Echenique P M, Arnau A, Chulkov E V 2017 2D Mater 4 025082Google Scholar
[51] Gong Y, Guo J W, Li J H, et al. 2019 Chin. Phys. Lett. 36 076801Google Scholar
[52] Li J, Li Y, Du S, Wang Z, Gu B L, Zhang S C, He K, Duan W, Xu Y 2019 Sci. Adv. 5 eaaw5685Google Scholar
[53] Otrokov M M, Klimovskikh I I, Bentmann H, et al. 2019 Nature 576 416Google Scholar
[54] Rienks E D L, Wimmer S, Sanchez-Barriga J, Caha O, Mandal P S, Ruzicka J, Ney A, Steiner H, Volobuev V V, Groiss H, Albu M, Kothleitner G, Michalicka J, Khan S A, Minar J, Ebert H, Bauer G, Freyse F, Varykhalov A, Rader O, Springholz G 2019 Nature 576 423Google Scholar
[55] Zhang D, Shi M, Zhu T, Xing D, Zhang H, Wang J 2019 Phys. Rev. Lett. 122 206401Google Scholar
[56] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H, Zhang Y 2020 Science 367 895Google Scholar
[57] Liu C, Wang Y C, Li H, Wu Y, Li Y X, Li J H, He K, Xu Y, Zhang J S, Wang Y Y 2020 Nat. Mater. 19 522Google Scholar
[58] Ge J, Liu Y, Li J, Li H, Luo T, Wu Y, Xu Y, Wang J 2020 Natl. Sci. Rev. 7 1280Google Scholar
[59] Zhang R X, Wu F, Sarma S D 2020 Phys. Rev. Lett. 124 136407Google Scholar
[60] Zhang J, Liu Z, Wang J 2019 Phys. Rev. B 100 165117Google Scholar
[61] Li J, Wang C, Zhang Z, Gu B L, Duan W, Xu Y 2019 Phys. Rev. B 100 121103Google Scholar
[62] Bestwick A J, Fox E J, Kou X, Pan L, Wang K L, Goldhaber-Gordon D 2015 Phys. Rev. Lett. 114 187201Google Scholar
[63] Chang C Z, Zhao W, Kim D Y, Wei P, Jain J K, Liu C, Chan M H, Moodera J S 2015 Phys. Rev. Lett. 115 057206Google Scholar
[64] Feng Y, Feng X, Ou Y, Wang J, Liu C, Zhang L, Zhao D, Jiang G, Zhang S C, He K, Ma X, Xue Q K, Wang Y Y 2015 Phys. Rev. Lett. 115 126801Google Scholar
[65] Liu M, Wang W, Richardella A R, Kandala A, Li J, Yazdani A, Samarth N, Ong N P 2016 Sci. Adv. 2 e1600167Google Scholar
[66] Feng X, Feng Y, Wang J, Ou Y B, Hao Z Q, Liu C, Zhang Z C, Zhang L G, Lin C J, Liao J, Li Y Q, Wang L L, Ji S H, Chen X, Ma X C, Zhang S C, Wang Y Y, He K, Xue Q K 2016 Adv. Mater. 28 6386Google Scholar
[67] Chang C Z, Zhao W, Li J, Jain J K, Liu C, Moodera J S, Chan M H 2016 Phys. Rev. Lett. 117 126802Google Scholar
[68] Yasuda K, Wakatsuki R, Morimoto T, Yoshimi R, Tsukazaki A, Takahashi K S, Ezawa M, Kawasaki M, Nagaosa N, Tokura Y 2016 Nat. Phys. 12 555Google Scholar
[69] Liu C, Zang Y Y, Ruan W, Gong Y, He K, Ma X C, Xue Q K, Wang Y Y 2017 Phys. Rev. Lett. 119 176809Google Scholar
[70] Mogi M, Kawamura M, Tsukazaki A, Yoshimi R, Takahashi K S, Kawasaki M, Tokura Y 2017 Sci. Adv. 3 eaao1669Google Scholar
[71] Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y, Shirakawa N, Takahashi K S, Kawasaki M, Tokura Y 2017 Nat. Mater. 16 516Google Scholar
[72] Xiao D, Jiang J, Shin J H, Wang W, Wang F, Zhao Y F, Liu C, Wu W, Chan M H W, Samarth N, Chang C Z 2018 Phys. Rev. Lett. 120 056801Google Scholar
[73] Watanabe R, Yoshimi R, Kawamura M, Mogi M, Tsukazaki A, Yu X Z, Nakajima K, Takahashi K S, Kawasaki M, Tokura Y 2019 Appl. Phys. Lett. 115 102403Google Scholar
[74] Otrokov M M, Rusinov I P, Blanco-Rey M, Hoffmann M, Vyazovskaya A Y, Eremeev S V, Ernst A, Echenique P M, Arnau A, Chulkov E V 2019 Phys. Rev. Lett. 122 107202Google Scholar
[75] Yan J Q, Zhang Q, Heitmann T, Huang Z, Chen K Y, Cheng J G, Wu W, Vaknin D, Sales B C, McQueeney R J 2019 Phys. Rev. Mater. 3 064202Google Scholar
[76] Zhang S, Wang R, Wang X, Wei B, Chen B, Wang H, Shi G, Wang F, Jia B, Ouyang Y, Xie F, Fei F, Zhang M, Wang X, Wu D, Wan X, Song F, Zhang H, Wang B 2020 Nano Lett. 20 709Google Scholar
[77] Liu C, Ou Y B, Feng Y, Jiang G Y, Wu W X, Li S R, Cheng Z J, He K, Ma X C, Xue Q K, Wang Y Y 2020 Phys. Rev. X 10 041063
[78] Liu C, Wang Y C, Yang M, Mao J H, Li H, Li Y X, Li J H, Zhu H P, Wang J F, Li L, Wu Y, Xu Y, Zhang J S, Wang Y Y 2021 Nat. Commun. 12 4647Google Scholar
[79] Qiu J X, Tzschaschel C, Ahn J, Gao A, Li H, Zhang X Y, Ghosh B, Hu C, Wang Y X, Liu Y F, Berube D, Dinh T, Gong Z, Lien S W, Ho S C, Singh B, Watanabe K, Taniguchi T, Bell D C, Lu H Z, Bansil A, Lin H, Chang T R, Zhou B B, Ma Q, Vishwanath A, Ni N, Xu S Y 2023 Nat. Mater. 22 583Google Scholar
[80] Okazaki Y, Oe T, Kawamura M, Yoshimi R, Nakamura S, Takada S, Mogi M, Takahashi K S, Tsukazaki A, Kawasaki M, Tokura Y, Kaneko N H 2022 Nat. Phys. 18 25Google Scholar
[81] Gao A, Liu Y F, Hu C, Qiu J X, et al. 2021 Nature 595 521Google Scholar
[82] Mogi M, Okamura Y, Kawamura M, Yoshimi R, Yasuda K, Tsukazaki A, Takahashi K S, Morimoto T, Nagaosa N, Kawasaki M, Takahashi Y, Tokura Y 2022 Nat. Phys. 18 390Google Scholar
[83] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z, Shen Z X 2009 Science 325 178Google Scholar
[84] Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, Xue Q K 2010 Nat. Phys. 6 584Google Scholar
[85] Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar
[86] Zhang J S, Chang C Z, Zhang Z C, Wen J, Feng X, Li K, Liu M H, He K, Wang L L, Chen X, Xue Q K, Ma X C, Wang Y Y 2011 Nat. Commun. 2 574Google Scholar
[87] Liu Q, Liu C X, Xu C, Qi X L, Zhang S C 2009 Phys. Rev. Lett. 102 156603Google Scholar
[88] Sessi P, Reis F, Bathon T, Kokh K A, Tereshchenko O E, Bode M 2014 Nat. Commun. 5 5349Google Scholar
[89] Li M D, Chang C Z, Wu L J, Tao J, Zhao W W, Chan M H W, Moodera J S, Li J, Zhu Y M 2015 Phys. Rev. Lett. 114 146802Google Scholar
[90] Jiang J, Xiao D, Wang F, Shin J H, Andreoli D, Zhang J, Xiao R, Zhao Y F, Kayyalha M, Zhang L, Wang K, Zang J, Liu C, Samarth N, Chan M H W, Chang C Z 2020 Nat. Mater. 19 732Google Scholar
[91] Dziom V, Shuvaev A, Pimenov A, Astakhov G V, Ames C, Bendias K, Bottcher J, Tkachov G, Hankiewicz E M, Brune C, Buhmann H, Molenkamp L W 2017 Nat. Commun. 8 15197Google Scholar
[92] Okada K N, Takahashi Y, Mogi M, Yoshimi R, Tsukazaki A, Takahashi K S, Ogawa N, Kawasaki M, Tokura Y 2016 Nat. Commun. 7 12245Google Scholar
[93] Wu L, Salehi M, Koirala N, Moon J, Oh S, Armitage N P 2016 Science 354 1124Google Scholar
[94] He Q L, Hughes T L, Armitage N P, Tokura Y, Wang K L 2022 Nat. Mater. 21 15Google Scholar
[95] Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N, Ralph D C 2014 Nature 511 449Google Scholar
[96] Kondou K, Yoshimi R, Tsukazaki A, Fukuma Y, Matsuno J, Takahashi K S, Kawasaki M, Tokura Y, Otani Y 2016 Nat. Phys. 12 1027Google Scholar
[97] Li C H, van 't Erve O M J, Robinson J T, Liu Y, Li L, Jonker B T 2014 Nat. Nanotechnol. 9 218Google Scholar
[98] Gotz M, Fijalkowski K M, Pesel E, Hartl M, Schreyeck S, Winnerlein M, Grauer S, Scherer H, Brunner K, Gould C, Ahlers F J, Molenkamp L W 2018 Appl. Phys. Lett. 112 072102Google Scholar
[99] Okazaki Y, Oe T, Kawamura M, Yoshimi R, Nakamura S, Takada S, Mogi M, Takahashi K S, Tsukazaki A, Kawasaki M, Tokura Y, Kaneko N H 2020 Appl. Phys. Lett. 116 143101
[100] Fox E J, Rosen I T, Yang Y F, Jones G R, Elmquist R E, Kou X F, Pan L, Wang K L, Goldhaber-Gordon D 2018 Phys. Rev. B 98 075145Google Scholar
[101] Lee D S, Kim T H, Park C H, Chung C Y, Lim Y S, Seo W S, Park H H 2013 Crystengcomm 15 5532Google Scholar
[102] Sun H Y, Xia B W, Chen Z J, Zhang Y J, Liu P F, Yao Q S, Tang H, Zhao Y J, Xu H, Liu Q H 2019 Phys. Rev. Lett. 123 096401Google Scholar
[103] Wu J Z, Liu F C, Sasase M, Ienaga K, Obata Y, Yukawa R, Horiba K, Kumigashira H, Okuma S, Inoshita T, Hosono H 2019 Sci. Adv. 5 eaax9989Google Scholar
[104] Chen B, Fei F C, Zhang D Q, et al. 2019 Nat. Commun. 10 4469Google Scholar
[105] Li H, Gao S Y, Duan S F, et al. 2019 Phys. Rev. X 9 041039
[106] Hao Y J, Liu P F, Feng Y, et al. 2019 Phys. Rev. X 9 041038
[107] Chen Y J, Xu L X, Li J H, Li Y W, Zhang C F, Li H, Wu Y, Liang A J, Chen C, Jung S W, Cacho C, Wang H Y, Mao Y H, Liu S, Wang M X, Guo Y F, Xu Y, Liu Z K, Yang L X, Chen Y L 2019 Phys. Rev. X 9 041040
[108] Swatek P, Wu Y, Wang L L, Lee K, Schrunk B, Yan J Q, Kaminski A 2020 Phys. Rev. B 101 161109Google Scholar
[109] Nevola D, Li H X, Yan J Q, Moore R G, Lee H N, Miao H, Johnson P D 2020 Phys. Rev. Lett. 125 117205Google Scholar
[110] Ovchinnikov D, Huang X, Lin Z, Fei Z Y, Cai J Q, Song T C, He M H, Jiang Q N, Wang C, Li H, Wang Y Y, Wu Y, Xiao D, Chu J H, Yan J Q, Chang C Z, Cui Y T, Xu X D 2021 Nano Lett. 21 2544Google Scholar
[111] Cai J Q, Ovchinnikov D, Fei Z Y, He M H, Song T C, Lin Z, Wang C, Cobden D, Chu J H, Cui Y T, Chang C Z, Xiao D, Yan J Q, Xu X D 2022 Nat. Commun. 13 1668Google Scholar
[112] Ying Z, Zhang S, Chen B, Jia B, Fei F, Zhang M, Zhang H, Wang X, Song F 2022 Phys. Rev. B 105 085412Google Scholar
[113] Yang S Q, Xu X L, Zhu Y Z, Niu R R, Xu C Q, Peng Y X, Cheng X, Jia X H, Huang Y, Xu X F, Lu J M, Ye Y 2021 Phys. Rev. X 11 011003
[114] Cui J H, Shi M Z, Wang H H, Yu F H, Wu T, Luo X G, Ying J J, Chen X H 2019 Phys. Rev. B 99 155125Google Scholar
[115] Li H, Liu S, Liu C, Zhang J, Xu Y, Yu R, Wu Y, Zhang Y, Fan S 2020 Phys. Chem. Chem. Phys. 22 556Google Scholar
[116] Yan J-Q, Huang Z, Wu W, May A F 2022 J. Alloy Compd. 906 164327Google Scholar
[117] Hu C, Gao A, Berggren B S, Li H, Kurleto R, Narayan D, Zeljkovic I, Dessau D, Xu S, Ni N 2021 Phys. Rev. Mater. 5 124206Google Scholar
[118] Zhang J S, Chang C Z, Tang P Z, Zhang Z C, Feng X, Li K, Wang L L, Chen X, Liu C, Duan W, He K, Xue Q K, Ma X, Wang Y 2013 Science 339 1582Google Scholar
[119] Li B, Yan J Q, Pajerowski D M, Gordon E, Nedic A M, Sizyuk Y, Ke L Q, Orth P P, Vaknin D, McQueeney R J 2020 Phys. Rev. Lett. 124 167204Google Scholar
[120] Sass P M, Kim J, Vanderbilt D, Yan J Q, Wu W D 2020 Phys. Rev. Lett. 125 037201Google Scholar
[121] Sass P M, Ge W B, Yan J Q, Obeysekera D, Yang J J, Wu W D 2020 Nano Lett 20 2609Google Scholar
[122] Lai Y, Ke L Q, Yan J Q, McDonald R D, McQueeney R J 2021 Phys. Rev. B 103 184429Google Scholar
[123] Estyunin D A, Klimovskikh I I, Shikin A M, Schwier E F, Otrokov M M, Kimura A, Kumar S, Filnov S O, Aliev Z S, Babanly M B, Chulkov E V 2020 APL Mater 8 021105Google Scholar
[124] Li Y, Liu C, Wang Y, Lian Z, Li H, Wu Y, Zhang J, Wang Y 2023 Science Bulletin 68 1252
[125] Shikin A M, Estyunin D A, Zaitsev N L, et al. 2021 Phys. Rev. B 104 115168Google Scholar
[126] Tan H, Yan B 2023 Phys. Rev. Lett. 130 126702Google Scholar
[127] Kivelson S, Lee D H, Zhang S C 1992 Phys. Rev. B 46 2223Google Scholar
[128] Hilke M, Shahar D, Song S H, Tsui D C, Xie Y H, Monroe D 1998 Nature 395 675Google Scholar
[129] Wong L W, Jiang H W, Trivedi N, Palm E 1995 Phys. Rev. B 51 18033Google Scholar
[130] Shahar D, Tsui D C, Shayegan M, Bhatt R N, Cunningham J E 1995 Phys. Rev. Lett. 74 4511Google Scholar
[131] Pan W, Shahar D, Tsui D C, Wei H P, Razeghi M 1997 Phys. Rev. B 55 15431Google Scholar
[132] Kou X F, Pan L, Wang J, Fan Y B, Choi E S, Lee W L, Nie T X, Murata K, Shao Q M, Zhang S C, Wang K L 2015 Nat. Commun. 6 8474Google Scholar
[133] Kawamura M, Mogi M, Yoshimi R, Tsukazaki A, Kozuka Y, Takahashi K S, Kawasaki M, Tokura Y 2018 Phys. Rev. B 98 140404(R
[134] Wu X Y, Xiao D, Chen C Z, Sun J, Zhang L, Chan M H W, Samarth N, Xie X C, Lin X, Chang C Z 2020 Nat. Commun. 11 4532Google Scholar
[135] Kayyalha M, Xiao D, Zhang R X, Shin J, Jiang J, Wang F, Zhao Y F, Xiao R, Zhang L, Fijalkowski K M, Mandal P, Winnerlein M, Gould C, Li Q, Molenkamp L W, Chan M H W, Samarth N, Chang C Z 2020 Science 367 64Google Scholar
[136] Huang Y Y, Setiawan F, Sau J D 2018 Phys. Rev. B 97 100501(R
[137] Ji W J, Wen X G 2018 Phys. Rev. Lett. 120 107002Google Scholar
[138] Wang J, Zhou Q, Lian B A, Zhang S C 2015 Phys. Rev. B 92 064520Google Scholar
[139] Lian B A, Wang J, Sun X Q, Vaezi A, Zhang S C 2018 Phys. Rev. B 97 125408Google Scholar
[140] Lian B, Sun X Q, Vaezi A, Qi X L, Zhang S C 2018 Proc. Natl. Acad. Sci. U. S. A. 115 10938Google Scholar
[141] Liu C, Zang Y Y, Gong Y, He K, Ma X C, Xue Q K, Wang Y Y 2022 Sci. China Phys. Mech. 65 266812Google Scholar
[142] Zhu J J, Yao D X, Zhang S C, Chang K 2011 Phys. Rev. Lett. 106 097201Google Scholar
[143] Xu Z M, Duan W H, Xu Y 2022 Nano Lett. 23 305
[144] Li Y X, Liu C, Wang Y C, Li H, Wu Y, Zhang J S, Wang Y Y 2022 J. Phys. D Appl. Phys. 55 104001Google Scholar
[145] Marsh D J E, Fong K C, Lentz E W, Smejkal L, Ali M N 2019 Phys. Rev. Lett. 123 121601Google Scholar
[146] Nenno D M, Garcia C A C, Gooth J, Felser C, Narang P 2020 Nat. Rev. Phys. 2 682Google Scholar
[147] Sekine A, Nomura K 2021 J. Appl. Phys. 129 141101Google Scholar
[148] Li H L, Chen C Z, Jiang H, Xie X C 2021 Phys. Rev. Lett. 127 236402Google Scholar
[149] Roth A, Brune C, Buhmann H, Molenkamp L W, Maciejko J, Qi X L, Zhang S C 2009 Science 325 294Google Scholar
[150] Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766Google Scholar
[151] Young A F, Sanchez-Yamagishi J D, Hunt B, Choi S H, Watanabe K, Taniguchi T, Ashoori R C, Jarillo-Herrero P 2014 Nature 505 528Google Scholar
[152] Veyrat L, Déprez C, Coissard A, Li X, Gay F, Watanabe K, Taniguchi T, Han Z, Piot B A, Sellier H, Sacépé B 2020 Science 367 781Google Scholar
[153] Chen R, Li S, Sun H P, Liu Q H, Zhao Y, Lu H Z, Xie X C 2021 Phys. Rev. B 103 L241409Google Scholar
[154] Gu M Q, Li J Y, Sun H Y, Zhao Y F, Liu C, Liu J P, Lu H Z, Liu Q H 2021 Nat. Commun. 12 3524Google Scholar
[155] Zhou H M, Li H L, Xu D H, Chen C Z, Sun Q F, Xie X C 2022 Phys. Rev. Lett. 129 096601Google Scholar
[156] Gong M, Liu H W, Jiang H, Chen C Z, Xie X C 2023 Natl. Sci. Rev. 10 nwad025Google Scholar
[157] Zou J Y, Fu B, Wang H W, Hu Z A, Shen S Q 2022 Phys. Rev. B 105 L201106Google Scholar
[158] Sun S, Weng H M, Dai X 2022 Phys. Rev. B 106 L241105Google Scholar
[159] Song Z D, Lian B A, Queiroz R, Ilan R, Bernevig B A, Stern A 2021 Phys. Rev. Lett. 127 016602
[160] Wang J, Lian B, Zhang S C 2014 Phys. Rev. B 89 085106Google Scholar
[161] Liang S, Kushwaha S, Gao T, Hirschberger M, Li J, Wang Z, Stolze K, Skinner B, Bernevig B A, Cava R J, Ong N P 2019 Nat. Mater. 18 443Google Scholar
[162] Bottcher J, Tutschku C, Hankiewicz E M 2020 Phys. Rev. B 101 195433Google Scholar
[163] Bottcher J, Tutschku C, Molenkamp L W, Hankiewicz E M 2019 Phys. Rev. Lett. 123 226602Google Scholar
[164] Lian B, Liu Z C, Zhang Y B, Wang J 2020 Phys. Rev. Lett. 124 126402
计量
- 文章访问数: 7618
- PDF下载量: 739
- 被引次数: 0