搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于广义等距张量的压缩多光子纠缠态量子密钥分发

赖红

引用本文:
Citation:

基于广义等距张量的压缩多光子纠缠态量子密钥分发

赖红

Generalized isometric tensor based quantum key distribution protocols of squeezed multiphoton entangled states

Lai Hong
PDF
HTML
导出引用
  • 等距张量(即张量$ {\boldsymbol{\omega }} $满足$ {{\boldsymbol{\omega }}^\dagger }{\boldsymbol{\omega }} = {\boldsymbol{I}} $)为实现张量网络态(tensor network states, TNSs)中确定纠缠态的压缩提供了一种新颖而强大的数学构造算法. 结合等距张量, 本文发现在量子密钥分发(quantum key distribution, QKD)中可能采取完全不同的密钥生成方法, 即在不改变纠缠态结构和性质的情况下, 将任意多光子纠缠态压缩成单光子态或者Bell态. 在提出的QKD协议中, 输入态由任意纠缠态组成, 这些输入态首先被发送方Alice压缩成单光子态$ \left| 0 \right\rangle $$ \left| 1 \right\rangle $或Bell态, 使得提出的协议同时达到了多模存储和确定性传输的要求, 且减少了需要传输和存储的量子比特数量, 从而提高了QKD协议的编码能力. 然后再添加诱骗态在这些单光子态$ \left| 0 \right\rangle $$ \left| 1 \right\rangle $中, 再通过量子信道一起发送给接收方Bob, 以制备密钥. 最后, Alice和Bob利用筛选出来的压缩态|0$\rangle $和|1$\rangle $以及他们对应的等距张量的共轭转置来协商出共享密钥. 本文提出的协议比一般协议中的单光子能编码更多的经典比特, 显著提高了编码效率, 减少了量子资源的使用. 本文提出的QKD协议还保持了生成密钥的完美安全性.
    Isometric tensor offers a novel and powerful tool that can compress an entangled state into its tensor network state (TNS). The resulting quantum compression provides a new opportunity for enhancing quantum key distribution (QKD) protocols. The main idea explored in this work is to use the quantum compression to improve the efficiency of QKD. In a nut-shell, a collection of any multi-photon entangled states that carry encoded classical bits is compressed into a single-photon state before the corresponding photon is sent to the receiver that measures the qubit and decompresses it. In this paper, we first show how to obtain the generalized isometric tensors for compressing any entangled states and their inverse isometric tensors for decompression. In our proposed QKD protocol, the input state consists of any multi-photon entangled states, which are first compressed into a single-photon state $ \left| 0 \right\rangle $ or $ \left| 1 \right\rangle $ or Bell states by the sender Alice. A sequence of single-photon states $ \left| 0 \right\rangle $ and $ \left| 1 \right\rangle $ and one photon from the Bell state mixed with decoy qubits is sent to the receiver Bob via a quantum channel. Bob obtains the final sifted compressed states $ \left| 0 \right\rangle $ and $ \left| 1 \right\rangle $ and conjugate transpose of the isometric tensors. Using our protocols, Bob can decompress the received states $ \left| 0 \right\rangle $ and $ \left| 1 \right\rangle $ into original entangled states. Since quantum processors that are used to send quantum information between nodes are relatively primitive and low in power and the preparation of many-photon entanglement is relatively difficult at present, finding suitable protocols for the compression of transmitted quantum data brings important practical benefits. More generally, the quantum information theory primarily investigates quantum data manipulation under locality constraints, so our protocols connect naturally to these investigations. Our protocols increase the encoding capacity of QKD protocols. Not only our proposed processes of compression and decompression are very simple, but also entanglement compression using isometric tensors can be implemented by using quantum circuits and current technology. Because many ideas for designing of quantum information processing equipment envision that a network composed of relatively small quantum processors sending quantum information between nodes, it is greatly significant to find appropriate protocols for compressing the transmitted quantum data .
      通信作者: 赖红, hlai@swu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 61702427)、重庆市面上自然科学基金( 批准号: CSTB2022NSCQ-MSX0749)和西南大学2022年校级教改项目(批准号: 2022JY086) 资助的课题.
      Corresponding author: Lai Hong, hlai@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61702427), the Natural Science Foundation of Chongqing, China (Grant No. CSTB2022NSCQ-MSX0749), and the Southwest University’s 2022School-level Teaching Reform Project, China (Grant No. 2022JY086).
    [1]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing Bangalore, India, December 10–12, 1984 pp175–179

    [2]

    Wang B, Zhang B F, Zou F C, et al. 2021 Optik 235 166628Google Scholar

    [3]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [4]

    Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557Google Scholar

    [5]

    Greenberger D M, Horne M A, Zeilinger A 1989 Bell’s Theorem, Quantum Theory and Conceptions of the Universe (Dordrecht: Springer) pp69–72

    [6]

    Bouwmeester D, Pan J W, Daniell M, Weinfurter H, Zeilinger A 1999 Phys. Rev. Lett. 82 1345Google Scholar

    [7]

    Guo Y, Shi R, Zeng G 2010 Phys. Scr. 81 045006Google Scholar

    [8]

    Xu G B, Wen Q Y, Gao F, Qin S J 2014 Quantum Inf. Process. 13 2587Google Scholar

    [9]

    Castañeda Valle D, Quezada L F, Dong S H 2021 Ann. Phys. Berlin 533 2100116Google Scholar

    [10]

    Zhao N, Guo X, Wu T 2021 Phys. Rev. A 104 062616Google Scholar

    [11]

    Upadhyaya T, van Himbeeck T, Lin J, et al. 2021 PRX Quantum. 2 020325Google Scholar

    [12]

    Jiang C, Yu Z W, Hu X L, Wang X B 2021 Phys. Rev. A 103 012402Google Scholar

    [13]

    Lim C C W, Xu F, Pan J W, Ekert A 2021 Phys. Rev. Lett. 126 100501Google Scholar

    [14]

    Long G L and Liu X S 2002 Phys. Rev. A 65 032302Google Scholar

    [15]

    Chang C H, Yang C W, Hwang T 2016 Int. J. Theor. Phys. 55 3993Google Scholar

    [16]

    Pivoluska M, Huber M, Malik M 2018 Phys. Rev. A 97 032312Google Scholar

    [17]

    Zhu K N, Zhou N R, Wang Y Q, et al. 2018 Int. J. Theor. Phys. 57 3621Google Scholar

    [18]

    Zhou H, Lv K, Huang L, et al. 2022 IEEE/ACM T. Network. 30 1328Google Scholar

    [19]

    Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 117 210502Google Scholar

    [20]

    Xia Y, Lu P M, Zeng Y Z 2012 Quantum Inf. Process. 11 605Google Scholar

    [21]

    Huang Y F, Liu B H, Peng L, et al. 2011 Nat. Commun. 2 1

    [22]

    Xia Y, Song J, Ning Y, et al. 2010 JETP Lett. 90 735Google Scholar

    [23]

    Svozil K 2022 Found. Phys. 52 4Google Scholar

    [24]

    Yin H L, Fu Y, Li C L, et al. 2023 Nati. Sci. Rev. 10 228Google Scholar

    [25]

    Xie Y M, Lu Y S, Weng C X, et al. 2022 PRX Quantum. 3 020315Google Scholar

    [26]

    Gu J, Cao X Y, Fu Y, et al. 2022 Sci. Bull. 67 2167Google Scholar

    [27]

    Fan C R, Lu B, Feng X T, et al. 2021 Quant. Engineer. 3 e67

    [28]

    Bostroem K, Felbinger T 2002 Phys. Rev. A 65 032313Google Scholar

    [29]

    Datta N, Renes J M, Renner R, et al. 2013 IEEE Inform. Theory 59 8057Google Scholar

    [30]

    Plesch M, Bužek V 2010 Phys. Rev. A 81 032317Google Scholar

    [31]

    Rozema L A, Mahler D H, Hayat A, Turner P S, Steinberg A M 2014 Phys. Rev. Lett. 113 160504Google Scholar

    [32]

    Yang Y, Chiribella G, Ebler D 2016 Phys. Rev. Lett. 116 080501Google Scholar

    [33]

    Yang Y, Chiribella G, Hayashi M 2016 Phys. Rev. Lett. 117 090502Google Scholar

    [34]

    Romero J, Olson J P, Aspuru-Guzik A 2017 Quantum Sci. Technol. 2 045001Google Scholar

    [35]

    Pepper A, Tischler N, Pryde G J 2019 Phys. Rev. Lett. 122 060501Google Scholar

    [36]

    Van Acoleyen K, Hallam A, Bal M, Hauru M, Haegeman J, Verstraete F 2020 Phys. Rev. B 102 165131Google Scholar

    [37]

    Lai H, Pieprzyk J, Pan L 2023 Sci. China Inf. Sc. 66 180510Google Scholar

    [38]

    Evenbly G 2022 Front. Phys. 10 1146

    [39]

    Bennett C H, DiVincenzo D P, Smolin J A, Wootters W K 1996 Phys. Rev. A 54 3824Google Scholar

  • 图 1  利用wN1, wN2, N光子GHZ 纠缠态$ ({{\sqrt 2 }}/{2})\left( {\left| {00 \cdots 0} \right\rangle + \left| {11 \cdots 1} \right\rangle } \right) $ 被随机压缩为数态$| 0 \rangle $$| 1\rangle $, 利用${\boldsymbol{w}}_{N1}^{\dagger},{\boldsymbol{w}}_{N2}^{\dagger}$,$| 0 \rangle $$| 1 \rangle $被解压缩为N光子GHZ 纠缠态$({{\sqrt 2 }}/{2})\left( {\left| {00 \cdots 0} \right\rangle + \left| {11 \cdots 1} \right\rangle } \right)$ 示意图

    Fig. 1.  The schematic compression of $({{\sqrt 2 }}/{2})\left( {\left| {00 \cdots 0} \right\rangle + \left| {11 \cdots 1} \right\rangle } \right)$ into $\left| 0 \right\rangle $ or $\left| 1 \right\rangle $ using ${{\boldsymbol{w}}_{N1}}, {{\boldsymbol{w}}_{N2}}$, and decompression of $\left| 0 \right\rangle $ or $\left| 1 \right\rangle $ into $({{\sqrt 2 }}/{2})\left( {\left| {00 \cdots 0} \right\rangle + \left| {11 \cdots 1} \right\rangle } \right)$ using ${\boldsymbol{w}}_{N1}^\dagger ,{\boldsymbol{w}}_{N2}^\dagger$.

    图 2  利用${\boldsymbol{w}}'_{N1}, {\boldsymbol{w}}'_{N2}$, N 光子 GHZ 纠缠态$({{\sqrt 2 }}/{2})\left( {\left| {00 \cdots 0} \right\rangle + \left| {11 \cdots 1} \right\rangle } \right)$被随机压缩为Bell态$({{\sqrt 2 }}/{2})\left( {\left| {00} \right\rangle + \left| {11} \right\rangle } \right)$$({{\sqrt 2 }}/{2}) ( | 01 \rangle + $$ |10\rangle)$, 利用${\boldsymbol{w}}^{\prime\dagger}_{N1}, {\boldsymbol{w}}^{\prime\dagger}_{N2}$, Bell态 $({{\sqrt 2 }}/{2})\left( {\left| {00} \right\rangle + \left| {11} \right\rangle } \right)$$({{\sqrt 2 }}/{2})\left( {\left| {01} \right\rangle + \left| {10} \right\rangle } \right)$被解压缩为N 光子 GHZ 纠缠态$({{\sqrt 2 }}/{2}) (| 00 \cdots 0\rangle + $$ | 11 \cdots 1\rangle)$示意图

    Fig. 2.  The schematic compression of $({{\sqrt 2 }}/{2})\left( {\left| {00 \cdots 0} \right\rangle + \left| {11 \cdots 1} \right\rangle } \right)$ into $({{\sqrt 2 }}/{2})\left( {\left| {00} \right\rangle + \left| {11} \right\rangle } \right)$ or $({{\sqrt 2 }}/{2})\left( {\left| {01} \right\rangle + \left| {10} \right\rangle } \right)$ using ${{\boldsymbol{w}}'_{N1}}, $$ {{\boldsymbol{w}}'_{N2}}$, and decompression of $({{\sqrt 2 }}/{2})\left( {\left| {00} \right\rangle + \left| {11} \right\rangle } \right)$ or $({{\sqrt 2 }}/{2})\left( {\left| {01} \right\rangle + \left| {10} \right\rangle } \right)$ into $({{\sqrt 2 }}/{2})\left( {\left| {00 \cdots 0} \right\rangle + \left| {11 \cdots 1} \right\rangle } \right)$ using ${\boldsymbol{w}}_{N1}^{\prime\dagger} , {\boldsymbol{w}}_{N2}^{\prime\dagger }$.

    表 1  压缩纠缠态用于在 Alice 和 Bob 之间生成密钥的例子

    Table 1.  An example of transmitting the compressed entangled state for generating a secret key between Alice and Bob.

    Alice随机制备纠缠态$ ({{\sqrt 2 }}/{2})\left( {\left| {000} \right\rangle + \left| {111} \right\rangle } \right) $$ ({{\sqrt 2 }}/{2})\left( {\left| {0000} \right\rangle + \left| {1111} \right\rangle } \right) $$ N(N \geqslant 5) $光子GHZ态
    Alice随机选择等距张量$ {{\boldsymbol{w}}_{31}} $$ {{\boldsymbol{w}}_{{4}1}} $$ {{\boldsymbol{w}}_{N2}} $
    Alice压缩纠缠态$ \left| 0 \right\rangle $$ \left| 0 \right\rangle $$ \left| 0 \right\rangle $
    Alice随机选择测量基$ {B_x} $$ {B_{\text{z}}} $${B_z}$
    Bob随机选择测量基${B_z}$$ {B_{\text{z}}} $$ {B_x} $
    对基
    筛选出的共享压缩态$ \left| 0 \right\rangle $
    解压缩共享压缩态$ ({{\sqrt 2 }}/{2})\left( {\left| {0000} \right\rangle + \left| {1111} \right\rangle } \right) $
    下载: 导出CSV

    表 2  本文的协议与文献[4, 16, 20]中的协议进行了比较

    Table 2.  Our protocol compares with the protocols in Refs.[4, 16, 20].

    BBM92[4]Pivoluska等[16]的协议Xia等[20]
    的协议
    本文的
    协议
    量子源贝尔态贝尔态和GHZ态N光子的GHZ态任何压缩纠缠态
    压缩
    抵抗测量
    攻击
    抵抗拦截和重放攻击
    抵抗纠缠测量的攻击
    抗退相干
    下载: 导出CSV
    Baidu
  • [1]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing Bangalore, India, December 10–12, 1984 pp175–179

    [2]

    Wang B, Zhang B F, Zou F C, et al. 2021 Optik 235 166628Google Scholar

    [3]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [4]

    Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557Google Scholar

    [5]

    Greenberger D M, Horne M A, Zeilinger A 1989 Bell’s Theorem, Quantum Theory and Conceptions of the Universe (Dordrecht: Springer) pp69–72

    [6]

    Bouwmeester D, Pan J W, Daniell M, Weinfurter H, Zeilinger A 1999 Phys. Rev. Lett. 82 1345Google Scholar

    [7]

    Guo Y, Shi R, Zeng G 2010 Phys. Scr. 81 045006Google Scholar

    [8]

    Xu G B, Wen Q Y, Gao F, Qin S J 2014 Quantum Inf. Process. 13 2587Google Scholar

    [9]

    Castañeda Valle D, Quezada L F, Dong S H 2021 Ann. Phys. Berlin 533 2100116Google Scholar

    [10]

    Zhao N, Guo X, Wu T 2021 Phys. Rev. A 104 062616Google Scholar

    [11]

    Upadhyaya T, van Himbeeck T, Lin J, et al. 2021 PRX Quantum. 2 020325Google Scholar

    [12]

    Jiang C, Yu Z W, Hu X L, Wang X B 2021 Phys. Rev. A 103 012402Google Scholar

    [13]

    Lim C C W, Xu F, Pan J W, Ekert A 2021 Phys. Rev. Lett. 126 100501Google Scholar

    [14]

    Long G L and Liu X S 2002 Phys. Rev. A 65 032302Google Scholar

    [15]

    Chang C H, Yang C W, Hwang T 2016 Int. J. Theor. Phys. 55 3993Google Scholar

    [16]

    Pivoluska M, Huber M, Malik M 2018 Phys. Rev. A 97 032312Google Scholar

    [17]

    Zhu K N, Zhou N R, Wang Y Q, et al. 2018 Int. J. Theor. Phys. 57 3621Google Scholar

    [18]

    Zhou H, Lv K, Huang L, et al. 2022 IEEE/ACM T. Network. 30 1328Google Scholar

    [19]

    Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y, Pan J W 2016 Phys. Rev. Lett. 117 210502Google Scholar

    [20]

    Xia Y, Lu P M, Zeng Y Z 2012 Quantum Inf. Process. 11 605Google Scholar

    [21]

    Huang Y F, Liu B H, Peng L, et al. 2011 Nat. Commun. 2 1

    [22]

    Xia Y, Song J, Ning Y, et al. 2010 JETP Lett. 90 735Google Scholar

    [23]

    Svozil K 2022 Found. Phys. 52 4Google Scholar

    [24]

    Yin H L, Fu Y, Li C L, et al. 2023 Nati. Sci. Rev. 10 228Google Scholar

    [25]

    Xie Y M, Lu Y S, Weng C X, et al. 2022 PRX Quantum. 3 020315Google Scholar

    [26]

    Gu J, Cao X Y, Fu Y, et al. 2022 Sci. Bull. 67 2167Google Scholar

    [27]

    Fan C R, Lu B, Feng X T, et al. 2021 Quant. Engineer. 3 e67

    [28]

    Bostroem K, Felbinger T 2002 Phys. Rev. A 65 032313Google Scholar

    [29]

    Datta N, Renes J M, Renner R, et al. 2013 IEEE Inform. Theory 59 8057Google Scholar

    [30]

    Plesch M, Bužek V 2010 Phys. Rev. A 81 032317Google Scholar

    [31]

    Rozema L A, Mahler D H, Hayat A, Turner P S, Steinberg A M 2014 Phys. Rev. Lett. 113 160504Google Scholar

    [32]

    Yang Y, Chiribella G, Ebler D 2016 Phys. Rev. Lett. 116 080501Google Scholar

    [33]

    Yang Y, Chiribella G, Hayashi M 2016 Phys. Rev. Lett. 117 090502Google Scholar

    [34]

    Romero J, Olson J P, Aspuru-Guzik A 2017 Quantum Sci. Technol. 2 045001Google Scholar

    [35]

    Pepper A, Tischler N, Pryde G J 2019 Phys. Rev. Lett. 122 060501Google Scholar

    [36]

    Van Acoleyen K, Hallam A, Bal M, Hauru M, Haegeman J, Verstraete F 2020 Phys. Rev. B 102 165131Google Scholar

    [37]

    Lai H, Pieprzyk J, Pan L 2023 Sci. China Inf. Sc. 66 180510Google Scholar

    [38]

    Evenbly G 2022 Front. Phys. 10 1146

    [39]

    Bennett C H, DiVincenzo D P, Smolin J A, Wootters W K 1996 Phys. Rev. A 54 3824Google Scholar

  • [1] 宋峰峰, 张广铭. 拓扑激发驱动的热力学相变及其张量网络研究方法.  , 2023, 72(23): 230301. doi: 10.7498/aps.72.20231152
    [2] 魏天丽, 吴德伟, 杨春燕, 罗均文, 李响, 朱浩男. 基于光子计数的纠缠微波压缩角锁定.  , 2019, 68(9): 090301. doi: 10.7498/aps.68.20182077
    [3] 王秀娟, 李生好. 基于U(1)对称的无限矩阵乘积态张量网络算法提取Luttinger液体参数K .  , 2019, 68(16): 160201. doi: 10.7498/aps.68.20190379
    [4] 王湘林, 吴德伟, 李响, 朱浩男, 陈坤, 方冠. 一种生成质量最优路径纠缠微波信号的压缩参量选择方法.  , 2017, 66(23): 230302. doi: 10.7498/aps.66.230302
    [5] 李百宏, 王豆豆, 庞华锋, 张涛, 解忧, 高峰, 董瑞芳, 李永放, 张首刚. 用二元相位调制实现啁啾纠缠光子对关联时间的压缩.  , 2017, 66(4): 044206. doi: 10.7498/aps.66.044206
    [6] 刘世右, 郑凯敏, 贾芳, 胡利云, 谢芳森. 单-双模组合压缩热态的纠缠性质及在量子隐形传态中的应用.  , 2014, 63(14): 140302. doi: 10.7498/aps.63.140302
    [7] 徐学翔, 袁洪春, 胡利云. 广义压缩粒子数态的非经典性质及其退相干.  , 2010, 59(7): 4661-4671. doi: 10.7498/aps.59.4661
    [8] 刘小娟, 赵明卓, 刘一曼, 周并举, 彭朝晖. 运动原子与光场依赖强度纠缠下最佳熵压缩态的制备和控制.  , 2010, 59(5): 3227-3235. doi: 10.7498/aps.59.3227
    [9] 陈星, 夏云杰. 双模压缩真空态和纠缠相干态的一维势垒散射.  , 2010, 59(1): 80-86. doi: 10.7498/aps.59.80
    [10] 林继成, 郑小虎, 曹卓良. Kerr介质中双模纠缠相干光与Bell态原子相互作用系统的原子偶极压缩.  , 2007, 56(2): 837-844. doi: 10.7498/aps.56.837
    [11] 谭华堂, 甘仲惟, 李高翔. 与压缩真空库耦合的单模腔内三量子点中激子纠缠.  , 2005, 54(3): 1178-1183. doi: 10.7498/aps.54.1178
    [12] 黄燕霞, 赵朋义, 黄熙, 詹明生. 压缩真空场与原子非线性作用过程中的纠缠与消纠缠.  , 2004, 53(1): 75-81. doi: 10.7498/aps.53.75
    [13] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干.  , 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
    [14] 张靖仪. 广义相对论中双荷场源的电磁场张量.  , 1999, 48(12): 2158-2161. doi: 10.7498/aps.48.2158
    [15] 田 旭, 黄湘友. 耦合压缩Landau态.  , 1999, 48(8): 1399-1404. doi: 10.7498/aps.48.1399
    [16] 田 旭, 黄湘友. 非耦合压缩Landau态.  , 1998, 47(5): 718-723. doi: 10.7498/aps.47.718
    [17] 于肇贤, 王继锁, 刘业厚. 非简谐振子广义奇偶相干态的高阶压缩效应及反聚束效应.  , 1997, 46(9): 1693-1698. doi: 10.7498/aps.46.1693
    [18] 林仁明. 电磁场与等离子体互作用和广义压缩相干态.  , 1989, 38(11): 1826-1832. doi: 10.7498/aps.38.1826
    [19] 张卫平, 谭维翰. 激光腔内压缩态光的产生.  , 1988, 37(11): 1767-1774. doi: 10.7498/aps.37.1767
    [20] 陆启铿, 刘煜奋, 邹振隆, 郭汉英. 标量-张量引力波.  , 1974, 23(2): 15-32. doi: 10.7498/aps.23.15
计量
  • 文章访问数:  2310
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-13
  • 修回日期:  2023-06-02
  • 上网日期:  2023-07-18
  • 刊出日期:  2023-09-05

/

返回文章
返回
Baidu
map