-
单壁碳纳米管的带隙可控化一直是备受关注的研究方向, 本文通过在单壁碳纳米管轴向方向上旋转每个碳原子得到扭转模型, 详细介绍了模型的构建过程, 提出了模型构建的两个原则, 单壁碳纳米管扭转模型符合周期性排列规律, 基于第一性原理密度泛函理论证明了扭转模型能够自洽成功. 通过计算给出数十种扭转模型的带隙变化图, 随着扭转强度的增大, 单壁碳纳米管的带隙发生了多次相变, 包括金属型-半导体型和半导体型-金属型转变. 进一步统计了扭转过程中单壁碳纳米管的直径变化、碳原子间平均键长及平均键角的变化, 发现这些变化也存在规律. 最后统计了碳原子能量的变化规律, 发现不同种类的单壁碳纳米管在相同扭转强度下有不同的能量变化. 本文为单壁碳纳米管带隙可控化提供了新的思路, 进而为单壁碳纳米管纳米电子器件、微集成电路提供了理论依据.The controllable band gap of single-walled carbon nanotube (SWCNT) has become a research hotspot. This study introduces a torsional model that involves each rotating carbon atom along the axial direction of SWCNT, and a detailed description of the model creation process. Two guidelines for constructing the model are proposed, and the self-consistency of the torsion model is established through first-principles density functional theory. Initially, the band gap map of SWCNTs under torsion is present. As the twist strength increases, the band gap of SWCNT undergoes several phase transitions, including semiconductor-metal transition and metal-semiconductor transition. Moreover, we investigate the variations in the average bond length, average bond angle, and diameter of SWCNT under torsion. Furthermore, this work turns to the analysis of carbon atomic energy statistics, revealing distinct energy changes for different types of single-walled carbon nanotubes under identical torsion intensity. The findings shed light on the controllable band gap of SWCNTs, offering a theoretical foundation for the development of nanoelectronic devices and microintegrated circuits utilizing single-walled carbon nanotubes. In conclusion, this research presents a novel approach for exploring the controllable band gap of single-walled carbon nanotube through torsional manipulation. Theoretical insights into the behavior of SWCNTs under torsion provide valuable contributions to the field and pave the way for potential applications in nanoelectronics and microintegrated circuits.
-
Keywords:
- single-walled carbon nanotubes /
- first principles /
- torsional deformation /
- band gap
[1] Iijima S 1991 Nature 354 56Google Scholar
[2] Iijima S, Ichihashi T 1993 Nature 364 737Google Scholar
[3] Treacy M, Ebbesen T W, Gibson J M 1996 Nature 381 680Google Scholar
[4] Krishnan A, Dujardin E, Ebbesen T W, Yianilos P N, Treacy M M J 1998 Phys. Rev. B 58 14013Google Scholar
[5] Hernandez E, Goze C, Bernier P, Rubio A 1999 Appl. Phys. A Mater. 68 287Google Scholar
[6] Takakura A, Beppu K, Nishihara T, Fukui A, Kozeki T, Namazu T, Miyauchi Y, Itami K 2019 Nat. Commun. 10 3040Google Scholar
[7] Fischer J E, Johnson A T 1999 Curr. Opin. Solid St. M. 4 28Google Scholar
[8] Jia J, Shi D, Feng X, Chen G 2014 Carbon 76 54Google Scholar
[9] Ezawa M 2006 Phys. Rev. B 73 045432Google Scholar
[10] Karimkhani H, Vahed H 2022 Optik 254 168633Google Scholar
[11] Tombler T W, Zhou C W, Alexseyev L, Kong J, Dai H J, Lei L, Jayanthi C S, Tang M J, Wu S Y 2000 Nature 405 769Google Scholar
[12] Jia J M, Ju S P, Shi D N, Lin K F 2012 J. Appl. Phys. 111 013704Google Scholar
[13] Yang L, Han J 2000 Phys. Rev. Lett. 85 154Google Scholar
[14] Moon S, Song W, Kim N, Lee J S, Na P S, Lee S G, Park J, Jung M H, Lee H W, Kang K H, Lee C J, Kim J 2007 Nanotechnology 18 235201Google Scholar
[15] Mazzoni M, Chacham H 2000 Appl. Phys. Lett. 76 1561Google Scholar
[16] Peng S, Cho K 2002 J. Appl. Mech T. ASME 69 451Google Scholar
[17] Shtogun Y V, Woods L M 2009 Carbon 47 3252Google Scholar
[18] Shtogun Y V, Woods L M 2009 J. Phys. Chem. C 113 4792Google Scholar
[19] Kang Y J, Kim Y H, Chang K J 2009 Curr. Appl. Phys. 9 S7Google Scholar
[20] Berd M, Moussi K, Aouabdia Y, Benchallal L, Chahi G, Kahouadji B 2021 Chem. Phys. Lett. 781 138988Google Scholar
[21] Kato K, Koretsune T, Saito S 2012 Phys. Rev. B 85 115448Google Scholar
[22] Wang Q 2008 Carbon 46 1172Google Scholar
[23] Wang Y, Wang X X, Ni X G 2004 Model. Simul. Mater. Sc. 12 1099Google Scholar
[24] Kang J W, Kim K S, Park S Y, Kim H, Hwang H J, Choi Y G 2010 J. Comput. Theor. Nanos. 7 2317Google Scholar
[25] Melker A I, Zhaldybin A I 2007 Nanomeeting (Minsk Byelarus: May 22–25) p233
[26] Dian R H, Lei Z, Ya F D, Cheng L L 2017 Mater. Res. Express 4 105004Google Scholar
[27] Ansari R, Mirnezhad M, Rouhi H 2015 Acta. Mech. 226 2955Google Scholar
[28] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar
[29] Kohn W, Sham L 1965 Phys. Rev. 140 A1133Google Scholar
[30] Langreth D C, Mehl M J 1983 Phys. Rev. B 28 1809Google Scholar
[31] Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar
[32] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[33] Kinoshita Y, Ohno N 2010 Phys. Rev. B 82 085433Google Scholar
-
图 7 单壁碳纳米管直径变化图 (a) 扶手椅型单壁碳纳米管直径随扭转强度的变化; (b) 3类碳纳米带中本征单壁碳纳米管直径变化; (c)锯齿型单壁碳纳米管直径随扭转强度的变化
Fig. 7. Diameter variation chart of SWCNTs: (a) Relationship between diameter and torsional strength for armchair SWCNTs; (b) diameter of SWCNTs in three types of carbon nanoribbons; (c) relationship between diameter and torsional strength for zigzag SWCNTs.
-
[1] Iijima S 1991 Nature 354 56Google Scholar
[2] Iijima S, Ichihashi T 1993 Nature 364 737Google Scholar
[3] Treacy M, Ebbesen T W, Gibson J M 1996 Nature 381 680Google Scholar
[4] Krishnan A, Dujardin E, Ebbesen T W, Yianilos P N, Treacy M M J 1998 Phys. Rev. B 58 14013Google Scholar
[5] Hernandez E, Goze C, Bernier P, Rubio A 1999 Appl. Phys. A Mater. 68 287Google Scholar
[6] Takakura A, Beppu K, Nishihara T, Fukui A, Kozeki T, Namazu T, Miyauchi Y, Itami K 2019 Nat. Commun. 10 3040Google Scholar
[7] Fischer J E, Johnson A T 1999 Curr. Opin. Solid St. M. 4 28Google Scholar
[8] Jia J, Shi D, Feng X, Chen G 2014 Carbon 76 54Google Scholar
[9] Ezawa M 2006 Phys. Rev. B 73 045432Google Scholar
[10] Karimkhani H, Vahed H 2022 Optik 254 168633Google Scholar
[11] Tombler T W, Zhou C W, Alexseyev L, Kong J, Dai H J, Lei L, Jayanthi C S, Tang M J, Wu S Y 2000 Nature 405 769Google Scholar
[12] Jia J M, Ju S P, Shi D N, Lin K F 2012 J. Appl. Phys. 111 013704Google Scholar
[13] Yang L, Han J 2000 Phys. Rev. Lett. 85 154Google Scholar
[14] Moon S, Song W, Kim N, Lee J S, Na P S, Lee S G, Park J, Jung M H, Lee H W, Kang K H, Lee C J, Kim J 2007 Nanotechnology 18 235201Google Scholar
[15] Mazzoni M, Chacham H 2000 Appl. Phys. Lett. 76 1561Google Scholar
[16] Peng S, Cho K 2002 J. Appl. Mech T. ASME 69 451Google Scholar
[17] Shtogun Y V, Woods L M 2009 Carbon 47 3252Google Scholar
[18] Shtogun Y V, Woods L M 2009 J. Phys. Chem. C 113 4792Google Scholar
[19] Kang Y J, Kim Y H, Chang K J 2009 Curr. Appl. Phys. 9 S7Google Scholar
[20] Berd M, Moussi K, Aouabdia Y, Benchallal L, Chahi G, Kahouadji B 2021 Chem. Phys. Lett. 781 138988Google Scholar
[21] Kato K, Koretsune T, Saito S 2012 Phys. Rev. B 85 115448Google Scholar
[22] Wang Q 2008 Carbon 46 1172Google Scholar
[23] Wang Y, Wang X X, Ni X G 2004 Model. Simul. Mater. Sc. 12 1099Google Scholar
[24] Kang J W, Kim K S, Park S Y, Kim H, Hwang H J, Choi Y G 2010 J. Comput. Theor. Nanos. 7 2317Google Scholar
[25] Melker A I, Zhaldybin A I 2007 Nanomeeting (Minsk Byelarus: May 22–25) p233
[26] Dian R H, Lei Z, Ya F D, Cheng L L 2017 Mater. Res. Express 4 105004Google Scholar
[27] Ansari R, Mirnezhad M, Rouhi H 2015 Acta. Mech. 226 2955Google Scholar
[28] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar
[29] Kohn W, Sham L 1965 Phys. Rev. 140 A1133Google Scholar
[30] Langreth D C, Mehl M J 1983 Phys. Rev. B 28 1809Google Scholar
[31] Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar
[32] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[33] Kinoshita Y, Ohno N 2010 Phys. Rev. B 82 085433Google Scholar
计量
- 文章访问数: 2369
- PDF下载量: 74
- 被引次数: 0