搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFQS准环对称仿星器低$\boldsymbol \beta$等离子体中三维磁岛的抑制机制

苏祥 王先驱 符添 许宇鸿

引用本文:
Citation:

CFQS准环对称仿星器低$\boldsymbol \beta$等离子体中三维磁岛的抑制机制

苏祥, 王先驱, 符添, 许宇鸿

Suppression mechanism of equilibrium magnetic islands in CFQS low-$\boldsymbol \beta$ plasma

Su Xiang, Wang Xian-Qu, Fu Tian, Xu Yu-Hong
PDF
HTML
导出引用
  • 环形磁约束等离子体中产生的磁岛因为磁场的旋转变换而具有三维螺旋结构, 特别是仿星器位形下平衡磁面就呈三维螺旋性质. 因此, 仿星器磁岛形成及其不稳定性是环形磁约束三维物理的典型问题, 也是仿星器物理研究的重点课题之一. 早期研究表明, 非感应电流驱动(如电子回旋电流驱动(ECCD))所产生的环向电流对磁岛具有一定的抑制/控制作用. 为弄清中国首台准环对称仿星器CFQS低参数运行模式下三维磁岛物理, 本文聚焦在低比压(β)等离子体, 忽略自举电流并通过调控环向场线圈电流以产生旋转变换(ι/2π)为0.4的有理面, 利用HINT代码模拟研究低比压等离子体中环向电流驱动对m/n = 5/2磁岛的影响, m为极向模数, n为环向模数. 研究表明, 在常数电流情况下, 当电流方向为正/负方向时, 电流对磁岛具有较强的激发/抑制作用. 当负方向的电流大于6 kA时, 磁岛将被完全被抑制, 主要原因是环向电流驱动通过改变旋转变换剖面, 使其避开ι/2π = 0.4的有理面, 导致m/n = 5/2三维磁岛不满足共振激发条件, 最终磁岛的增长被抑制. 而在局域电流分布情况下, 磁岛的抑制主要是ι/2π = 0.4有理面处磁剪切的改变所导致的. 此外, 本文对电流幅度、宽度以及峰值位置等参数对磁岛的影响给予了深入探讨.
    Magnetic island produced in toroidal magnetic confinement plasma has a three-dimensional helical structure because of the rotational transform, especially the equilibrium magnetic surface of the stellarator is three-dimensional helical structure. Thus, the formation and instability of the magnetic island of the Stellarator is a typical issue of the three-dimensional physics and is also one of the key topics of the physics research of the Stellarator. Magnetic islands and related tearing mode physics are major issues in stellarator. The non-inductively current drive, i.e. electron cyclotron current drive (ECCD) can be used as one of the approaches to adjusting the rotational transform, and hence, affecting the generation of magnetic islands. In this study, we use an additional toroidal magnetic field to generate m/n = 5/2 magnetic islands in the low-β operation on the Chinese First Quasi-axisymmetric Stellarator (CFQS) so that the influence of the bootstrap current is negligible. Then, we investigate the suppression mechanism of magnetic islands in low-β plasma by using the HINT code. It is found that in the case of the constant current, when the current direction is positive, with the increase of current, the width of island increases. When the direction of current is reversed, the island is suppressed when the current is larger than 6 kA. The main reason is that the rotational transform is away from ι/2π = 0.4 rational surface and the m/n=5/2 magnetic island does not meet the resonance conditions. In the case of local current profile, the magnetic island width decreases as a result of the enhanced magnetic shear at ι/2π = 0.4 rational surface. Moreover, effects of the direction and the amplitude of the current on the suppression of magnetic islands are also discussed in more detail.
      通信作者: 王先驱, xianquwang@swjtu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFE03070000, 2022YFE03070001, 2019YFE03020002)、国家自然科学基金(批准号: 11975188, U22A20262)和四川省科技计划(批准号: 2022JDJQ0036)资助的课题.
      Corresponding author: Wang Xian-Qu, xianquwang@swjtu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2022YFE03070000, 2022YFE03070001, 2019YFE03020002), the National Natural Science Foundation of China (Grant Nos. 11975188, U22A20262), and the Science and Technology Plan Project of Sichuan Province, China (Grant No. 2022JDJQ0036).
    [1]

    ITER Physics Expert Group on Disruptions, Plasma Control, MHD and ITER Physics Basis Editors 1999 Nucl. Fusion 39 2251Google Scholar

    [2]

    Boozer A H 2012 Phys. Plasmas 19 058101Google Scholar

    [3]

    Hirsch M, Baldzuhn J, Beidler C, Brakel R, Burthenn R, Dinklage A, Ehmler H, Endler M, Erckmann V, Feng Y 2008 Plasma Phys. Control. Fusion 50 053001Google Scholar

    [4]

    Yamada H, Kawahata K, Mutoh T, et al. 2010 Fusion Sci. Technol. 58 12Google Scholar

    [5]

    Garabedian P R 1996 Phys. Plasmas 3 2483-2485.Google Scholar

    [6]

    Xu Y 2016 Matter and Radiation at Extremes 1 192Google Scholar

    [7]

    Nemov V V, Isobe M, Kernbichler W, et al. 2003 Plasma Phys. Controlled Fusion 45 1829Google Scholar

    [8]

    Okamura S, Murakmi S, Shimizu A, et al. 2000 J. Plasma Fusion Res. SERIES 3 73

    [9]

    Okamura S, Matsuoka K, Nishimura S, et al. 2001 Nucl. Fusion 41 1865Google Scholar

    [10]

    Matsuoka K, Okamura S, Nishimura S, et al. 2004 Fusion Sci. Technol. 46 378Google Scholar

    [11]

    Okamura S, Matsuoka K, Nishimura S, et al. 2004 Nucl. Fusion 44 575Google Scholar

    [12]

    Reiman A, Ku L, Monticello D, et al. 2001 Phys. Plasmas 8 2083Google Scholar

    [13]

    Reiman A, Fu G, Hirshman S, et al. 1999 Plasma Phys. Controlled Fusion 41 B273Google Scholar

    [14]

    Neilson G H, Reiman A H, Zarnstorff M C, et al. 2000 Phys. Plasmas 7 1911Google Scholar

    [15]

    Zarnstorff M C, Berry L A, Brooks A, et al. 2001 Plasma Phys. Controlled Fusion 43 A237Google Scholar

    [16]

    Xu Y, Shimizu A, Liu B, et al. 2018 27th IAEA Fusion Energy Conference Gandhinagar, India, October 22–27, 2018, EX/P5-23

    [17]

    黄捷, 李沫杉, 覃程, 王先驱 2022 71 185202Google Scholar

    Huang J, Li M S, Qin C, Wang X Q 2022 Acta Phys. Sin 71 185202Google Scholar

    [18]

    Su C Y, Chen S Y, Liu H F, et al. 2020 AIP Adv. 10 015004Google Scholar

    [19]

    Harafuji K, Hayashi T, Sato T 1989 J. Comput. Phys. 81 169Google Scholar

    [20]

    Hirshman S P, Whitson J C. 1983 Phys. Fluids 26 3553Google Scholar

    [21]

    Suzuki Y 2017 Plasma Phys. Control. Fusion 59 054008Google Scholar

    [22]

    Suzuki Y 2020 Plasma Phys. Control. Fusion 62 104001Google Scholar

    [23]

    Suzuki Y, Nakajima N, Watanabe K, et al. 2006 Nucl. Fusion 46 L19Google Scholar

    [24]

    Liu H F, Shimizu A, Isobe M, et al. 2018 Plasma Fusion Res. 13 3405067Google Scholar

    [25]

    Liu H F, Shimizu A, Xu Y, et al. 2021 Nucl. Fusion 61 016014Google Scholar

    [26]

    Shimizu A, Liu H F, Isobe M, et al. 2018 Plasma Fusion Res. 13 3403123Google Scholar

    [27]

    Wang X Q, Xu Y, Shimizu A, et al. 2021 Nucl. Fusion 61 036021Google Scholar

    [28]

    Wesson J, Campbell D J, Connor J W, et al. 2004 Tokamaks (3rd Ed.) (New York: Oxford University Press) pp358–359

    [29]

    Isayama A 2006 Plasma Sci. Technol. 8 36Google Scholar

  • 图 1  (a) $\left\langle \beta \right\rangle = 0.5{\text{%}} $时旋转变换以及压强的径向分布; (b) $\left\langle \beta \right\rangle = 0.5{\text{%}} $、环向角$\phi = {0^ \circ }$时所对应的初始庞加莱图. 黑色点表示$p/{p_0} < 1{\text{%}} $的区域, 蓝色点表示$1{\text{%}} \leqslant $$ p/{p_0} \leqslant 10{\text{%}} $的区域, 红色点表示$p/{p_0} > 10{\text{%}} $的区域, 绿色线为真空室

    Fig. 1.  (a) Comparison of the radial dependence of the rotational transform and pressure, $\iota /2\pi $ with $\left\langle \beta \right\rangle = 0.5{\text{%}} $, between the HINT and VMEC codes; (b) the Poincaré plots of initial magnetic surfaces with $\left\langle \beta \right\rangle = 0.5{\text{%}} $ at toroidal angle $\phi = {0^ \circ }$, where the black, blue and red colors mark the regions of $p/{p_0} < 1{\text{%}} $, $1{\text{%}} \leqslant p/{p_0} \leqslant 10{\text{%}} $, and $p/{p_0} > $$ 10{\text{%}} $, respectively. The green line denotes the boundary of the vacuum vessel.

    图 2  (a)环向电流密度剖面、(b)电流大小分布, 红色线为高斯电流密度分布, 蓝色线为常数电流密度分布

    Fig. 2.  Profiles of (a) toroidal current density, (b) toroidal current, where the blue line is constant current and the red line is the Gaussian current.

    图 3  平均磁岛宽度$\left\langle W \right\rangle $随电流大小I0变化关系图

    Fig. 3.  Average width of magnetic islands $\left\langle W \right\rangle $ as a function of toroidal current (${I_0}$).

    图 4  (a)—(c) $ {I}_{0}=2, \text{ }4, \text{ }6\text{ kA} $时庞加莱磁面; (d)—(f) 为$ {I}_{0}=-2, \text{ }-4, \text{ }-6\text{ kA} $时庞加莱磁面

    Fig. 4.  (a)–(c) Poincaré plots of magnetic surfaces with $ {I}_{0}=2, \text{ }4, \text{ }6\text{ kA} $; (d)–(f) the Poincaré plots of magnetic surfaces with $ {I}_{0}=-2, \text{ }-4, \text{ }-6\text{ kA} $.

    图 5  电流大小对旋转变换的影响

    Fig. 5.  Rotational transforms with different constant current.

    图 6  平均磁岛宽度以及m/n = 5/2有理面处磁剪切随电流大小的变化

    Fig. 6.  Average width of magnetic islands and magnetic shear as a function of toroidal current ${I_0}$.

    图 7  不同电流大小下的庞加莱磁面 (a) ${I_0} = - 1{\text{ kA}}$; (b) ${I_0} = - 3{\text{ kA}}$; (c) ${I_0} = - 5{\text{ kA}}$

    Fig. 7.  Poincaré plots of magnetic surfaces with different amplitude of current: (a) ${I_0} = - 1{\text{ kA}}$; (b) ${I_0} = - 3\; {\rm kA}$; (c) ${I_0} = - {\text{5 kA}}$.

    图 8  不同反向电流大小所对应的旋转变换剖面, 其中红色线为m/n = 5/2有理面位置

    Fig. 8.  Rotational transform corresponding to Gaussian current density profile with different amplitude of current (opposite to the initial current). The red dotted line is $m/n = 5/2$ rational surface.

    图 9  平均磁岛宽度随分布峰值的变化, 其中红色虚线为初始磁岛宽度

    Fig. 9.  Average width of magnetic islands $\left\langle W \right\rangle $ as a function of radial injection location. The red dotted line is the initial average width of magnetic islands.

    图 10  不同分布峰值b所对应的庞加莱磁面 (a) $b = 0.3$; (b) $b = 0.5$; (c) $b = 0.8$

    Fig. 10.  Poincaré plots of magnetic surface with different radial injection location: (a) $b = 0.3$; (b) $b = 0.5$; (c) $b = 0.8$.

    图 11  不同高斯分布峰值b所对应的旋转变换剖面.

    Fig. 11.  Rotational transform corresponding to Gaussian current density profile with different radial injection location b.

    Baidu
  • [1]

    ITER Physics Expert Group on Disruptions, Plasma Control, MHD and ITER Physics Basis Editors 1999 Nucl. Fusion 39 2251Google Scholar

    [2]

    Boozer A H 2012 Phys. Plasmas 19 058101Google Scholar

    [3]

    Hirsch M, Baldzuhn J, Beidler C, Brakel R, Burthenn R, Dinklage A, Ehmler H, Endler M, Erckmann V, Feng Y 2008 Plasma Phys. Control. Fusion 50 053001Google Scholar

    [4]

    Yamada H, Kawahata K, Mutoh T, et al. 2010 Fusion Sci. Technol. 58 12Google Scholar

    [5]

    Garabedian P R 1996 Phys. Plasmas 3 2483-2485.Google Scholar

    [6]

    Xu Y 2016 Matter and Radiation at Extremes 1 192Google Scholar

    [7]

    Nemov V V, Isobe M, Kernbichler W, et al. 2003 Plasma Phys. Controlled Fusion 45 1829Google Scholar

    [8]

    Okamura S, Murakmi S, Shimizu A, et al. 2000 J. Plasma Fusion Res. SERIES 3 73

    [9]

    Okamura S, Matsuoka K, Nishimura S, et al. 2001 Nucl. Fusion 41 1865Google Scholar

    [10]

    Matsuoka K, Okamura S, Nishimura S, et al. 2004 Fusion Sci. Technol. 46 378Google Scholar

    [11]

    Okamura S, Matsuoka K, Nishimura S, et al. 2004 Nucl. Fusion 44 575Google Scholar

    [12]

    Reiman A, Ku L, Monticello D, et al. 2001 Phys. Plasmas 8 2083Google Scholar

    [13]

    Reiman A, Fu G, Hirshman S, et al. 1999 Plasma Phys. Controlled Fusion 41 B273Google Scholar

    [14]

    Neilson G H, Reiman A H, Zarnstorff M C, et al. 2000 Phys. Plasmas 7 1911Google Scholar

    [15]

    Zarnstorff M C, Berry L A, Brooks A, et al. 2001 Plasma Phys. Controlled Fusion 43 A237Google Scholar

    [16]

    Xu Y, Shimizu A, Liu B, et al. 2018 27th IAEA Fusion Energy Conference Gandhinagar, India, October 22–27, 2018, EX/P5-23

    [17]

    黄捷, 李沫杉, 覃程, 王先驱 2022 71 185202Google Scholar

    Huang J, Li M S, Qin C, Wang X Q 2022 Acta Phys. Sin 71 185202Google Scholar

    [18]

    Su C Y, Chen S Y, Liu H F, et al. 2020 AIP Adv. 10 015004Google Scholar

    [19]

    Harafuji K, Hayashi T, Sato T 1989 J. Comput. Phys. 81 169Google Scholar

    [20]

    Hirshman S P, Whitson J C. 1983 Phys. Fluids 26 3553Google Scholar

    [21]

    Suzuki Y 2017 Plasma Phys. Control. Fusion 59 054008Google Scholar

    [22]

    Suzuki Y 2020 Plasma Phys. Control. Fusion 62 104001Google Scholar

    [23]

    Suzuki Y, Nakajima N, Watanabe K, et al. 2006 Nucl. Fusion 46 L19Google Scholar

    [24]

    Liu H F, Shimizu A, Isobe M, et al. 2018 Plasma Fusion Res. 13 3405067Google Scholar

    [25]

    Liu H F, Shimizu A, Xu Y, et al. 2021 Nucl. Fusion 61 016014Google Scholar

    [26]

    Shimizu A, Liu H F, Isobe M, et al. 2018 Plasma Fusion Res. 13 3403123Google Scholar

    [27]

    Wang X Q, Xu Y, Shimizu A, et al. 2021 Nucl. Fusion 61 036021Google Scholar

    [28]

    Wesson J, Campbell D J, Connor J W, et al. 2004 Tokamaks (3rd Ed.) (New York: Oxford University Press) pp358–359

    [29]

    Isayama A 2006 Plasma Sci. Technol. 8 36Google Scholar

  • [1] 张汉谋, 肖发俊, 赵建林. 紧聚焦角向矢量光激发下硅环-开口金环纳米天线的单向散射.  , 2022, 71(13): 135201. doi: 10.7498/aps.71.20212212
    [2] 李春雨, 郝广周, 刘钺强, 王炼, 刘艺慧子. 托卡马克装置中等离子体环向旋转对三维响应场的影响.  , 2022, 71(7): 075202. doi: 10.7498/aps.71.20211975
    [3] 黄捷, 李沫杉, 覃程, 王先驱. 中国首台准环对称仿星器中离子温度梯度模的模拟研究.  , 2022, 71(18): 185202. doi: 10.7498/aps.71.20220729
    [4] 杨进, 陈俊, 王福地, 李颖颖, 吕波, 向东, 尹相辉, 张洪明, 符佳, 刘海庆, 臧庆, 储宇奇, 刘建文, 王勋禺, 宾斌, 何梁, 万顺宽, 龚学余, 叶民友. 东方超环上低杂波驱动等离子体环向旋转实验研究.  , 2020, 69(5): 055201. doi: 10.7498/aps.69.20191716
    [5] 陈建玲, 王辉, 贾焕玉, 马紫微, 李永宏, 谭俊. 超强磁场下中子星壳层的电导率和磁星环向磁场欧姆衰变.  , 2019, 68(18): 180401. doi: 10.7498/aps.68.20190760
    [6] 史良马, 周明健, 张晴晴, 张宏彬. 三维介观超导环的涡旋结构.  , 2016, 65(4): 047501. doi: 10.7498/aps.65.047501
    [7] 李丹, 张宝龙, 郭海成. 垂直向列型彩色滤光膜硅覆液晶微显示器的三维光学建模.  , 2015, 64(14): 140701. doi: 10.7498/aps.64.140701
    [8] 罗质华, 梁国栋. 带有电子-双声子相互作用的一维铁磁性介观环的非经典本征态和非经典本征持续电流.  , 2012, 61(5): 057303. doi: 10.7498/aps.61.057303
    [9] 梁芳营, 李汉明, 李英骏. 超导环电流的研究.  , 2006, 55(2): 830-833. doi: 10.7498/aps.55.830
    [10] 李印峰, 尹世忠, M. Vázquez. 非晶和纳米晶软磁丝状样品的环向磁化过程.  , 2005, 54(7): 3391-3396. doi: 10.7498/aps.54.3391
    [11] 胡建平, 胡克松, 陈裕涛. 环型线电流线极化wiggler.  , 1996, 45(7): 1130-1137. doi: 10.7498/aps.45.1130
    [12] 孟月东, 高翔, 范叔平, 李建刚, 罗家融, 童兴德, 张卫, 韩玉琴, 龚先祖, 蒋家广, 尹富先, 曾磊, 凌必利, 殷飞, 丁涟城, 张守银, 吴志勇, 吴明军. 利用环向电场提升等离子体电流以改善约束状态.  , 1994, 43(9): 1486-1494. doi: 10.7498/aps.43.1486
    [13] 徐昆明, 沈亚菲, 姚希贤. 几何尺寸对圆对称环域Josephson结的准通量子激发的影响.  , 1989, 38(6): 947-955. doi: 10.7498/aps.38.947
    [14] 徐昆明, 沈亚菲, 姚希贤. 圆对称环域Josephson结中准磁通量子激发对外磁场的依赖关系.  , 1989, 38(6): 938-946. doi: 10.7498/aps.38.938
    [15] 王炜, 姚希贤. 圆对称环域Josephson隧道结的静态特性(Ⅰ)——准衍射现象和自场效应.  , 1988, 37(5): 705-713. doi: 10.7498/aps.37.705
    [16] 陈赓华, 赵忠贤. 一维非对称正常金属微环的透射几率及其共振.  , 1987, 36(6): 801-806. doi: 10.7498/aps.36.801
    [17] 张裕恒, 曹效文. 在Tokamak装置中用中空超导环段冻结环向磁场的设想.  , 1981, 30(3): 325-332. doi: 10.7498/aps.30.325
    [18] 邵懋良, 马腾才. 三角变形椭圆截面环电流器的平衡理论和绝热压缩理论.  , 1981, 30(4): 487-496. doi: 10.7498/aps.30.487
    [19] 俞国扬, 陈俊本, 霍裕平. 大型环电流器的磁场设计.  , 1979, 28(5): 114-123. doi: 10.7498/aps.28.114
    [20] 霍裕平. 环电流器的局部稳定条件及多极场的影响.  , 1976, 25(5): 399-408. doi: 10.7498/aps.25.399
计量
  • 文章访问数:  3564
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-06
  • 修回日期:  2023-07-18
  • 上网日期:  2023-08-02
  • 刊出日期:  2023-11-05

/

返回文章
返回
Baidu
map