搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

夸克物质中的超子整体极化与矢量介子自旋排列

阮丽娟 许长补 杨驰

引用本文:
Citation:

夸克物质中的超子整体极化与矢量介子自旋排列

阮丽娟, 许长补, 杨驰

Global polarization of hyperons and spin alignment of vector mesons in quark matters

Ruan Li-Juan, Xu Zhang-Bu, Yang Chi
PDF
HTML
导出引用
  • 相对论重离子对撞机RHIC上超子整体极化和矢量介子自旋排列的实验发现证实了近 20 年前提出的理论. 该理论预言和实验测量开辟了一种从自旋这个新的自由度来研究高能重离子碰撞中产生的高温高密核物质特性的新途径. 本文简略回顾了整体极化理论提出和实验发现, 总结了现有大科学装置上的相关测量进展, 以及国际上现有的多种理论解释. 同时, 简要介绍了 STAR 探测器近期升级所带来的物理机遇.
    Relativistic heavy ion collider (RHIC) as a dedicated nuclear facility has made a few major discoveries in physics. This year marks the 30th year STAR Collaboration formation and the 23th year of STAR detector operation and data collection at RHIC. In the last two decades, STAR has collected many datasets, exhibiting scientific versatility and flexibility of the RHIC facility. The total dataset in the first year is less than 1 million good events, and currently there are about 1 billion events per dataset.The Global Hyperon Polarization was proposed in 2004. This immediately prompted the STAR Collaboration to search for this phenomenon from the early datasets. The null results were presented at Quark Matter Conference in Shanghai in 2006 and subsequently published. Although there were peripheral and continuous efforts in the following decade, no positive result has been observed experimentally. This situation changed in the following decade with the upgrade of high data rate and time-of-flight (TOF) detector and the progress of the Beam Energy Scan Phase I (BES-I). The experimental discoveries of the global polarization of hyperons in 2017 and the spin alignment of vector mesons in 2023 at RHIC-STAR confirm the theory which was established nearly twenty years ago. The theory and these measurements open the way to studying the properties of the hot and dense nuclear matter created in high-energy heavy ion collisions from a new degree of freedom, spin.We briefly review these discoveries from the proposals of theory to the experimental measurements, and summarize the related measurements at the existing facilities and the theoretical explanations to the original proposal. The basic understanding and the original proposal are still valid and fundamental, that is, the angular momentum of system can transform into a spin effect observable in experiment. However, it appears that in each case a new model is needed to explain the new experimental observation. We need a more basic theory to help us unify all these spin related phenomena.Over the past five years, STAR has successfully installed 3 new detectors and we have begun to see the physical analysis results from datasets with those new functions. What makes the STAR detector viable after 20 years of operation is its continuous evolution through successful upgrades, with new scientific programs added year by year. The next big thing is to forward upgrade a tracking system (3 layers of silicon strips and 4 layers of sTGC chambers) and a calorimetry system (electromagnetic and hadronic calorimeters). In addition to studying the spin structure of protons by using the polarized proton beams at RHIC, the upgrades also provide a unique ability to investigate the origin of Λ Global Polarization as a function of rapidity and rapidity (de-)correlations in Au+Au collisions.
      通信作者: 许长补, xzb@bnl.gov ; 杨驰, chiyang@sdu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11890713, 12075139)、山东省自然科学基金(批准号: ZR2022JQ03)和美国能源部科学办公室基金(批准号: DE-SC0012704, DE-FG02-10ER41666, DE-AC02-98CH10886)资助的课题
      Corresponding author: Xu Zhang-Bu, xzb@bnl.gov ; Yang Chi, chiyang@sdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11890713, 12075139), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2022JQ03), and the U.S. DOE Office of Science (Grant Nos. DE-SC0012704, DE-FG02-10ER41666, DE-AC02-98CH10886).
    [1]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301Google Scholar

    [2]

    Liang Z T, Wang X N 2005 Phys. Lett. B 629 20Google Scholar

    [3]

    STAR Collaboration 2007 Phys. Rev. C 76 024915Google Scholar

    [4]

    Chen J H (STAR Collaboration) 2007 J. Phys. G 34 S331Google Scholar

    [5]

    STAR Collaboration 2008 Phys. Rev. C 77 061902 (R)

    [6]

    STAR Collaboration 2017 Nature 548 62Google Scholar

    [7]

    STAR Collaboration 2019 Phys. Rev. Lett. 123 132301Google Scholar

    [8]

    ALICE Collaboration 2022 Phys. Rev. Lett. 128 172005Google Scholar

    [9]

    STAR Collaboration 2023 Nature 614 244Google Scholar

    [10]

    Wang X N 2023 Nucl. Sci. Tech. 34 15Google Scholar

    [11]

    HADES Collaboration 2022 Phys. Lett. B 835 137506Google Scholar

    [12]

    ALICE Collaboration 2020 Phys. Rev. Lett. 125 012301Google Scholar

    [13]

    STAR Collaboration 2023 arXiv: 2303.09074 [nucl-ex]

    [14]

    ALICE Collaboration 2022 arXiv: 2204.10171 [nucl-ex]

    [15]

    Becattini F, Piccinini F, Rizzo J 2008 Phys. Rev. C 77 024906Google Scholar

    [16]

    Becattini F, Karpenko I, Lisa M A, Upsal I, Voloshin S A 2017 Phys. Rev. C 95 054902Google Scholar

    [17]

    Pang L G, Petersen H, Wang Q, Wang X N 2016 Phys. Rev. Lett. 117 192301Google Scholar

    [18]

    Fu B C, Liu S Y F, Pang L G, Song H C, Yin Y 2021 Phys. Rev. Lett. 127 142301Google Scholar

    [19]

    Becattini F, Buzzegoli M, Palermo A, Inghirami G, Karpenko I 2021 Phys. Rev. Lett. 127 272302Google Scholar

    [20]

    Sheng X L, Wang Q, Wang X N 2020 Phys. Rev. D 102 056013Google Scholar

    [21]

    Liang Z T, Song J, Upsal I, Wang Q, Xu Z B 2021 Chin. Phys. C 45 014102Google Scholar

    [22]

    杨驰, 陈金辉, 马余刚, 徐庆华 2019 中国科学: 物理学 力学 天文学 49 102008Google Scholar

    Yang C, Chen J H, Ma Y G, Xu Q H 2019 Sci. Sin. Phys. Mech. & As. 49 102008Google Scholar

    [23]

    Yang C, Yang Q (STAR Collaboration) 2020 JINST 15 C07040Google Scholar

  • 图 1  RHIC运行的对撞粒子种类、束流能量和亮度的统计(由RHIC对撞机加速器部门提供)

    Fig. 1.  RHIC operation collision species, beam energy and luminosity (courtesy of RHIC CAD).

    图 2  RHIC-STAR通过早期实验数据测量的超子整体极化的结果[3]. 实心点和空心点分别来自200 GeV和62.4 GeV金核-金核对撞数据的测量结果

    Fig. 2.  Global polarization measurements from RHIC-STAR based on the data collected in early period of RHIC operation[3]. The filled and open markers represent the measurements from 200 GeV and 62.4 GeV Au+Au collisions, respectively.

    图 3  RHIC-STAR通过早期实验数据测量的矢量介子自旋排列的结果[5]

    Fig. 3.  Spin alignment measurements of vector mesons from RHIC-STAR based on the data collected in early period of RHIC operation[5].

    图 4  RHIC-STAR上发现超子整体极化的测量结果[6]. 右边红色与蓝色的实心点分别代表$\bar{\Lambda }$$ \Lambda $, 空心点是STAR早期的测量结果

    Fig. 4.  Discovery of global polarization of hyperons from RHIC-STAR[6]. The red and blue filled markers in right panel represent the results from $\bar{\Lambda }$ and $ \Lambda $, respectively. The open circles are from the early measurements.

    图 5  RHIC-STAR上发现矢量介子自旋排列的测量结果[9]

    Fig. 5.  Discovery of spin alignment of vector mesons from RHIC-STAR[9].

    表 1  1999—2020年以后STAR探测器子系统以及升级的信息, 包括了除美国能源部外主要贡献的经费来源信息

    Table 1.  List of STAR detector subsystems and upgrades from 1999 to 2020+ with major contributions from funding sources other than DOE.

    DetectorPrimary functionsDOE+(in-kind)Year
    TPC+Trigger|η| < 1 tracking1999—
    Barrel EMC|η| < 1 jets$ /\gamma /{{\text{π}}}^{0}/e $2004—
    FTPCForward tracking(Germany)2002—2012
    L3Online display(Germany)2000—2012
    SVT/SSDV0/charm(France)2004—2007
    PMDForward photons(India)2003—2011
    EEMC1 < η < 2 jets$ /{{\text{π}}}^{0}/e $(NSF)2005—
    Roman PotsDiffractive2009—
    TOFPID(China)2009—
    FMS/Preshower2.5 < η < 4.2(Russia)2008—2017
    DAQ1000x10 DAQ rate2008—
    HLTOnline tracking(China/Germany)2012—
    FGT1 < η < 2 $ {W}^{\pm } $2012—2013
    GMTTPC calibration2012—
    HFT/SSDOpen charm(France/UIC)2014—2016
    MTDMuon ID(China/India)2014—
    EPDEvent plane(China)2018—
    RHICfη > 5 $ {{\text{π}}}^{0} $(Japan)2017
    iTPC|η| < 1.5 tracking(China)2019—
    eTOF–2 < η < –1 PID(Germany/China)2019—
    FCS2.5 < η < 4 calorimeter(NSF)2021—
    FTS2.5 < η < 4 tracking(NCKU/SDU)2021—
    下载: 导出CSV

    表 2  现有实验装置的相关测量结果以及除了2004年最初提出的理论外更多的理论解释

    Table 2.  Summary of the measurements at the existing facilities and what the theory explanations additional to the original proposal in 2004.

    现象实验特点理论解释解释实验
    超子整体极化(GHP)的能量依赖性RHIC[6]
    SIS[11]
    信号强度~1%
    随能量减弱
    自旋与角动量耦合[1,2,17],
    涡旋[15,16]
    理论和实验
    符合较好
    GHP的对撞中心度依赖性RHIC
    LHC
    信号向偏心碰撞增强没有很好的理论解释
    GHP的横动量依赖性RHIC似乎随动量上升趋势
    超子局域极化RHIC[7] LHC[8]正的正弦振荡信号切向涡旋性[18,19]解释信号
    的正负值
    GHP的二三阶椭圆流向依赖性RHIC[13]信号向偏心碰撞增强
    矢量介子自旋排列RHIC[9]K*介子零信号
    $ \varphi $介子正信号
    强作用场[20]理论与实验
    定性符合
    矢量介子自旋排列LHC[12]K*介子负信号
    $ \varphi $介子零信号
    ${J}/{\psi }$ 矢量介子自旋排列LHC[14]~5%
    GHP的快度依赖性没有实验结果角动量的几何形状依赖性[21]
    下载: 导出CSV
    Baidu
  • [1]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301Google Scholar

    [2]

    Liang Z T, Wang X N 2005 Phys. Lett. B 629 20Google Scholar

    [3]

    STAR Collaboration 2007 Phys. Rev. C 76 024915Google Scholar

    [4]

    Chen J H (STAR Collaboration) 2007 J. Phys. G 34 S331Google Scholar

    [5]

    STAR Collaboration 2008 Phys. Rev. C 77 061902 (R)

    [6]

    STAR Collaboration 2017 Nature 548 62Google Scholar

    [7]

    STAR Collaboration 2019 Phys. Rev. Lett. 123 132301Google Scholar

    [8]

    ALICE Collaboration 2022 Phys. Rev. Lett. 128 172005Google Scholar

    [9]

    STAR Collaboration 2023 Nature 614 244Google Scholar

    [10]

    Wang X N 2023 Nucl. Sci. Tech. 34 15Google Scholar

    [11]

    HADES Collaboration 2022 Phys. Lett. B 835 137506Google Scholar

    [12]

    ALICE Collaboration 2020 Phys. Rev. Lett. 125 012301Google Scholar

    [13]

    STAR Collaboration 2023 arXiv: 2303.09074 [nucl-ex]

    [14]

    ALICE Collaboration 2022 arXiv: 2204.10171 [nucl-ex]

    [15]

    Becattini F, Piccinini F, Rizzo J 2008 Phys. Rev. C 77 024906Google Scholar

    [16]

    Becattini F, Karpenko I, Lisa M A, Upsal I, Voloshin S A 2017 Phys. Rev. C 95 054902Google Scholar

    [17]

    Pang L G, Petersen H, Wang Q, Wang X N 2016 Phys. Rev. Lett. 117 192301Google Scholar

    [18]

    Fu B C, Liu S Y F, Pang L G, Song H C, Yin Y 2021 Phys. Rev. Lett. 127 142301Google Scholar

    [19]

    Becattini F, Buzzegoli M, Palermo A, Inghirami G, Karpenko I 2021 Phys. Rev. Lett. 127 272302Google Scholar

    [20]

    Sheng X L, Wang Q, Wang X N 2020 Phys. Rev. D 102 056013Google Scholar

    [21]

    Liang Z T, Song J, Upsal I, Wang Q, Xu Z B 2021 Chin. Phys. C 45 014102Google Scholar

    [22]

    杨驰, 陈金辉, 马余刚, 徐庆华 2019 中国科学: 物理学 力学 天文学 49 102008Google Scholar

    Yang C, Chen J H, Ma Y G, Xu Q H 2019 Sci. Sin. Phys. Mech. & As. 49 102008Google Scholar

    [23]

    Yang C, Yang Q (STAR Collaboration) 2020 JINST 15 C07040Google Scholar

  • [1] 江泽方, 吴祥宇, 余华清, 曹杉杉, 张本威. RHIC能区Au+Au 碰撞中带电粒子直接流与超子整体极化的计算与分析.  , 2023, 72(7): 072504. doi: 10.7498/aps.72.20222391
    [2] 浦实, 黄旭光. 相对论自旋流体力学.  , 2023, 72(7): 071202. doi: 10.7498/aps.72.20230036
    [3] 高建华, 盛欣力, 王群, 庄鹏飞. 费米子的相对论自旋输运理论.  , 2023, 72(11): 112501. doi: 10.7498/aps.72.20222470
    [4] 刘鹤, 初鹏程. 相对论重离子碰撞中π介子椭圆流劈裂.  , 2023, 72(13): 132101. doi: 10.7498/aps.72.20230454
    [5] 高建华, 黄旭光, 梁作堂, 王群, 王新年. 强相互作用自旋-轨道耦合与夸克-胶子等离子体整体极化.  , 2023, 72(7): 072501. doi: 10.7498/aps.72.20230102
    [6] 孙旭, 周晨升, 陈金辉, 陈震宇, 马余刚, 唐爱洪, 徐庆华. 重离子碰撞中QCD物质整体极化的实验测量.  , 2023, 72(7): 072401. doi: 10.7498/aps.72.20222452
    [7] 盛欣力, 梁作堂, 王群. 重离子碰撞中的矢量介子自旋排列.  , 2023, 72(7): 072502. doi: 10.7498/aps.72.20230071
    [8] 陈小凡. 相对论重离子碰撞中部分相干源的相干因子.  , 2012, 61(9): 092501. doi: 10.7498/aps.61.092501
    [9] 方允樟, 许启明, 郑金菊, 吕葆华, 潘日敏, 叶慧群, 郑建龙, 范晓珍. FeCo基磁芯螺线管巨磁阻抗效应与磁芯长度关系的研究.  , 2011, 60(12): 127501. doi: 10.7498/aps.60.127501
    [10] 罗牧华, 张秋菊, 闫春燕. 超相对论激光和稠密等离子体作用产生阿秒脉冲的优化.  , 2010, 59(12): 8559-8565. doi: 10.7498/aps.59.8559
    [11] 张民仓. 相对论性非球谐振子势场中的赝自旋对称性.  , 2009, 58(1): 61-65. doi: 10.7498/aps.58.61
    [12] 陈 洪, 梅 花, 沈彭年, 姜焕清. 重夸克偶素质量谱的相对论夸克模型研究(已撤稿).  , 2005, 54(3): 1136-1141. doi: 10.7498/aps.54.1136
    [13] 贺泽君, 蒋维渊, 朱志远, 刘 波. 夸克-胶子等离子体在相对论性核-核碰撞中形成的一种信号.  , 2000, 49(5): 911-914. doi: 10.7498/aps.49.911
    [14] 王仁川, 朱栋培, 黄卓然, 柯治民. 相对论带电费密子Liouville方程.  , 1991, 40(1): 14-24. doi: 10.7498/aps.40.14
    [15] 冼鼎昌, 郑希特, 王明中, 汪克林, 章正刚. 相对论性层子模型中的介子结构波函数.  , 1978, 27(1): 94-106. doi: 10.7498/aps.27.94
    [16] 李炳安. 相对论层子模型中的介子和重子波函数.  , 1975, 24(1): 21-45. doi: 10.7498/aps.24.21
    [17] 郭汉英, 吴詠时, 李根道. 广义相对论的旋量和复矢量形式.  , 1974, 23(5): 5-16. doi: 10.7498/aps.23.5
    [18] 吕景发. 在相对论性电子上康普顿散射的极化自旋关联现象.  , 1965, 21(11): 1927-1932. doi: 10.7498/aps.21.1927
    [19] 王淦昌, 王祝翔, 维克斯勒, 维辽索夫, 乌兰拉, 丁大钊, 金辛仁, 克拉尼兹卡娅, 库兹涅佐夫, 米胡, 阮丁赐, 尼基丁, 索洛维也夫. 8.3Бзв/с的负π介子所产生的∑-超子.  , 1960, 16(7): 365-368. doi: 10.7498/aps.16.365
    [20] 吕敏, 郑仁圻, 李鹤年. Pb和Al中产生的中性超子与重介子.  , 1959, 15(5): 230-245. doi: 10.7498/aps.15.230
计量
  • 文章访问数:  3991
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-31
  • 修回日期:  2023-05-01
  • 上网日期:  2023-05-12
  • 刊出日期:  2023-06-05

/

返回文章
返回
Baidu
map