搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基元构筑的功能材料皮米尺度结构

肖东东 谷林

引用本文:
Citation:

基元构筑的功能材料皮米尺度结构

肖东东, 谷林

Picoscale structure of functional materials constructed by functional units

Xiao Dong-Dong, Gu Lin
PDF
HTML
导出引用
  • 功能材料的结构设计与性能调控是材料科学与凝聚态物理领域的前沿热点问题, 功能基元的人工序构成为近年来提升材料功能特性、探索新奇物理现象的新范式. 准确理解功能基元构筑的新材料宏观物性的起源要求精确地表征功能基元的结构、形态和分布, 明晰功能基元之间耦合效应. 具有皮米测量精度的像差校正透射电子显微镜是解析低对称性材料和复杂化学体系材料原子结构、化学组成和电子组态的重要工具, 为实现高精度、多维度表征功能基元及其空间的构筑方式、建立构-效关系提供了新途径. 本文通过选取不同尺度下的代表性功能基元, 论述了皮米尺度下功能基元的本征特性与空间排布, 及其与宏观物性之间的关联, 突出了像差校正透射电子显微学的突破和发展, 为理解基元构筑的功能材料功能性起源提供了坚实的基础.
    Structure design and performance regulation of functional materials are the cutting-edge hot topic in the field of materials science and condensed mater physics. Constructing hierarchical structures with functional units recently has become a new paradigm to improve the functionality of functional materials and explore new physical phenomena. Understanding the origin of physical properties of functional materials constructed by functional units requires us to precisely characterize the structure, configuration and spatial patterns of functional units, and their couplings. Aberration-corrected transmission electron microscopy has proven to be powerful in revealing the atomic structure, chemistry and electronic configuration of the functional materials with low symmetry and complex compositions, which provides a new avenue to reveal the functional units and their spatial patterns with high precision from different aspects and finally establish the structure-propertys relationship. In this paper, we summarize the inherent characteristics of typical functional units with different sizes, and the hierarchical structures constructed by functional units at the picoscale, by which the relationship between structures and functionality is revealed. The breakthrough and development of aberration-corrected transmission electron microscopy lays a solid foundation for understanding the origin of functionality of new materials constructed by functional units.
      通信作者: 谷林, l.gu@iphy.ac.cn
      作者简介:
      肖东东, 中国科学院物理研究所副研究员. 2015年于中国科学院物理研究所获凝聚态物理专业博士学位. 2016—2019年期间先后在美国西北太平洋国家实验室、纽约州立大学宾汉姆顿分校从事博士后研究, 2019年2月加入中国科学院物理研究所先进材料与结构分析实验室. 主要研究方向是利用先进透射电子显微学方法研究锂/钠离子电池正极材料原子结构、电荷密度及动力学演化. 至今在Nature Communications, Journal of American Chemical Society, Advanced Materials等学术期刊发表论文80余篇
      谷林, 清华大学教授, 国家杰出青年科学基金获得者. 2002年清华大学本科毕业, 2005年在美国亚利桑那州立大学获博士学位. 2006—2010年期间先后在德国马普金属所和日本东北大学从事博士后研究工作. 2010年11 月至 2022年2月在中国科学院物理研究所先进材料与结构分析实验室任研究员, 2022年2月加入清华大学材料学院. 长期从事电子显微方法与功能材料功能性起源研究, 在功能材料原子结构、电子结构与物性的关联研究方面取得了系列成果, 发表论文900余篇, 他引71000余次, H因子>140. 获得国际电子显微学联合会青年科学家奖(2006); 国际锂电池会议青年科学家奖(2012); 中国科学院“卢嘉锡”青年人才奖(2013); 中国科学院杰出科技成就奖(主要完成人)(2013); 中国晶体学会青年科技奖(2018); 第十六届中国青年科技奖特别奖(2020); 入选科睿唯安材料科学领域(2018—2022)和化学领域(2019—2022)全球高被引科学家
    • 基金项目: 北京市自然科学基金(批准号: Z190010)资助的课题.
      Corresponding author: Gu Lin, l.gu@iphy.ac.cn
    • Funds: Project supported by the Natural Science Foundation of Beijing, China (Grant No. Z190010).
    [1]

    Ritchie R O 2011 Nat. Mater. 10 817Google Scholar

    [2]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788Google Scholar

    [3]

    Chen K, Li L 2019 Adv. Mater. 31 1901115

    [4]

    Wang X, Wang Y, Zhang B, Zhang F, Yang Z, Pan S 2017 Angew. Chem. Int. Ed. 56 14119Google Scholar

    [5]

    Chen J, Chen H, Xu F, Cao L, Jiang X, Yang S, Sun Y, Zhao X, Lin C, Ye N 2021 J. Am. Chem. Soc. 143 10309Google Scholar

    [6]

    Liu B, Jiang X, Li B, Zeng H, Guo G 2020 Angew. Chem. Int. Ed. 59 4856Google Scholar

    [7]

    Tao H, Wu H, Liu Y, Zhang Y, Wu J, Li F, Lyu X, Zhao C, Xiao D, Zhu J, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar

    [8]

    Takenaka H, Grinberg I, Liu S, Rappe A M 2017 Nature 546 391Google Scholar

    [9]

    Pan H, Li F, Liu Y, Zhang Q, Wang M, Lan S, Zheng Y, Ma J, Gu L, Shen Y, Yu P, Zhang S, Chen L Q, Lin Y H, Nan C W 2019 Science 365 578Google Scholar

    [10]

    Li H, Li X, Guo D, Lou L, Li W, Zhang X 2016 Nano Lett. 16 5631Google Scholar

    [11]

    Li X, Lou L, Li Y, Zhang G, Hua Y, Li W, Zhang H T, Yue M, Zhang X 2022 Nano Lett. 22 7644Google Scholar

    [12]

    Zhang H T, Zhang X 2022 Mater. Res. Lett. 10 1Google Scholar

    [13]

    Li Z, Li Y, Zhang M, Yin Z W, Yin L, Xu S, Zuo C, Qi R, Xue H, Hu J, Cao B, Chu M, Zhao W, Ren Y, Xie L, Ren G, Pan F 2021 Adv. Energy Mater. 11 2101962Google Scholar

    [14]

    Liu J, Qi R, Zuo C, Lin C, Zhao W, Yang N, Li J, Lu J, Chen X, Qiu J, Chu M, Zhang M, Dong C, Xiao Y, Chen H, Pan F 2021 Nano Energy 88 106252Google Scholar

    [15]

    Mundy J A, Brooks C M, Holtz M E, Moyer J A, Das H, Rébola A F, Heron J T, Clarkson J D, Disseler S M, Liu Z, Farhan A, Held R, Hovden R, Padgett E, Mao Q, Paik H, Misra R, Kourkoutis L F, Arenholz E, Scholl A, Borchers J A, Ratcliff W D, Ramesh R, Fennie C J, Schiffer P, Muller D A, Schlom D G 2016 Nature 537 523Google Scholar

    [16]

    Chen Z, Liu Z, Sun Y, Chen X, Liu Y, Zhang H, Li H, Zhang M, Hong S, Ren T, Zhang C, Tian H, Zhou Y, Sun J, Xie Y 2021 Phys. Rev. Lett. 126 026802Google Scholar

    [17]

    Das S, Tang Y L, Hong Z, Gonçalves M A P, McCarter M R, Klewe C, Nguyen K X, Gómez-Ortiz F, Shafer P, Arenholz E, Stoica V A, Hsu S L, Wang B, Ophus C, Liu J F, Nelson C T, Saremi S, Prasad B, Mei A B, Schlom D G, Íñiguez J, García-Fernández P, Muller D A, Chen L Q, Junquera J, Martin L W, Ramesh R 2019 Nature 568 368Google Scholar

    [18]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [19]

    Wang L, Shih E-M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [20]

    Balents L, Dean C R, Efetov D K, Young A F 2020 Nat. Phys. 16 725Google Scholar

    [21]

    Ismail-Beigi S, Walker F J, Disa A S, Rabe K M, Ahn C H 2017 Nat. Rev. Mater. 2 17060Google Scholar

    [22]

    Xiao D, Gu L 2020 Nano Select 1 183Google Scholar

    [23]

    Ruska E 1987 Rev. Mod. Phys. 59 627Google Scholar

    [24]

    Pennycook S J 2017 Ultramicroscopy 180 22Google Scholar

    [25]

    Findlay S D, Shibata N, Sawada H, Okunishi E, Kondo Y, Ikuhara Y 2010 Ultramicroscopy 110 903Google Scholar

    [26]

    Lazić I, Bosch E G T, Lazar S 2016 Ultramicroscopy 160 265Google Scholar

    [27]

    Yankovich A B, Berkels B, Dahmen W, Binev P, Sanchez S I, Bradley S A, Li A, Szlufarska I, Voyles P M 2014 Nat. Commun. 5 4155Google Scholar

    [28]

    Suenaga K, Sato Y, Liu Z, Kataura H, Okazaki T, Kimoto K, Sawada H, Sasaki T, Omoto K, Tomita T, Kaneyama T, Kondo Y 2009 Nat. Chem. 1 415Google Scholar

    [29]

    Suenaga K, Okazaki T, Okunishi E, Matsumura S 2012 Nature Photon. 6 545Google Scholar

    [30]

    Kisielowski C, Hetherington C J D, Wang Y C, Kilaas R, O’Keefe M A, Thust A 2001 Ultramicroscopy 89 243Google Scholar

    [31]

    Bals S, Aert S V, Tendeloo G V, Ávila-Brande D 2006 Phys. Rev. Lett. 96 096106Google Scholar

    [32]

    Jin L, Barthel J, Jia C L, Urban K W 2017 Ultramicroscopy 176 99Google Scholar

    [33]

    Gauquelin N, van den Bos K H W, Béché A, Krause F F, Lobato I, Lazar S, Rosenauer A, Van Aert S, Verbeeck J 2017 Ultramicroscopy 181 178Google Scholar

    [34]

    Morishita S, Ishikawa R, Kohno Y, Sawada H, Shibata N, Ikuhara Y 2017 Microscopy 67 46

    [35]

    Ishikawa R, Okunishi E, Sawada H, Kondo Y, Hosokawa F, Abe E 2011 Nat. Mater. 10 278Google Scholar

    [36]

    Gao P, Kumamoto A, Ishikawa R, Lugg N, Shibata N, Ikuhara Y 2018 Ultramicroscopy 184 177Google Scholar

    [37]

    Yücelen E, Lazić I, Bosch E G T 2018 Sci. Rep. 8 2676Google Scholar

    [38]

    Chen Z, Jiang Y, Shao Y T, Holtz M E, Odstrčil M, Guizar-Sicairos M, Hanke I, Ganschow S, Schlom D G, Muller D A 2021 Science 372 826Google Scholar

    [39]

    Sha H, Cui J, Yu R 2022 Sci. Adv. 8 eabn2275Google Scholar

    [40]

    Rondinelli J M, May S J, Freeland J W 2012 MRS Bulletin 37 261Google Scholar

    [41]

    Yan Q, Yu J, Suram S K, Zhou L, Shinde A, Newhouse P F, Chen W, Li G, Persson K A, Gregoire J M, Neaton J B 2017 Proc. Natl. Acad. Sci. U. S. A. 114 3040Google Scholar

    [42]

    Banjade H R, Hauri S, Zhang S, Ricci F, Gong W, Hautier G, Vucetic S, Yan Q Sci. Adv. 7 eabf1754

    [43]

    Rao C N R, Cheetham A K 1996 Science 272 369Google Scholar

    [44]

    Bednorz J G, Müller K A 1988 Rev. Mod. Phys. 60 585Google Scholar

    [45]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759Google Scholar

    [46]

    Carter J M, Shankar V V, Zeb M A, Kee H Y 2012 Phys. Rev. B 85 115105Google Scholar

    [47]

    Gao Y, Wang J, Wu L, Bao S, Shen Y, Lin Y, Nan C 2015 Sci. China Mater. 58 302Google Scholar

    [48]

    Moon E J, Colby R, Wang Q, Karapetrova E, Schlepütz C M, Fitzsimmons M R, May S J 2014 Nat. Commun. 5 5710Google Scholar

    [49]

    Liao Z, Huijben M, Zhong Z, Gauquelin N, Macke S, Green R J, Van Aert S, Verbeeck J, van Tendeloo G, Held K, Sawatzky G A, Koster G, Rijnders G 2016 Nat. Mater. 15 425Google Scholar

    [50]

    Liao Z, Gauquelin N, Green R J, Müller-Caspary K, Lobato I, Li L, Van Aert S, Verbeeck J, Huijben M, Grisolia M N, Rouco V, El Hage R, Villegas J E, Mercy A, Bibes M, Ghosez P, Sawatzky G A, Rijnders G, Koster G 2018 Proc. Natl. Acad. Sci. U.S.A. 115 9515Google Scholar

    [51]

    Lin S, Zhang Q, Sang X, Zhao J, Cheng S, Huon A, Jin Q, Chen S, Chen S, Cui W, Guo H, He M, Ge C, Wang C, Wang J, Fitzsimmons M R, Gu L, Zhu T, Jin K, Guo E 2021 Nano Lett. 21 3146Google Scholar

    [52]

    Li S, Zhang Q, Lin S, Sang X, Need R F, Roldan M A, Cui W, Hu Z, Jin Q, Chen S, Zhao J, Wang J, Wang J, He M, Ge C, Wang C, Lu H, Wu Z, Guo H, Tong X, Zhu T, Kirby B, Gu L, Jin K, Guo E 2021 Adv. Mater. 33 2001324Google Scholar

    [53]

    Kim T H, Puggioni D, Yuan Y, Xie L, Zhou H, Campbell N, Ryan P J, Choi Y, Kim J W, Patzner J R, Ryu S, Podkaminer J P, Irwin J, Ma Y, Fennie C J, Rzchowski M S, Pan X Q, Gopalan V, Rondinelli J M, Eom C B 2016 Nature 533 68Google Scholar

    [54]

    Anderson P W, Blount E I 1965 Phys. Rev. Lett. 14 217

    [55]

    Meng M, Wang Z, Fathima A, Ghosh S, Saghayezhian M, Taylor J, Jin R, Zhu Y, Pantelides S T, Zhang J, Plummer E W, Guo H 2019 Nat. Commun. 10 5248Google Scholar

    [56]

    Roh C J, Jung M C, Kim J R, Go K J, Kim J, Oh H J, Jo Y R, Shin Y J, Choi J G, Kim B J, Noh D Y, Choi S Y, Noh T W, Han M J, Lee J S 2020 Small 16 2003055Google Scholar

    [57]

    Kim J R, Jang J, Go K J, Park S Y, Roh C J, Bonini J, Kim J, Lee H G, Rabe K M, Lee J S, Choi S Y, Noh T W, Lee D 2020 Nat. Commun. 11 4944Google Scholar

    [58]

    Glazer A M 1972 Acta. Crystallogr. B 28 3384Google Scholar

    [59]

    Benedek N A, Mulder A T, Fennie C J 2012 J. Solid State Chem. 195 11Google Scholar

    [60]

    Zhang Q, Gao A, Meng F, Jin Q, Lin S, Wang X, Xiao D, Wang C, Jin K, Su D, Guo E, Gu L 2021 Nat. Commun. 12 1853Google Scholar

    [61]

    Li H B, Kobayashi S, Zhong C, Namba M, Cao Y, Kato D, Kotani Y, Lin Q, Wu M, Wang W H, Kobayashi M, Fujita K, Tassel C, Terashima T, Kuwabara A, Kobayashi Y, Takatsu H, Kageyama H 2021 J. Am. Chem. Soc. 143 17517Google Scholar

    [62]

    Damjanovic D 1998 Rep. Prog. Phys. 61 1267Google Scholar

    [63]

    Bhattacharya K, Ravichandran G 2003 Acta Mater. 51 5941Google Scholar

    [64]

    Zhang S, Li F, Jiang X, Kim J, Luo J, Geng X 2015 Prog. Mater. Sci. 68 1Google Scholar

    [65]

    李飞, 张树君, 徐卓 2020 69 217703Google Scholar

    Li F, Zhang S J, Xu Z 2020 Acta Phys. Sin. 69 217703Google Scholar

    [66]

    Tagantsev A K, Cross L E, Fousek J 2010 Domains in Ferroic Crystals and Thin Films (New York: Springer) p36

    [67]

    Li L, Xie L, Pan X 2019 Rep. Prog. Phys. 82 126502Google Scholar

    [68]

    吕笑梅, 黄凤珍, 朱劲松 2020 69 127704Google Scholar

    Lu X M, Huang F Z, Zhu J S 2020 Acta Phys. Sin. 69 127704Google Scholar

    [69]

    Wada S, Suzuki S, Noma T, Suzuki T, Osada M, Kakihana M, Park S E, Cross L E, Shrout T R 1999 Jpn. J. Appl. Phys. 38 5505Google Scholar

    [70]

    Wada S, Yako K, Kakemoto H, Tsurumi T, Kiguchi T 2005 J. Appl. Phys. 98 014109Google Scholar

    [71]

    Wada S, Tsurumi T 2004 Brit. Ceram. Trans. 103 93Google Scholar

    [72]

    Pan H, Ma J, Ma J, Zhang Q, Liu X, Guan B, Gu L, Zhang X, Zhang Y J, Li L, Shen Y, Lin Y H, Nan C W 2018 Nat. Commun. 9 1813Google Scholar

    [73]

    Pan H, Lan S, Xu S, Zhang Q, Yao H, Liu Y, Meng F, Guo E J, Gu L, Yi D, Renshaw Wang X, Huang H, MacManus-Driscoll Judith L, Chen L Q, Jin K J, Nan C W, Lin Y H 2021 Science 374 100Google Scholar

    [74]

    Zhao C, Wu H, Li F, Cai Y, Zhang Y, Song D, Wu J, Lyu X, Yin J, Xiao D, Zhu J, Pennycook S J 2018 J. Am. Chem. Soc. 140 15252Google Scholar

    [75]

    Qiu C, Wang B, Zhang N, Zhang S, Liu J, Walker D, Wang Y, Tian H, Shrout T R, Xu Z, Chen L Q, Li F 2020 Nature 577 350Google Scholar

    [76]

    Chen S, Yuan S, Hou Z, Tang Y, Zhang J, Wang T, Li K, Zhao W, Liu X, Chen L, Martin L W, Chen Z 2021 Adv. Mater. 33 2000857Google Scholar

    [77]

    Tang Y L, Zhu Y L, Ma X L, Borisevich A Y, Morozovska A N, Eliseev E A, Wang W Y, Wang Y J, Xu Y B, Zhang Z D, Pennycook S J 2015 Science 348 547Google Scholar

    [78]

    Naumov I I, Bellaiche L, Fu H 2004 Nature 432 737Google Scholar

    [79]

    Yadav A K, Nelson C T, Hsu S L, Hong Z, Clarkson J D, Schlepütz C M, Damodaran A R, Shafer P, Arenholz E, Dedon L R, Chen D, Vishwanath A, Minor A M, Chen L Q, Scott J F, Martin L W, Ramesh R 2016 Nature 530 198Google Scholar

    [80]

    Yadav A K, Nguyen K X, Hong Z, García-Fernández P, Aguado-Puente P, Nelson C T, Das S, Prasad B, Kwon D, Cheema S, Khan A I, Hu C, Íñiguez J, Junquera J, Chen L Q, Muller D A, Ramesh R, Salahuddin S 2019 Nature 565 468Google Scholar

    [81]

    Wang Y J, Feng Y P, Zhu Y L, Tang Y L, Yang L X, Zou M J, Geng W R, Han M J, Guo X W, Wu B, Ma X L 2020 Nat. Mater. 19 881Google Scholar

    [82]

    Chen P, Zhong X, Zorn J A, Li M, Sun Y, Abid A Y, Ren C, Li Y, Li X, Ma X, Wang J, Liu K, Xu Z, Tan C, Chen L, Gao P, Bai X 2020 Nat. Commun. 11 1840Google Scholar

    [83]

    Li X, Tan C, Liu C, Gao P, Sun Y, Chen P, Li M, Liao L, Zhu R, Wang J, Zhao Y, Wang L, Xu Z, Liu K, Zhong X, Wang J, Bai X 2020 Proc. Natl. Acad. Sci. U. S. A. 117 18954Google Scholar

    [84]

    Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y 2012 Nat. Mater. 11 103Google Scholar

    [85]

    Zheng Z, Ma Q, Bi Z, de la Barrera S, Liu M-H, Mao N, Zhang Y, Kiper N, Watanabe K, Taniguchi T, Kong J, Tisdale W A, Ashoori R, Gedik N, Fu L, Xu S Y, Jarillo-Herrero P 2020 Nature 588 71Google Scholar

    [86]

    Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar

    [87]

    Li L, Richter C, Mannhart J, Ashoori R C 2011 Nat. Phys. 7 762Google Scholar

    [88]

    Liu C, Yan X, Jin D, Ma Y, Hsiao H W, Lin Y, Bretz-Sullivan Terence M, Zhou X, Pearson J, Fisher B, Jiang J S, Han W, Zuo J M, Wen J, Fong Dillon D, Sun J, Zhou H, Bhattacharya A 2021 Science 371 716Google Scholar

    [89]

    Chen Z, Liu Y, Zhang H, Liu Z, Tian H, Sun Y, Zhang M, Zhou Y, Sun J, Xie Y 2021 Science 372 721Google Scholar

    [90]

    Ye M, Hu S, Zhu Y, Zhang Y, Ke S, Xie L, Zhang Y, Hu S, Zhang D, Luo Z, Gu M, He J, Zhang P, Zhang W, Chen L 2021 Nano Lett. 21 144Google Scholar

    [91]

    Hadjimichael M, Li Y, Zatterin E, Chahine G A, Conroy M, Moore K, Connell E N O, Ondrejkovic P, Marton P, Hlinka J, Bangert U, Leake S, Zubko P 2021 Nat. Mater. 20 495Google Scholar

    [92]

    Stoica V A, Laanait N, Dai C, Hong Z, Yuan Y, Zhang Z, Lei S, McCarter M R, Yadav A, Damodaran A R, Das S, Stone G A, Karapetrova J, Walko D A, Zhang X, Martin L W, Ramesh R, Chen L Q, Wen H, Gopalan V, Freeland J W 2019 Nat. Mater. 18 377Google Scholar

    [93]

    Rossouw M H, Thackeray M M 1991 Mater. Res. Bull. 26 463Google Scholar

    [94]

    Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A 2007 J. Mater. Chem. 17 3112Google Scholar

    [95]

    Yu H, Ishikawa R, So Y G, Shibata N, Kudo T, Zhou H, Ikuhara Y 2013 Angew. Chem. Int. Ed. 52 5969Google Scholar

    [96]

    Yang Y, Zhang Z, Liu S, Wang B, Liu J, Ren Y, Zhang X, Zhao S, Liu D, Yu H 2022 Matter 5 3869Google Scholar

    [97]

    Wu T, Liu X, Zhang X, Lu Y, Wang B, Deng Q, Yang Y, Wang E, Lyu Z, Li Y, Wang Y, Lyu Y, He C, Ren Y, Xu G, Sun X, Amine K, Yu H 2021 Adv. Mater. 33 2001358Google Scholar

    [98]

    Zhu X, Meng F, Zhang Q, Xue L, Zhu H, Lan S, Liu Q, Zhao J, Zhuang Y, Guo Q, Liu B, Gu L, Lu X, Ren Y, Xia H 2021 Nat. Sustain. 4 392

    [99]

    Lee E, Lu J, Ren Y, Luo X, Zhang X, Wen J, Miller D, DeWahl A, Hackney S, Key B, Kim D, Slater M D, Johnson C S 2014 Adv. Energy Mater. 4 1400458Google Scholar

    [100]

    Guo S, Liu P, Yu H, Zhu Y, Chen M, Ishida M, Zhou H 2015 Angew. Chem. Int. Ed. 54 5894Google Scholar

    [101]

    Xu G L, Amine R, Xu Y F, Liu J, Gim J, Ma T, Ren Y, Sun C J, Liu Y, Zhang X, Heald S M, Solhy A, Saadoune I, Mattis W L, Sun S G, Chen Z, Amine K 2017 Energy Environ. Sci. 10 1677Google Scholar

    [102]

    Cheng Z, Fan X Y, Yu L, Hua W, Guo Y J, Feng Y H, Ji F D, Liu M, Yin Y X, Han X, Guo Y G, Wang P F 2022 Angew. Chem. Int. Ed. 61 e202117728

    [103]

    Li R, Gao J, Li J, Huang H, Li X, Wang W, Zheng L R, Hao S M, Qiu J, Zhou W 2022 Adv. Funct. Mater. 2205661

    [104]

    Ophus C 2019 Microsc. Microanal. 25 563Google Scholar

    [105]

    Zhu Y 2021 Acc. Chem. Res. 54 3518Google Scholar

    [106]

    Bianco E, Kourkoutis L F 2021 Acc. Chem. Res. 54 3277Google Scholar

    [107]

    Ge M, Su F, Zhao Z, Su D 2020 Mater. Today Nano 11 100087Google Scholar

    [108]

    Muto S, Shiga M 2019 Microscopy 69 110

  • 图 1  氧八面体功能基元旋转与原子尺度成像[49,57] (a), (b)分别为La2/3Sr1/3MnO3/NdGaO3和La2/3Sr1/3MnO3/SrTiO3 (9 uc)/NdGaO3界面的原子分辨环形明场像[49]; (c) CaTiO3 (111)薄膜沿[1$ \stackrel{-}{1} $0]带轴的环形明场像; (d) 利用深度神经网络分析图(c)所得到的CaTiO3薄膜中氧八面体旋转模式分布图; (e) CaTiO3薄膜中每个单胞的极化矢量分布[57]

    Fig. 1.  Oxygen octahedral rotation and atomic resolution imaging[49,57]: (a), (b) Atomic resolution annular bright-field scanning transmission electron microscopy (ABF-STEM) images of La2/3Sr1/3MnO3/NdGaO3 and La2/3Sr1/3MnO3/SrTiO3 (9 uc)/NdGaO3 heterostructures, respectively[49]; (c) atomic resolution ABF-STEM image of CaTiO3 (111) films along the [1$ \stackrel{-}{1} $0] zone axis; (d) oxygen octahedral rotation map obtained by deep neural network analysis of the sample regions in (c); (e) polarization vectors for each unit cell of CaTiO3 films [57].

    图 2  不同铁电极化畴组态的原子结构[7,9,77,79] (a) BiFeO3-BaTiO3-SrTiO3薄膜[010]带轴的原子分辨高角环形暗场像, 黄色虚线勾画了纳米尺度铁电畴, 区域I、II、III分别为菱方相、四方相和两相界面[9]; (b) (K, Na)NbO3 (KNN)沿[110]方向衬度反转的环形明场像, O、R、T分别代表正交晶系、菱方晶系和四方晶系, 虚线区域标示了从R相到O相再到T相的极化旋转[7]; (c) PbTiO3/SrTiO3铁电多层薄膜中通量全闭合畴原子结构, 绿色和蓝色虚线表示90°畴壁, 红色虚线表示180°畴壁[77]; (d) PbTiO3/SrTiO3超晶格中长程有序排列的涡旋畴[79]. 图中所有箭头表示极化位移矢量

    Fig. 2.  Atomic structure of different domain configurations[7,9,77,79]: (a) Atomic resolution high angle annular dark field (HAADF)-STEM image of BiFeO3-BaTiO3-SrTiO3 film along the [010] direction, wherein the yellow dashed lines delineate the nanodomains, Region I, II, III are rhombohedral, tetragonal domain and interface between them, respectively[9]; (b) contrast-reversed ABF-STEM image of (K, Na)NbO3 (KNN) along [110] zone axis, O, R, and T indicate orthorhombic, rhombohedral and tetragonal phase, respectively. dashed lines regions highlighted by dash line show polarization rotation from R to O to T[7]; (c) atomic structure of flux-closure domain in the PbTiO3/SrTiO3 superlattice, the green and blue dashed lines indicate the 90° domain walls, the red dashed lines indicate the 180° domain walls[77]; (d) long-range ordered vortex-antivortex arrays in the PbTiO3/SrTiO3 superlattice[79]. All of arrows indicate the polar displacement vector.

    图 3  典型晶相功能基元构筑的功能氧化物材料原子结构[15, 90, 95] (a) LuFe2O4(左上)和LuFeO3(右上)的晶体结构、原子分辨高角环形暗场像以及由两者构筑的(LuFeO3)m/(LuFe2O4)1 (6 ≤ m ≤ 10)超晶格[15]; (b) (SrRuO3)1/(BaTiO3)10超晶格原子结构以及极化矢量分布(左图), 其中箭头表示钙钛矿B位原子相对于氧八面体中心的位移, 右图为垂直于超晶格界面方向钙钛矿A位和B位原子的衬度曲线[90]; (c) Li1.2Mn0.567Ni0.166Co0.067O2正极材料同一区域沿[$1\bar10 $]rh带轴的高角环形暗场像(左图)和环形明场像(右图), 其中P, R分别表示单斜的类Li2MnO3结构平行四边形和矩形对称性, 右图中的结构模型表示交互生长的两相和异质界面的原子排列[95]

    Fig. 3.  Atomic structure of functional oxide materials constructed by typical crystal phases[15, 90, 95]: (a) Crystal structure and atomic resolution HAADF-STEM images of LuFe2O4 (top left) and LuFeO3 (top right), (LuFeO3)m/(LuFe2O4)1 superlattice series for 6 ≤ m ≤ 10[15]; (b) superlattice atomic structure of (SrRuO3)1/(BaTiO3)10 with an overlay of the polar vectors (left), yellow arrows represent the displacement of the B-site from the mass center of oxygen octahedron in perovskite, and STEM intensity profiles of A-site and B-site atoms in perovskite across superlattice interface of BaTiO3/SrRuO3 (right)[90]. (c) HAADF (left) and ABF-STEM (right) images of the intergrowth two-phase and hetero-interface in the same region along the [$1 \bar1 0 $]rh zone axis, wherein P and R indicate parallelogram and rectangular symmetry of the monoclinic Li2MnO3-like structure and inserted image in the right image shows the intergrowth two-phase and hetero-interface atomic arrangements[95].

    表 1  皮米尺度像差校正透射电子显微学成像技术比较

    Table 1.  Comparison of aberration-corrected transmission electron microscopy imaging techniques at the picoscale.

    成像技术空间分辨率/pm测量精度/pm样品厚度/nm所需条件特点
    出射波重构80[30]3 <σ<10[31]< 10重构软件同时获取振幅和相位信息
    负球差成像57[32]σ <1[33]< 5负球差系数对轻元素敏感
    高角环形暗场成像40.5[34]σ<1[27]< 50环形探测器对重元素敏感
    环形明场成像44.4[35]1.5 <σ <3.8[36]< 50环形探测器对轻元素敏感
    积分差分相位衬度成像63[37]0.97 <σ <2.3[33]< 50四象限探测器对轻元素敏感、低剂量
    电子叠层衍射成像23[38]σ < 1[38, 39]< 50高速探测器、特定算法深亚埃分辨、低剂量
    下载: 导出CSV
    Baidu
  • [1]

    Ritchie R O 2011 Nat. Mater. 10 817Google Scholar

    [2]

    Smith D R, Pendry J B, Wiltshire M C K 2004 Science 305 788Google Scholar

    [3]

    Chen K, Li L 2019 Adv. Mater. 31 1901115

    [4]

    Wang X, Wang Y, Zhang B, Zhang F, Yang Z, Pan S 2017 Angew. Chem. Int. Ed. 56 14119Google Scholar

    [5]

    Chen J, Chen H, Xu F, Cao L, Jiang X, Yang S, Sun Y, Zhao X, Lin C, Ye N 2021 J. Am. Chem. Soc. 143 10309Google Scholar

    [6]

    Liu B, Jiang X, Li B, Zeng H, Guo G 2020 Angew. Chem. Int. Ed. 59 4856Google Scholar

    [7]

    Tao H, Wu H, Liu Y, Zhang Y, Wu J, Li F, Lyu X, Zhao C, Xiao D, Zhu J, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar

    [8]

    Takenaka H, Grinberg I, Liu S, Rappe A M 2017 Nature 546 391Google Scholar

    [9]

    Pan H, Li F, Liu Y, Zhang Q, Wang M, Lan S, Zheng Y, Ma J, Gu L, Shen Y, Yu P, Zhang S, Chen L Q, Lin Y H, Nan C W 2019 Science 365 578Google Scholar

    [10]

    Li H, Li X, Guo D, Lou L, Li W, Zhang X 2016 Nano Lett. 16 5631Google Scholar

    [11]

    Li X, Lou L, Li Y, Zhang G, Hua Y, Li W, Zhang H T, Yue M, Zhang X 2022 Nano Lett. 22 7644Google Scholar

    [12]

    Zhang H T, Zhang X 2022 Mater. Res. Lett. 10 1Google Scholar

    [13]

    Li Z, Li Y, Zhang M, Yin Z W, Yin L, Xu S, Zuo C, Qi R, Xue H, Hu J, Cao B, Chu M, Zhao W, Ren Y, Xie L, Ren G, Pan F 2021 Adv. Energy Mater. 11 2101962Google Scholar

    [14]

    Liu J, Qi R, Zuo C, Lin C, Zhao W, Yang N, Li J, Lu J, Chen X, Qiu J, Chu M, Zhang M, Dong C, Xiao Y, Chen H, Pan F 2021 Nano Energy 88 106252Google Scholar

    [15]

    Mundy J A, Brooks C M, Holtz M E, Moyer J A, Das H, Rébola A F, Heron J T, Clarkson J D, Disseler S M, Liu Z, Farhan A, Held R, Hovden R, Padgett E, Mao Q, Paik H, Misra R, Kourkoutis L F, Arenholz E, Scholl A, Borchers J A, Ratcliff W D, Ramesh R, Fennie C J, Schiffer P, Muller D A, Schlom D G 2016 Nature 537 523Google Scholar

    [16]

    Chen Z, Liu Z, Sun Y, Chen X, Liu Y, Zhang H, Li H, Zhang M, Hong S, Ren T, Zhang C, Tian H, Zhou Y, Sun J, Xie Y 2021 Phys. Rev. Lett. 126 026802Google Scholar

    [17]

    Das S, Tang Y L, Hong Z, Gonçalves M A P, McCarter M R, Klewe C, Nguyen K X, Gómez-Ortiz F, Shafer P, Arenholz E, Stoica V A, Hsu S L, Wang B, Ophus C, Liu J F, Nelson C T, Saremi S, Prasad B, Mei A B, Schlom D G, Íñiguez J, García-Fernández P, Muller D A, Chen L Q, Junquera J, Martin L W, Ramesh R 2019 Nature 568 368Google Scholar

    [18]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [19]

    Wang L, Shih E-M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [20]

    Balents L, Dean C R, Efetov D K, Young A F 2020 Nat. Phys. 16 725Google Scholar

    [21]

    Ismail-Beigi S, Walker F J, Disa A S, Rabe K M, Ahn C H 2017 Nat. Rev. Mater. 2 17060Google Scholar

    [22]

    Xiao D, Gu L 2020 Nano Select 1 183Google Scholar

    [23]

    Ruska E 1987 Rev. Mod. Phys. 59 627Google Scholar

    [24]

    Pennycook S J 2017 Ultramicroscopy 180 22Google Scholar

    [25]

    Findlay S D, Shibata N, Sawada H, Okunishi E, Kondo Y, Ikuhara Y 2010 Ultramicroscopy 110 903Google Scholar

    [26]

    Lazić I, Bosch E G T, Lazar S 2016 Ultramicroscopy 160 265Google Scholar

    [27]

    Yankovich A B, Berkels B, Dahmen W, Binev P, Sanchez S I, Bradley S A, Li A, Szlufarska I, Voyles P M 2014 Nat. Commun. 5 4155Google Scholar

    [28]

    Suenaga K, Sato Y, Liu Z, Kataura H, Okazaki T, Kimoto K, Sawada H, Sasaki T, Omoto K, Tomita T, Kaneyama T, Kondo Y 2009 Nat. Chem. 1 415Google Scholar

    [29]

    Suenaga K, Okazaki T, Okunishi E, Matsumura S 2012 Nature Photon. 6 545Google Scholar

    [30]

    Kisielowski C, Hetherington C J D, Wang Y C, Kilaas R, O’Keefe M A, Thust A 2001 Ultramicroscopy 89 243Google Scholar

    [31]

    Bals S, Aert S V, Tendeloo G V, Ávila-Brande D 2006 Phys. Rev. Lett. 96 096106Google Scholar

    [32]

    Jin L, Barthel J, Jia C L, Urban K W 2017 Ultramicroscopy 176 99Google Scholar

    [33]

    Gauquelin N, van den Bos K H W, Béché A, Krause F F, Lobato I, Lazar S, Rosenauer A, Van Aert S, Verbeeck J 2017 Ultramicroscopy 181 178Google Scholar

    [34]

    Morishita S, Ishikawa R, Kohno Y, Sawada H, Shibata N, Ikuhara Y 2017 Microscopy 67 46

    [35]

    Ishikawa R, Okunishi E, Sawada H, Kondo Y, Hosokawa F, Abe E 2011 Nat. Mater. 10 278Google Scholar

    [36]

    Gao P, Kumamoto A, Ishikawa R, Lugg N, Shibata N, Ikuhara Y 2018 Ultramicroscopy 184 177Google Scholar

    [37]

    Yücelen E, Lazić I, Bosch E G T 2018 Sci. Rep. 8 2676Google Scholar

    [38]

    Chen Z, Jiang Y, Shao Y T, Holtz M E, Odstrčil M, Guizar-Sicairos M, Hanke I, Ganschow S, Schlom D G, Muller D A 2021 Science 372 826Google Scholar

    [39]

    Sha H, Cui J, Yu R 2022 Sci. Adv. 8 eabn2275Google Scholar

    [40]

    Rondinelli J M, May S J, Freeland J W 2012 MRS Bulletin 37 261Google Scholar

    [41]

    Yan Q, Yu J, Suram S K, Zhou L, Shinde A, Newhouse P F, Chen W, Li G, Persson K A, Gregoire J M, Neaton J B 2017 Proc. Natl. Acad. Sci. U. S. A. 114 3040Google Scholar

    [42]

    Banjade H R, Hauri S, Zhang S, Ricci F, Gong W, Hautier G, Vucetic S, Yan Q Sci. Adv. 7 eabf1754

    [43]

    Rao C N R, Cheetham A K 1996 Science 272 369Google Scholar

    [44]

    Bednorz J G, Müller K A 1988 Rev. Mod. Phys. 60 585Google Scholar

    [45]

    Eerenstein W, Mathur N D, Scott J F 2006 Nature 442 759Google Scholar

    [46]

    Carter J M, Shankar V V, Zeb M A, Kee H Y 2012 Phys. Rev. B 85 115105Google Scholar

    [47]

    Gao Y, Wang J, Wu L, Bao S, Shen Y, Lin Y, Nan C 2015 Sci. China Mater. 58 302Google Scholar

    [48]

    Moon E J, Colby R, Wang Q, Karapetrova E, Schlepütz C M, Fitzsimmons M R, May S J 2014 Nat. Commun. 5 5710Google Scholar

    [49]

    Liao Z, Huijben M, Zhong Z, Gauquelin N, Macke S, Green R J, Van Aert S, Verbeeck J, van Tendeloo G, Held K, Sawatzky G A, Koster G, Rijnders G 2016 Nat. Mater. 15 425Google Scholar

    [50]

    Liao Z, Gauquelin N, Green R J, Müller-Caspary K, Lobato I, Li L, Van Aert S, Verbeeck J, Huijben M, Grisolia M N, Rouco V, El Hage R, Villegas J E, Mercy A, Bibes M, Ghosez P, Sawatzky G A, Rijnders G, Koster G 2018 Proc. Natl. Acad. Sci. U.S.A. 115 9515Google Scholar

    [51]

    Lin S, Zhang Q, Sang X, Zhao J, Cheng S, Huon A, Jin Q, Chen S, Chen S, Cui W, Guo H, He M, Ge C, Wang C, Wang J, Fitzsimmons M R, Gu L, Zhu T, Jin K, Guo E 2021 Nano Lett. 21 3146Google Scholar

    [52]

    Li S, Zhang Q, Lin S, Sang X, Need R F, Roldan M A, Cui W, Hu Z, Jin Q, Chen S, Zhao J, Wang J, Wang J, He M, Ge C, Wang C, Lu H, Wu Z, Guo H, Tong X, Zhu T, Kirby B, Gu L, Jin K, Guo E 2021 Adv. Mater. 33 2001324Google Scholar

    [53]

    Kim T H, Puggioni D, Yuan Y, Xie L, Zhou H, Campbell N, Ryan P J, Choi Y, Kim J W, Patzner J R, Ryu S, Podkaminer J P, Irwin J, Ma Y, Fennie C J, Rzchowski M S, Pan X Q, Gopalan V, Rondinelli J M, Eom C B 2016 Nature 533 68Google Scholar

    [54]

    Anderson P W, Blount E I 1965 Phys. Rev. Lett. 14 217

    [55]

    Meng M, Wang Z, Fathima A, Ghosh S, Saghayezhian M, Taylor J, Jin R, Zhu Y, Pantelides S T, Zhang J, Plummer E W, Guo H 2019 Nat. Commun. 10 5248Google Scholar

    [56]

    Roh C J, Jung M C, Kim J R, Go K J, Kim J, Oh H J, Jo Y R, Shin Y J, Choi J G, Kim B J, Noh D Y, Choi S Y, Noh T W, Han M J, Lee J S 2020 Small 16 2003055Google Scholar

    [57]

    Kim J R, Jang J, Go K J, Park S Y, Roh C J, Bonini J, Kim J, Lee H G, Rabe K M, Lee J S, Choi S Y, Noh T W, Lee D 2020 Nat. Commun. 11 4944Google Scholar

    [58]

    Glazer A M 1972 Acta. Crystallogr. B 28 3384Google Scholar

    [59]

    Benedek N A, Mulder A T, Fennie C J 2012 J. Solid State Chem. 195 11Google Scholar

    [60]

    Zhang Q, Gao A, Meng F, Jin Q, Lin S, Wang X, Xiao D, Wang C, Jin K, Su D, Guo E, Gu L 2021 Nat. Commun. 12 1853Google Scholar

    [61]

    Li H B, Kobayashi S, Zhong C, Namba M, Cao Y, Kato D, Kotani Y, Lin Q, Wu M, Wang W H, Kobayashi M, Fujita K, Tassel C, Terashima T, Kuwabara A, Kobayashi Y, Takatsu H, Kageyama H 2021 J. Am. Chem. Soc. 143 17517Google Scholar

    [62]

    Damjanovic D 1998 Rep. Prog. Phys. 61 1267Google Scholar

    [63]

    Bhattacharya K, Ravichandran G 2003 Acta Mater. 51 5941Google Scholar

    [64]

    Zhang S, Li F, Jiang X, Kim J, Luo J, Geng X 2015 Prog. Mater. Sci. 68 1Google Scholar

    [65]

    李飞, 张树君, 徐卓 2020 69 217703Google Scholar

    Li F, Zhang S J, Xu Z 2020 Acta Phys. Sin. 69 217703Google Scholar

    [66]

    Tagantsev A K, Cross L E, Fousek J 2010 Domains in Ferroic Crystals and Thin Films (New York: Springer) p36

    [67]

    Li L, Xie L, Pan X 2019 Rep. Prog. Phys. 82 126502Google Scholar

    [68]

    吕笑梅, 黄凤珍, 朱劲松 2020 69 127704Google Scholar

    Lu X M, Huang F Z, Zhu J S 2020 Acta Phys. Sin. 69 127704Google Scholar

    [69]

    Wada S, Suzuki S, Noma T, Suzuki T, Osada M, Kakihana M, Park S E, Cross L E, Shrout T R 1999 Jpn. J. Appl. Phys. 38 5505Google Scholar

    [70]

    Wada S, Yako K, Kakemoto H, Tsurumi T, Kiguchi T 2005 J. Appl. Phys. 98 014109Google Scholar

    [71]

    Wada S, Tsurumi T 2004 Brit. Ceram. Trans. 103 93Google Scholar

    [72]

    Pan H, Ma J, Ma J, Zhang Q, Liu X, Guan B, Gu L, Zhang X, Zhang Y J, Li L, Shen Y, Lin Y H, Nan C W 2018 Nat. Commun. 9 1813Google Scholar

    [73]

    Pan H, Lan S, Xu S, Zhang Q, Yao H, Liu Y, Meng F, Guo E J, Gu L, Yi D, Renshaw Wang X, Huang H, MacManus-Driscoll Judith L, Chen L Q, Jin K J, Nan C W, Lin Y H 2021 Science 374 100Google Scholar

    [74]

    Zhao C, Wu H, Li F, Cai Y, Zhang Y, Song D, Wu J, Lyu X, Yin J, Xiao D, Zhu J, Pennycook S J 2018 J. Am. Chem. Soc. 140 15252Google Scholar

    [75]

    Qiu C, Wang B, Zhang N, Zhang S, Liu J, Walker D, Wang Y, Tian H, Shrout T R, Xu Z, Chen L Q, Li F 2020 Nature 577 350Google Scholar

    [76]

    Chen S, Yuan S, Hou Z, Tang Y, Zhang J, Wang T, Li K, Zhao W, Liu X, Chen L, Martin L W, Chen Z 2021 Adv. Mater. 33 2000857Google Scholar

    [77]

    Tang Y L, Zhu Y L, Ma X L, Borisevich A Y, Morozovska A N, Eliseev E A, Wang W Y, Wang Y J, Xu Y B, Zhang Z D, Pennycook S J 2015 Science 348 547Google Scholar

    [78]

    Naumov I I, Bellaiche L, Fu H 2004 Nature 432 737Google Scholar

    [79]

    Yadav A K, Nelson C T, Hsu S L, Hong Z, Clarkson J D, Schlepütz C M, Damodaran A R, Shafer P, Arenholz E, Dedon L R, Chen D, Vishwanath A, Minor A M, Chen L Q, Scott J F, Martin L W, Ramesh R 2016 Nature 530 198Google Scholar

    [80]

    Yadav A K, Nguyen K X, Hong Z, García-Fernández P, Aguado-Puente P, Nelson C T, Das S, Prasad B, Kwon D, Cheema S, Khan A I, Hu C, Íñiguez J, Junquera J, Chen L Q, Muller D A, Ramesh R, Salahuddin S 2019 Nature 565 468Google Scholar

    [81]

    Wang Y J, Feng Y P, Zhu Y L, Tang Y L, Yang L X, Zou M J, Geng W R, Han M J, Guo X W, Wu B, Ma X L 2020 Nat. Mater. 19 881Google Scholar

    [82]

    Chen P, Zhong X, Zorn J A, Li M, Sun Y, Abid A Y, Ren C, Li Y, Li X, Ma X, Wang J, Liu K, Xu Z, Tan C, Chen L, Gao P, Bai X 2020 Nat. Commun. 11 1840Google Scholar

    [83]

    Li X, Tan C, Liu C, Gao P, Sun Y, Chen P, Li M, Liao L, Zhu R, Wang J, Zhao Y, Wang L, Xu Z, Liu K, Zhong X, Wang J, Bai X 2020 Proc. Natl. Acad. Sci. U. S. A. 117 18954Google Scholar

    [84]

    Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y 2012 Nat. Mater. 11 103Google Scholar

    [85]

    Zheng Z, Ma Q, Bi Z, de la Barrera S, Liu M-H, Mao N, Zhang Y, Kiper N, Watanabe K, Taniguchi T, Kong J, Tisdale W A, Ashoori R, Gedik N, Fu L, Xu S Y, Jarillo-Herrero P 2020 Nature 588 71Google Scholar

    [86]

    Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar

    [87]

    Li L, Richter C, Mannhart J, Ashoori R C 2011 Nat. Phys. 7 762Google Scholar

    [88]

    Liu C, Yan X, Jin D, Ma Y, Hsiao H W, Lin Y, Bretz-Sullivan Terence M, Zhou X, Pearson J, Fisher B, Jiang J S, Han W, Zuo J M, Wen J, Fong Dillon D, Sun J, Zhou H, Bhattacharya A 2021 Science 371 716Google Scholar

    [89]

    Chen Z, Liu Y, Zhang H, Liu Z, Tian H, Sun Y, Zhang M, Zhou Y, Sun J, Xie Y 2021 Science 372 721Google Scholar

    [90]

    Ye M, Hu S, Zhu Y, Zhang Y, Ke S, Xie L, Zhang Y, Hu S, Zhang D, Luo Z, Gu M, He J, Zhang P, Zhang W, Chen L 2021 Nano Lett. 21 144Google Scholar

    [91]

    Hadjimichael M, Li Y, Zatterin E, Chahine G A, Conroy M, Moore K, Connell E N O, Ondrejkovic P, Marton P, Hlinka J, Bangert U, Leake S, Zubko P 2021 Nat. Mater. 20 495Google Scholar

    [92]

    Stoica V A, Laanait N, Dai C, Hong Z, Yuan Y, Zhang Z, Lei S, McCarter M R, Yadav A, Damodaran A R, Das S, Stone G A, Karapetrova J, Walko D A, Zhang X, Martin L W, Ramesh R, Chen L Q, Wen H, Gopalan V, Freeland J W 2019 Nat. Mater. 18 377Google Scholar

    [93]

    Rossouw M H, Thackeray M M 1991 Mater. Res. Bull. 26 463Google Scholar

    [94]

    Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A 2007 J. Mater. Chem. 17 3112Google Scholar

    [95]

    Yu H, Ishikawa R, So Y G, Shibata N, Kudo T, Zhou H, Ikuhara Y 2013 Angew. Chem. Int. Ed. 52 5969Google Scholar

    [96]

    Yang Y, Zhang Z, Liu S, Wang B, Liu J, Ren Y, Zhang X, Zhao S, Liu D, Yu H 2022 Matter 5 3869Google Scholar

    [97]

    Wu T, Liu X, Zhang X, Lu Y, Wang B, Deng Q, Yang Y, Wang E, Lyu Z, Li Y, Wang Y, Lyu Y, He C, Ren Y, Xu G, Sun X, Amine K, Yu H 2021 Adv. Mater. 33 2001358Google Scholar

    [98]

    Zhu X, Meng F, Zhang Q, Xue L, Zhu H, Lan S, Liu Q, Zhao J, Zhuang Y, Guo Q, Liu B, Gu L, Lu X, Ren Y, Xia H 2021 Nat. Sustain. 4 392

    [99]

    Lee E, Lu J, Ren Y, Luo X, Zhang X, Wen J, Miller D, DeWahl A, Hackney S, Key B, Kim D, Slater M D, Johnson C S 2014 Adv. Energy Mater. 4 1400458Google Scholar

    [100]

    Guo S, Liu P, Yu H, Zhu Y, Chen M, Ishida M, Zhou H 2015 Angew. Chem. Int. Ed. 54 5894Google Scholar

    [101]

    Xu G L, Amine R, Xu Y F, Liu J, Gim J, Ma T, Ren Y, Sun C J, Liu Y, Zhang X, Heald S M, Solhy A, Saadoune I, Mattis W L, Sun S G, Chen Z, Amine K 2017 Energy Environ. Sci. 10 1677Google Scholar

    [102]

    Cheng Z, Fan X Y, Yu L, Hua W, Guo Y J, Feng Y H, Ji F D, Liu M, Yin Y X, Han X, Guo Y G, Wang P F 2022 Angew. Chem. Int. Ed. 61 e202117728

    [103]

    Li R, Gao J, Li J, Huang H, Li X, Wang W, Zheng L R, Hao S M, Qiu J, Zhou W 2022 Adv. Funct. Mater. 2205661

    [104]

    Ophus C 2019 Microsc. Microanal. 25 563Google Scholar

    [105]

    Zhu Y 2021 Acc. Chem. Res. 54 3518Google Scholar

    [106]

    Bianco E, Kourkoutis L F 2021 Acc. Chem. Res. 54 3277Google Scholar

    [107]

    Ge M, Su F, Zhao Z, Su D 2020 Mater. Today Nano 11 100087Google Scholar

    [108]

    Muto S, Shiga M 2019 Microscopy 69 110

  • [1] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料.  , 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [2] 孟菁饴, 卢红伟, 马世乐, 张嘉奇, 何富民, 苏伟涛, 赵晓东, 田婷, 王翼, 邢誉. 功能化原子力显微镜在纳米电介质材料性能研究中的应用进展.  , 2022, 71(24): 240701. doi: 10.7498/aps.71.20221462
    [3] 刘玄玄, 国洪轩, 徐涛, 尹奎波, 孙立涛. 原位液相透射电子显微镜及其在纳米粒子表征方面的应用.  , 2021, 70(8): 086701. doi: 10.7498/aps.70.20201899
    [4] 钟虓䶮, 李卓. 原子尺度材料三维结构、磁性及动态演变的透射电子显微学表征.  , 2021, 70(6): 066801. doi: 10.7498/aps.70.20202072
    [5] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯负极材料的粗粒模型.  , 2015, 64(14): 143101. doi: 10.7498/aps.64.143101
    [6] 张超, 方粮, 隋兵才, 徐强, 王慧. 基于微芯片的透射电子显微镜的低温纳米精度电子束刻蚀与原位电学输运性质测量.  , 2014, 63(24): 248105. doi: 10.7498/aps.63.248105
    [7] 刘铁兵, 姚文坡, 宁新宝, 倪黄晶, 王俊. 功能磁共振成像的基本尺度熵分析.  , 2013, 62(21): 218704. doi: 10.7498/aps.62.218704
    [8] 王静, 刘贵昌, 李红玲, 侯保荣. 铜基类金刚石膜功能梯度材料作为散热材料的研究.  , 2012, 61(5): 058102. doi: 10.7498/aps.61.058102
    [9] 洪轲, 袁玲, 沈中华, 倪晓武. 利用Taylor展开法研究Lamb波在功能梯度材料中的传播特性.  , 2011, 60(10): 104303. doi: 10.7498/aps.60.104303
    [10] 肖 冰, 冯 晶, 陈敬超, 严继康, 甘国友. 金红石型TiO2(110)表面性质及STM形貌模拟.  , 2008, 57(6): 3769-3774. doi: 10.7498/aps.57.3769
    [11] 卢励吾, 张砚华, J.Wang, WeikunGe. 分子束外延生长赝配高电子迁移率超高速微结构功能材料里深中心识别.  , 2002, 51(2): 372-376. doi: 10.7498/aps.51.372
    [12] 王震遐, 阮美玲, 杨锦晴, 王玟珉, 俞国庆. 一些新颖碳纳米结构的高分辨率透射电子显微镜研究.  , 1999, 48(11): 2092-2097. doi: 10.7498/aps.48.2092
    [13] 李贻杰, 熊光成, 甘子钊, 任琮欣, 邹世昌. Ar离子注入YBa2Cu3O7-x超导薄膜中微结构变化的透射电子显微镜研究.  , 1993, 42(3): 482-487. doi: 10.7498/aps.42.482
    [14] 李龙, 李方华, 杨大宇, 田静华, 林振金. Ce1+εFe4B4合金一维无公度调制结构的透射电子显微镜研究.  , 1990, 39(5): 788-792. doi: 10.7498/aps.39.788
    [15] 徐惠芳, 罗谷风, 胡梅生, 陈峻. 超晶格正长石的高分辨透射电子显微镜研究.  , 1989, 38(9): 1527-1529. doi: 10.7498/aps.38.1527
    [16] 郭永翔, 黑祖昆, 吴玉琨, 郭可信. Ni-Zr非晶合金晶化的透射电子显微镜研究(Ⅰ) ——Ni67Zr33晶化过程中的亚稳相.  , 1986, 35(3): 359-364. doi: 10.7498/aps.35.359
    [17] 张京, 刘安生, 吴自勤, 郭可信. Pd-Si薄膜固相反应的透射电子显微镜研究.  , 1986, 35(7): 965-968. doi: 10.7498/aps.35.965
    [18] 程鹏翥, 马晓华, 罗棨光, 杨大宇. 透射电子显微镜样品的电解抛光制备方法.  , 1981, 30(2): 286-290. doi: 10.7498/aps.30.286
    [19] 郭可信, 林保军. 镍铬合金中不全位错的透射电子显微镜观察.  , 1980, 29(4): 494-499. doi: 10.7498/aps.29.494
    [20] 吴自勤, 高巧君, 李永洪, 唐先德. Nb/Nb3Sn复合超导材料的高压电子显微镜观察.  , 1980, 29(9): 1226-1230. doi: 10.7498/aps.29.1226
计量
  • 文章访问数:  5446
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-10
  • 修回日期:  2023-03-07
  • 上网日期:  2023-04-13
  • 刊出日期:  2023-06-05

/

返回文章
返回
Baidu
map