搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反应扩散系统中交叉扩散引发的图灵斑图之间的转变

孟星柔 刘若琪 贺亚峰 邓腾坤 刘富成

引用本文:
Citation:

反应扩散系统中交叉扩散引发的图灵斑图之间的转变

孟星柔, 刘若琪, 贺亚峰, 邓腾坤, 刘富成

Cross-diffusion-induced transitions between Turing patterns in reaction-diffusion systems

Meng Xing-Rou, Liu Ruo-Qi, He Ya-Feng, Deng Teng-Kun, Liu Fu-Cheng
PDF
HTML
导出引用
  • 交叉扩散是影响图灵斑图形成和转变的重要因素之一. 本文在反应扩散布鲁塞尔模型中引入交叉扩散项, 首先对其进行线性分析和弱非线性分析, 然后数值研究了交叉扩散的方向性以及浓度依赖性在图灵斑图转变过程中的作用. 在单向交叉扩散情况下, 交叉扩散的方向直接决定了斑图转变的次序. 阻滞子向活化子的交叉扩散会导致系统逐渐远离初级分岔点, 从而引发图灵斑图的正向转变; 与之相反, 活化子向阻滞子的交叉扩散会导致系统逐渐靠近初级分岔点, 从而引发图灵斑图的反向转变. 对称双向交叉扩散下, 阻滞子向活化子的交叉扩散效应要强于活化子向阻滞子的交叉扩散. 交叉扩散系数除了与自身浓度相关外, 还与其他物质浓度相关. 研究发现浓度依赖交叉扩散也会影响图灵斑图的转变方向. 当扩散系数$ {D_{uv}} $线性依赖阻滞子浓度$ v $变化时, 随着浓度线性调节参数$ \beta $的增大, 引发图灵斑图正向转变; 相反, 当扩散系数$ {D_{vu}} $线性依赖活化子浓度$ u $变化时, 引发图灵斑图的反向转变.
    Cross-diffusion is one of the most important factors affecting the formation and transition of Turing patterns in reaction diffusion systems. In this paper, cross-diffusion is introduced into a reaction diffusion Brusselator model to investigate the effects of the directivity and density-dependence of cross-diffusion on Turing pattern transition. Turing space is obtained by the standard linear stability analysis, and the amplitude equations are derived based on weakly nonlinear method, by which Turing pattern selection can be determined theoretically. It is found that the degree of deviation from the primary Turing bifurcation point plays an important role in determining the process of pattern selection in the Turing region. As the deviation from onset is increased, the system exhibits a series of pattern transitions from homogenous state to honeycomb hexagonal pattern, to stripe pattern, and then to hexagonal spot pattern. In the case of one-way cross-diffusion, the direction of cross-diffusion determines the order of Turing pattern transition. The cross-diffusion from the inhibitor to the activator enhances the Turing mode and drives the system far away from the primary bifurcation point, resulting in the forward order of Turing pattern transition. On the contrary, the cross-diffusion from the activator to the inhibitor suppresses the Turing mode and forces the pattern transition in a reverse order. In the case of two-way cross-diffusion, the cross-diffusion effect from inhibitors to activators is stronger than that from activators to inhibitors with the same diffusion coefficient. Essentially, the cross-diffusion coefficient is dependent on not only the local concentration of species itself, but also the concentrations of other species due to their interaction. It is found that concentration dependent cross diffusion also affects the transformation direction of Turing pattern. When the diffusion coefficient $ {D_{uv}} $ is linearly dependent on the concentration of retarders, the positive transformation of the Turing pattern is induced with the increase of the concentration linear adjustment parameter $ \beta $. On the contrary, when the diffusion coefficient $ {D_{vu}} $ is linearly dependent on the concentration of active particles, the reverse transformation of the Turing pattern is induced. The numerical simulation results are consistent with the theoretical analysis.
      通信作者: 贺亚峰, heyf@hbu.edu.cn ; 刘富成, hdlfc@hbu.cn
    • 基金项目: 国家自然科学基金(批准号: 12275064, 11975089, 11875014)、河北省自然科学基金(批准号: A2021201003)和河北大学自然科学多学科交叉研究计划(批准号: DXK202010)资助的课题.
      Corresponding author: He Ya-Feng, heyf@hbu.edu.cn ; Liu Fu-Cheng, hdlfc@hbu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275064, 11975089, 11875014), the Natural Science Foundation of Hebei Province, China (Grant No. A2021201003), and the Interdisciplinary Research Program of Natural Science of Hebei University, China (Grant No. DXK202010).
    [1]

    Gao S P, Chang L L, Perc M, Wang Z 2023 Phys. Rev. E 107 014216Google Scholar

    [2]

    Fuseya Y, Katsuno H, Behnia K, Kapitulnik A 2021 Nat. Phys. 17 1031Google Scholar

    [3]

    Halatek J, Frey E 2018 Nat. Phys. 14 507Google Scholar

    [4]

    Wang X L, Wang W D, Zhang G H 2017 Commun. Nonlinear Sci. Numer. Simulat. 42 571Google Scholar

    [5]

    Turing A M 1952 Philos. Trans. R. Soc. London Ser. B 237 37Google Scholar

    [6]

    Ouyang Q, Swinney H L 1991 Nature 352 610Google Scholar

    [7]

    Callahan T K, Knobloch E 1999 Physica D 132 339Google Scholar

    [8]

    Haas P A, Goldstein R E 2021 Phys. Rev. Lett. 126 238101Google Scholar

    [9]

    Landge A N, Jordan B M, Diego X, Muller P 2020 Dev. Biol. 460 2Google Scholar

    [10]

    Kumar N, Horsthemke W 2011 Phys. Rev. E 83 036105Google Scholar

    [11]

    Yang R 2022 Nonlinear Dyn. 110 1753Google Scholar

    [12]

    Tang X S, Song Y L, Zhang T H 2016 Nonlinear Dyn. 86 73Google Scholar

    [13]

    Vanag V K, Epstein I R 2009 Int. J. Dev. Biol. 53 673Google Scholar

    [14]

    Cui R F, Chen Q H, Chen J X 2020 Nanoscale 12 12275Google Scholar

    [15]

    Chen J X, Chen Y G, Kapral R 2018 Adv. Sci. 5 1800028Google Scholar

    [16]

    Kerner E H 1957 Bull. Math. Biol. 19 121Google Scholar

    [17]

    Souna F, Djilali S, Lakmeche A 2021 Eur. Phys. J. Plus 136 474Google Scholar

    [18]

    Guin L N 2015 Math. Comput. Simulat. 109 174Google Scholar

    [19]

    Gambino G, Lombardo M C, Sammartino M 2013 Nonlinear Anal. Real World Appl. 14 1755Google Scholar

    [20]

    Liu B, Wu R C, Chen L P 2018 Math. Biosci. 298 71Google Scholar

    [21]

    Ma T T, Meng X Z 2022 Math. Biosci. Eng. 19 6040Google Scholar

    [22]

    Xie Z F 2012 J. Math. Anal. Appl. 388 539Google Scholar

    [23]

    Chung J M, Peacock-López E 2007 Phys. Lett. A 371 41Google Scholar

    [24]

    Zhu L H, He L 2022 Nonlinear Dyn. 110 1935Google Scholar

    [25]

    Han R J, Dai B X 2019 Nonlinear Anal. Real World Appl. 45 822Google Scholar

    [26]

    Chen T R, Sun Z Y, Wu B Y 2017 Appl. Math. Model. 47 745Google Scholar

    [27]

    Li H L, Zhang L, Teng Z D, Jiang Y L 2015 J. Appl. Math. Comput. 53 223Google Scholar

    [28]

    Berenstein I, Beta C 2013 Chaos 23 033119Google Scholar

    [29]

    Wang P F, Zhao M, Yu H G, Dai C J, Wang N, Wang B B 2016 Discrete Dyn. Nat. Soc. 2016 4893451Google Scholar

    [30]

    Roussel C J, Roussel M R 2004 Prog. Biophys. Mol. Biol. 86 113Google Scholar

    [31]

    Ling Z, Zhang L, Lin Z G 2014 Appl. Math. Model. 38 5022Google Scholar

    [32]

    He Y F, Ai B Q, Dai C X, Song C, Wang R Q, Sun W T, Liu F C, Feng Y 2020 Phys. Rev. Lett. 124 75001Google Scholar

    [33]

    Zemskov E P, Kassner K, Hauser M J B, Horsthemke W 2013 Phys. Rev. E 87 032906Google Scholar

    [34]

    Li W S, Hu W Y, Pang Y C, Liu T R, Zhong W R, Shao Y Z 2012 Phys. Rev. E 85 066132Google Scholar

    [35]

    胡文勇, 邵元智 2014 63 238202Google Scholar

    Hu W Y, Shao Y Z 2014 Acta Phys. Sin. 63 238202Google Scholar

    [36]

    Chen W Q, Zhang H, Ying H P, Li B W, Chen J X 2007 J. Chem. Phys. 127 154708Google Scholar

    [37]

    Picozzi A, Rica S 2008 EPL 84 34004Google Scholar

    [38]

    Roussel M R, Wang J C 2001 Phys. Rev. Lett. 87 188302Google Scholar

    [39]

    Gambino G, Lombardo M C, Sammartino M 2018 Phys. Rev. E 97 012220Google Scholar

    [40]

    Mukherjee N, Ghorai S, Banerjee M 2018 Ecol. Complex. 36 276Google Scholar

    [41]

    Liu C, Li L, Wang Z, Wang R W 2019 Appl. Math. Comput. 342 255Google Scholar

    [42]

    Peña B, Pérez-García C, Sanz-Anchelergues A, Miguez D G, Munuzuri A P 2003 Phys. Rev. E 68 056206Google Scholar

    [43]

    Yang R 2022 Chaos Solitons Fractals 164 112695Google Scholar

    [44]

    欧阳颀 2010 非线性科学与斑图动力学导论(北京: 北京大学出版社) 第144—160页

    Ouyang Q 2010 Nonlinear Science and the Pattern Dynamics Introduction (Beijing: Peking University Press) pp144–160

    [45]

    Verdasca J, de Wit A, Dewel G, Borckmans P 1992 Phys. Lett. A 168 194Google Scholar

    [46]

    Song D X, Li C, Song Y L 2020 Nonlinear Anal. Real World Appl. 54 103106Google Scholar

    [47]

    刘若琪, 贾萌萌, 范伟丽, 贺亚峰, 刘富成 2022 71 248201Google Scholar

    Liu R Q, Jia M M, Fan W L, He Y F, Liu F C 2022 Acta Phys. Sin. 71 248201Google Scholar

  • 图 1  $ a = 3 $, $ b = 9 $, $ {D_u} = 3 $, $ {D_v} = 10 $时, 交叉扩散存在下的图灵空间. 点线、粗实线、细实线和虚线分别对应(3a)式—(3d)式

    Fig. 1.  Turing space in the present of cross diffusion for $ a = 3 $, $ b = 9 $, $ {D_u} = 3 $, and $ {D_v} = 10 $. Thick solid line, dotted line, thin solid line, and dotted line correspond to Eqs. (3a)-(3d), respectively.

    图 2  单向交叉扩散$ {D_{uv}} $引发的图灵斑图转变 (a)色散曲线; (b)条纹斑图, $ {D_{uv}} = 0 $; (c)点状六边形与条纹混合斑图, $ {D_{uv}} = 2 $; (d)点状六边形斑图, $ {D_{uv}} = 4.5 $

    Fig. 2.  Turing pattern transition induced by one-way cross diffusion term $ {D_{uv}} $: (a) Dispersion curves; (b) stripe pattern, $ {D_{uv}} = 0 $; (c) mixed pattern with stripes and spots, $ {D_{uv}} = 2 $; (d) hexagonal spot pattern, $ {D_{uv}} = 4.5 $.

    图 3  单向交叉扩散$ {D_{vu}} $引发的图灵斑图转变 (a)色散曲线; (b)条纹斑图, $ {D_{vu}} = 0.5 $; (c)蜂窝状六边形斑图, $ {D_{vu}} = 1.5 $; (d)均匀态, $ {D_{vu}} = 3 $

    Fig. 3.  Turing pattern transition induced by one-way cross diffusion term $ {D_{vu}} $: (a) Dispersion curves; (b) stripe pattern, $ {D_{vu}} = 0.5 $; (c) honeycomb hexagonal pattern, $ {D_{vu}} = 1.5 $; (d) uniform state, $ {D_{vu}} = 3 $.

    图 4  对称双向交叉扩散作用下图灵斑图的转变过程 (a)色散曲线; (b)条纹斑图, $ {D_{uv}} = {D_{vu}} = 1 $; (c)蜂窝状六边形与条状混合斑图, $ {D_{uv}} = {D_{vu}} = 3 $; (d)多模混合斑图, $ {D_{uv}} = {D_{vu}} = 5 $

    Fig. 4.  Turing pattern transition induced by symmetrical two-way cross-diffusion: (a) Dispersion curves; (b) stripe pattern, $ {D_{uv}} = {D_{vu}} = 1 $; (c) mixed pattern with honeycomb hexagons and stripes, $ {D_{uv}} = {D_{vu}} = 3 $; (d) multimode mixed pattern, $ {D_{uv}} = {D_{vu}} = 5 $.

    图 5  非对称交叉扩散项下图灵斑图的转变过程, $ {D_{uv}} = 1 $ (a)色散曲线; (b)条纹斑图, $ {D_{vu}} = 0 $; (c)蜂窝状六边形斑图, $ {D_{vu}} = 2.5 $; (d)均匀态, $ {D_{vu}} = 5 $

    Fig. 5.  Turing pattern transition induced by asymmetrical two-way cross-diffusion at $ {D_{uv}} = 1 $: (a) Dispersion curves; (b) stripe pattern, $ {D_{vu}} = 0 $; (c) honeycomb hexagonal pattern, $ {D_{vu}} = 2.5 $; (d) uniform state, $ {D_{vu}} = 5 $.

    图 6  浓度依赖交叉扩散$ {D_{uv}} = {D_0}(1 + \beta v) $引起图灵斑图的转变, $ {D_0} = 2 $, $ {D_{vu}} = 2 $ (a) 均匀态, $ \beta = - 0.6 $; (b) 蜂窝六边形斑图, $ \beta = - 0.4 $; (c) 蜂窝六边形与条纹混合斑图, $ \beta = - 0.2 $; (d) 条纹斑图, $ \beta = 0 $; (e) 条纹与点状混合斑图, $ \beta = 0.8 $; (f) 点状六边形斑图, $ \beta = 1.5 $

    Fig. 6.  Turing pattern transition induced by cross-diffusion coefficient with concentration-dependence ($ {D_{uv}} = {D_0}(1 + \beta v) $), $ {D_0} = 2 $, $ {D_{vu}} = 2 $: (a) Uniform state, $ \beta = - 0.6 $; (b) honeycomb hexagonal pattern, $ \beta = - 0.4 $; (c) mixed pattern with honeycomb hexagons and stripes, $ \beta = - 0.2 $; (d) stripe pattern, $ \beta = 0 $; (e) mixed pattern with stripes and spots, $ \beta = 0.8 $; (f) hexagonal spot pattern, $ \beta = 1.5 $.

    图 7  浓度依赖交叉扩散$ {D_{vu}} = {D_0}(1 + \beta u) $引起图灵斑图的转变, $ {D_0} = 2 $, $ {D_{uv}} = 2 $ (a) 点状六边形斑图, $ \beta = - 0.30 $; (b) 条纹与点状六边形混合斑图, $ \beta = - 0.22 $; (c) 条纹斑图, $ \beta = 0 $; (d) 蜂窝状六边形与条纹混合斑图, $ \beta = 0.08 $; (e) 蜂窝状六边形斑图, $ \beta = 0.20 $; (f) 均匀态, $ \beta = 0.80 $

    Fig. 7.  Turing pattern transition induced by cross-diffusion coefficient with concentration-dependence ($ {D_{vu}} = {D_0}(1 + \beta u) $), $ {D_0} = 2 $, $ {D_{uv}} = 2 $: (a) Hexagonal spot pattern, $ \beta = - 0.30 $; (b) mixed pattern with stripes and spots, $ \beta = - 0.22 $; (c) stripe pattern, $ \beta = 0 $; (d) mixed pattern with honeycomb hexagons and stripes, $ \beta = 0.08 $; (e) honeycomb hexagonal pattern, $ \beta = 0.20 $; (f) uniform state, $ \beta = 0.80 $.

    Baidu
  • [1]

    Gao S P, Chang L L, Perc M, Wang Z 2023 Phys. Rev. E 107 014216Google Scholar

    [2]

    Fuseya Y, Katsuno H, Behnia K, Kapitulnik A 2021 Nat. Phys. 17 1031Google Scholar

    [3]

    Halatek J, Frey E 2018 Nat. Phys. 14 507Google Scholar

    [4]

    Wang X L, Wang W D, Zhang G H 2017 Commun. Nonlinear Sci. Numer. Simulat. 42 571Google Scholar

    [5]

    Turing A M 1952 Philos. Trans. R. Soc. London Ser. B 237 37Google Scholar

    [6]

    Ouyang Q, Swinney H L 1991 Nature 352 610Google Scholar

    [7]

    Callahan T K, Knobloch E 1999 Physica D 132 339Google Scholar

    [8]

    Haas P A, Goldstein R E 2021 Phys. Rev. Lett. 126 238101Google Scholar

    [9]

    Landge A N, Jordan B M, Diego X, Muller P 2020 Dev. Biol. 460 2Google Scholar

    [10]

    Kumar N, Horsthemke W 2011 Phys. Rev. E 83 036105Google Scholar

    [11]

    Yang R 2022 Nonlinear Dyn. 110 1753Google Scholar

    [12]

    Tang X S, Song Y L, Zhang T H 2016 Nonlinear Dyn. 86 73Google Scholar

    [13]

    Vanag V K, Epstein I R 2009 Int. J. Dev. Biol. 53 673Google Scholar

    [14]

    Cui R F, Chen Q H, Chen J X 2020 Nanoscale 12 12275Google Scholar

    [15]

    Chen J X, Chen Y G, Kapral R 2018 Adv. Sci. 5 1800028Google Scholar

    [16]

    Kerner E H 1957 Bull. Math. Biol. 19 121Google Scholar

    [17]

    Souna F, Djilali S, Lakmeche A 2021 Eur. Phys. J. Plus 136 474Google Scholar

    [18]

    Guin L N 2015 Math. Comput. Simulat. 109 174Google Scholar

    [19]

    Gambino G, Lombardo M C, Sammartino M 2013 Nonlinear Anal. Real World Appl. 14 1755Google Scholar

    [20]

    Liu B, Wu R C, Chen L P 2018 Math. Biosci. 298 71Google Scholar

    [21]

    Ma T T, Meng X Z 2022 Math. Biosci. Eng. 19 6040Google Scholar

    [22]

    Xie Z F 2012 J. Math. Anal. Appl. 388 539Google Scholar

    [23]

    Chung J M, Peacock-López E 2007 Phys. Lett. A 371 41Google Scholar

    [24]

    Zhu L H, He L 2022 Nonlinear Dyn. 110 1935Google Scholar

    [25]

    Han R J, Dai B X 2019 Nonlinear Anal. Real World Appl. 45 822Google Scholar

    [26]

    Chen T R, Sun Z Y, Wu B Y 2017 Appl. Math. Model. 47 745Google Scholar

    [27]

    Li H L, Zhang L, Teng Z D, Jiang Y L 2015 J. Appl. Math. Comput. 53 223Google Scholar

    [28]

    Berenstein I, Beta C 2013 Chaos 23 033119Google Scholar

    [29]

    Wang P F, Zhao M, Yu H G, Dai C J, Wang N, Wang B B 2016 Discrete Dyn. Nat. Soc. 2016 4893451Google Scholar

    [30]

    Roussel C J, Roussel M R 2004 Prog. Biophys. Mol. Biol. 86 113Google Scholar

    [31]

    Ling Z, Zhang L, Lin Z G 2014 Appl. Math. Model. 38 5022Google Scholar

    [32]

    He Y F, Ai B Q, Dai C X, Song C, Wang R Q, Sun W T, Liu F C, Feng Y 2020 Phys. Rev. Lett. 124 75001Google Scholar

    [33]

    Zemskov E P, Kassner K, Hauser M J B, Horsthemke W 2013 Phys. Rev. E 87 032906Google Scholar

    [34]

    Li W S, Hu W Y, Pang Y C, Liu T R, Zhong W R, Shao Y Z 2012 Phys. Rev. E 85 066132Google Scholar

    [35]

    胡文勇, 邵元智 2014 63 238202Google Scholar

    Hu W Y, Shao Y Z 2014 Acta Phys. Sin. 63 238202Google Scholar

    [36]

    Chen W Q, Zhang H, Ying H P, Li B W, Chen J X 2007 J. Chem. Phys. 127 154708Google Scholar

    [37]

    Picozzi A, Rica S 2008 EPL 84 34004Google Scholar

    [38]

    Roussel M R, Wang J C 2001 Phys. Rev. Lett. 87 188302Google Scholar

    [39]

    Gambino G, Lombardo M C, Sammartino M 2018 Phys. Rev. E 97 012220Google Scholar

    [40]

    Mukherjee N, Ghorai S, Banerjee M 2018 Ecol. Complex. 36 276Google Scholar

    [41]

    Liu C, Li L, Wang Z, Wang R W 2019 Appl. Math. Comput. 342 255Google Scholar

    [42]

    Peña B, Pérez-García C, Sanz-Anchelergues A, Miguez D G, Munuzuri A P 2003 Phys. Rev. E 68 056206Google Scholar

    [43]

    Yang R 2022 Chaos Solitons Fractals 164 112695Google Scholar

    [44]

    欧阳颀 2010 非线性科学与斑图动力学导论(北京: 北京大学出版社) 第144—160页

    Ouyang Q 2010 Nonlinear Science and the Pattern Dynamics Introduction (Beijing: Peking University Press) pp144–160

    [45]

    Verdasca J, de Wit A, Dewel G, Borckmans P 1992 Phys. Lett. A 168 194Google Scholar

    [46]

    Song D X, Li C, Song Y L 2020 Nonlinear Anal. Real World Appl. 54 103106Google Scholar

    [47]

    刘若琪, 贾萌萌, 范伟丽, 贺亚峰, 刘富成 2022 71 248201Google Scholar

    Liu R Q, Jia M M, Fan W L, He Y F, Liu F C 2022 Acta Phys. Sin. 71 248201Google Scholar

  • [1] 梁澎军, 朱天翔, 肖懿鑫, 王奕洋, 韩永建, 周宗权, 李传锋. 浓度依赖的掺铕硅酸钇晶体的光学和自旋非均匀展宽.  , 2024, 73(10): 100301. doi: 10.7498/aps.73.20240116
    [2] 陆源杉, 肖敏, 万佑红, 丁洁, 蒋海军. 交叉扩散驱动的SI模型空间斑图.  , 2024, 73(8): 080201. doi: 10.7498/aps.73.20231877
    [3] 洪昕, 王晓强, 李冬雪, 商云晶. 不依赖激发光偏振方向的芯帽异构二聚体.  , 2022, 71(3): 037801. doi: 10.7498/aps.71.20211381
    [4] 刘倩, 田淼, 范伟丽, 贾萌萌, 马凤娜, 刘富成. 空间周期性驱动对双层耦合反应扩散系统中图灵斑图的影响.  , 2022, 71(9): 098201. doi: 10.7498/aps.71.20212148
    [5] 刘若琪, 贾萌萌, 范伟丽, 贺亚峰, 刘富成. 异质环境下各向异性扩散对图灵斑图的影响.  , 2022, 71(24): 248201. doi: 10.7498/aps.71.20221294
    [6] 洪昕, 王晓强, 李冬雪, 商云晶. 不依赖激发光偏振方向的芯帽异构二聚体.  , 2021, (): . doi: 10.7498/aps.70.20211381
    [7] 刘雅慧, 董梦菲, 刘富成, 田淼, 王硕, 范伟丽. 双层耦合非对称反应扩散系统中的振荡图灵斑图.  , 2021, 70(15): 158201. doi: 10.7498/aps.70.20201710
    [8] 刘富成, 刘雅慧, 周志向, 郭雪, 董梦菲. 双层耦合非对称反应扩散系统中的超点阵斑图.  , 2020, 69(2): 028201. doi: 10.7498/aps.69.20191353
    [9] 李新政, 白占国, 李燕. 双层耦合介质中四边形图灵斑图的数值研究.  , 2019, 68(6): 068201. doi: 10.7498/aps.68.20182167
    [10] 高当丽, 李蓝星, 冯小娟, 种波, 辛红, 赵瑾, 张翔宇. Yb浓度对功率依赖的上转换荧光色彩的敏感度调控.  , 2018, 67(22): 223201. doi: 10.7498/aps.67.20181167
    [11] 张荣培, 王震, 王语, 韩子健. 反应扩散模型在图灵斑图中的应用及数值模拟.  , 2018, 67(5): 050503. doi: 10.7498/aps.67.20171791
    [12] 吴德会, 刘志天, 王晓红, 苏令锌. 表面缺陷的方向性对漏磁场分布的影响.  , 2017, 66(4): 048102. doi: 10.7498/aps.66.048102
    [13] 胡文勇, 邵元智. 局域浓度调控扩散系数的次氯酸-碘离子-丙二酸系统图灵斑图形成中的反常扩散.  , 2014, 63(23): 238202. doi: 10.7498/aps.63.238202
    [14] 李新政, 白占国, 李燕, 赵昆, 贺亚峰. 双层非线性耦合反应扩散系统中复杂Turing斑图.  , 2013, 62(22): 220503. doi: 10.7498/aps.62.220503
    [15] 孟庆裕, 张庆, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭. Eu3+掺杂CaWO4红色荧光粉发光性质的浓度依赖关系研究.  , 2012, 61(10): 107804. doi: 10.7498/aps.61.107804
    [16] 蒋双凤, 孔凡敏, 李康, 高晖. 光偶极天线的远场方向性研究.  , 2011, 60(4): 045203. doi: 10.7498/aps.60.045203
    [17] 陈德彝, 王忠龙. 白交叉关联色噪声驱动的线性振子的扩散.  , 2010, 59(1): 111-115. doi: 10.7498/aps.59.111
    [18] 季小玲. 大气湍流对径向分布高斯列阵光束扩展和方向性的影响.  , 2010, 59(1): 692-698. doi: 10.7498/aps.59.692
    [19] 张旭, 沈柯. 环形腔中激光振荡输出的横向斑图及向光学湍流的转变.  , 2001, 50(11): 2116-2120. doi: 10.7498/aps.50.2116
    [20] 王克逸;汪景昌. 与浓度相关的扩散系数计算--逼近法.  , 1989, 38(8): 1329-1333. doi: 10.7498/aps.38.1329
计量
  • 文章访问数:  3230
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-06
  • 修回日期:  2023-08-07
  • 上网日期:  2023-08-08
  • 刊出日期:  2023-10-05

/

返回文章
返回
Baidu
map