搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阿秒脉冲的发展及其在原子分子超快动力学中的应用

陶琛玉 雷建廷 余璇 骆炎 马新文 张少锋

引用本文:
Citation:

阿秒脉冲的发展及其在原子分子超快动力学中的应用

陶琛玉, 雷建廷, 余璇, 骆炎, 马新文, 张少锋

Development of attosecond pulses and their application to ultrafast dynamics of atoms and molecules

Tao Chen-Yu, Lei Jian-Ting, Yu Xuan, Luo Yan, Ma Xin-Wen, Zhang Shao-Feng
PDF
HTML
导出引用
  • 在过去20年里, 激光技术的发展使阿秒科学成为一个新的研究领域, 可为量子少体超快演化过程的研究提供新视角. 当前实验室中制备的阿秒脉冲以孤立脉冲或脉冲串的形式被广泛应用于实验研究中, 其超快变化的光场允许人们操控和跟踪电子在原子尺度的运动, 实现对亚飞秒时间尺度电子动力学的实时追踪. 本综述聚焦于阿秒科学的重要组成部分, 即原子分子超快动力学研究的进展. 首先介绍阿秒脉冲的产生和发展, 主要包括高次谐波原理和孤立阿秒脉冲分离方法; 然后系统地介绍阿秒脉冲在原子分子超快动力学研究中的应用, 包括光电离时间延迟、阿秒电荷迁移和非绝热分子动力学等方面; 最后对阿秒脉冲在原子分子超快动力学研究中的应用进行总结和展望.
    In the past two decades, the development of laser technology has made attosecond science become a cutting-edge research field, providing various novel perspectives for the study of quantum few-body ultrafast evolution. At present, the attosecond pulses prepared in laboratories are widely used in experimental research in the form of isolated pulses or pulse trains. The ultrafast changing light field allows one to control and track the motions of electrons on an atomic scale, and realize the real-time tracking of electron dynamics on a sub-femtosecond time scale. This review focuses on the research progress of ultrafast dynamics of atoms and molecules, which is an important part of attosecond science. Firstly, the generation and development of attosecond pulses are reviewed, mainly including the principle of high-order harmonic and the separation method of single-attosecond pulses. Then the applications of attosecond pulses are systematically introduced, including photo-ionization time delay, attosecond charge migration, and non-adiabatic molecular dynamics. Finally, the summary and outlook of the application of attosecond pulses are presented.
      通信作者: 张少锋, zhangshf@impcas.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1602500)资助的课题.
      Corresponding author: Zhang Shao-Feng, zhangshf@impcas.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1602500).
    [1]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595Google Scholar

    [2]

    Ferray M, L’Huillier A, Li X F, Lompre L A, Mainfray G, Manus C 1988 J. Phys. B At. Mol. Opt. Phys. 21 L31Google Scholar

    [3]

    Peng L Y, Jiang W C, Geng J W, Xiong W H, Gong Q 2015 Phys. Rep. 575 1Google Scholar

    [4]

    Pupeza I, Zhang C, Högner M, Ye J 2021 Nat. Photonics 15 175Google Scholar

    [5]

    Chini M, Beetar J E, Gholam-Mirzaei S 2022 Prog. Opt. 67 125Google Scholar

    [6]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [7]

    Nisoli M, Sansone G 2009 Prog. Quantum Electron. 33 17Google Scholar

    [8]

    Chini M, Zhao K, Chang Z 2014 Nat. Photonics 8 178Google Scholar

    [9]

    Gallmann L, Jordan I, Wörner H J, Castiglioni L, Hengsberger M, Osterwalder J, Arrell C A, Chergui M, Liberatore E, Rothlisberger U, Keller U 2017 Struct. Dyn. 4 061502Google Scholar

    [10]

    Deshmukh P C, Banerjee S 2021 Int. Rev. Phys. Chem. 40 127Google Scholar

    [11]

    Kheifets A S 2023 J. Phys. B At. Mol. Opt. Phys. 56 022001Google Scholar

    [12]

    Calegari F, Trabattoni A, Palacios A, Ayuso D, Castrovilli M C, Greenwood J B, Decleva P, Martín F, Nisoli M 2016 J. Phys. B At. Mol. Opt. Phys. 49 142001Google Scholar

    [13]

    Wörner H J, Arrell C A, Banerji N, et al. 2017 Struct. Dyn. 4 061508Google Scholar

    [14]

    Belshaw L, Calegari F, Duffy M J, Trabattoni A, Poletto L, Nisoli M, Greenwood J B 2012 J. Phys. Chem. Lett. 3 3751Google Scholar

    [15]

    Calegari F, Ayuso D, Trabattoni A, et al. 2014 Science 346 336Google Scholar

    [16]

    Calegari F, Ayuso D, Trabattoni A, Belshaw L, De Camillis S, Frassetto F, Poletto L, Palacios A, Decleva P, Greenwood J B, Martin F, Nisoli M 2015 IEEE J. Sel. Top. Quantum Electron. 21 1Google Scholar

    [17]

    Tehlar A, von Conta A, Arasaki Y, Takatsuka K, Wörner H J 2018 J. Chem. Phys. 149 034307Google Scholar

    [18]

    Schnappinger T, de Vivie-Riedle R 2021 J. Chem. Phys. 154 134306Google Scholar

    [19]

    Maiman T H 1969 Essent. Lasers 5 134Google Scholar

    [20]

    Hargrove L E, Fork R L, Pollack M A 1964 Appl. Phys. Lett. 5 4Google Scholar

    [21]

    Mocker H W, Collins R J 1965 Appl. Phys. Lett. 7 270Google Scholar

    [22]

    Ippen E P, Shank C V, Dienes A 1972 Appl. Phys. Lett. 21 348Google Scholar

    [23]

    Sutter D H, Steinmeyer G, Gallmann L, Matuschek N, Morier-Genoud F, Keller U, Scheuer V, Angelow G, Tschudi T 1999 Opt. Lett. 24 631Google Scholar

    [24]

    Wirth A, Hassan M Th, Grguraš I, Gagnon J, Moulet A, Luu T T, Pabst S, Santra R, Alahmed Z A, Azzeer A M, Yakovlev V S, Pervak V, Krausz F, Goulielmakis E 2011 Science 334 195Google Scholar

    [25]

    Hassan M Th, Wirth A, Grguraš I, Moulet A, Luu T T, Gagnon J, Pervak V, Goulielmakis E 2012 Rev. Sci. Instrum. 83 111301Google Scholar

    [26]

    Silva F, Alonso B, Holgado W, Romero R, Román J S, Jarque E C, Koop H, Pervak V, Crespo H, Sola Í J 2018 Opt. Lett. 43 337Google Scholar

    [27]

    Hassan M Th, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66Google Scholar

    [28]

    Calegari F, Sansone G, Stagira S, Vozzi C, Nisoli M 2016 J. Phys. B At. Mol. Opt. Phys. 49 062001Google Scholar

    [29]

    Howard A J, Cheng C, Forbes R, McCracken G A, Mills W H, Makhija V, Spanner M, Weinacht T, Bucksbaum P H 2021 Phys. Rev. A 103 043120Google Scholar

    [30]

    Chen M C, Arpin P, Popmintchev T, Gerrity M, Zhang B, Seaberg M, Popmintchev D, Murnane M M, Kapteyn H C 2010 Phys. Rev. Lett. 105 173901Google Scholar

    [31]

    Popmintchev T, Chen M C, Bahabad A, Gerrity M, Sidorenko P, Cohen O, Christov I P, Murnane M M, Kapteyn H C 2009 Proc. Natl. Acad. Sci. 106 10516Google Scholar

    [32]

    Li X F, L’Huillier A, Ferray M, Lompré L A, Mainfray G 1989 Phys. Rev. A 39 5751Google Scholar

    [33]

    Macklin J J, Kmetec J D, Gordon C L 1993 Phys. Rev. Lett. 70 766Google Scholar

    [34]

    L’Huillier A, Balcou P 1993 Phys. Rev. Lett. 70 774Google Scholar

    [35]

    Popmintchev T, Chen M C, Arpin P, Murnane M M, Kapteyn H C 2010 Nat. Photonics 4 822Google Scholar

    [36]

    Yu X, Wang N, Lei J T, Shao J X, Morishita T, Zhao S F, Najjari B, Ma X W, Zhang S F 2022 Phys. Rev. A 106 023114Google Scholar

    [37]

    Eberly J H, Su Q, Javanainen J 1989 Phys. Rev. Lett 62 881Google Scholar

    [38]

    Schafer K J, Yang B, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett 70 1599Google Scholar

    [39]

    Corkum P B 1993 Phys. Rev. Lett 71 1994Google Scholar

    [40]

    Arnold C L, Isinger M, Busto D, Guénot D, Nandi S, Zhong S, Dahlström J M, Gisselbrecht M, l’Huillier A 2018 Photoniques 28

    [41]

    Gallagher T F 1988 Phys. Rev. Lett. 61 2304Google Scholar

    [42]

    Krause J L, Schafer K J, Kulander K C 1992 Phys. Rev. Lett. 68 3535Google Scholar

    [43]

    Papadogiannis N A, Witzel B, Kalpouzos C, Charalambidis D 1999 Phys. Rev. Lett. 83 4289Google Scholar

    [44]

    Shan B, Chang Z 2001 Phys. Rev. A 65 011804Google Scholar

    [45]

    Lai C J, Cirmi G, Hong K H, Moses J, Huang S W, Granados E, Keathley P, Bhardwaj S, Kärtner F X 2013 Phys. Rev. Lett. 111 073901Google Scholar

    [46]

    Shiner A D, Trallero-Herrero C, Kajumba N, Bandulet H C, Comtois D, Légaré F, Giguère M, Kieffer J C, Corkum P B, Villeneuve D M 2009 Phys. Rev. Lett. 103 073902Google Scholar

    [47]

    Eichmann H, Egbert A, Nolte S, Momma C, Wellegehausen B, Becker W, Long S, McIver J K 1995 Phys. Rev. A 51 R3414Google Scholar

    [48]

    Weihe F A, Dutta S K, Korn G, Du D, Bucksbaum P H, Shkolnikov P L 1995 Phys. Rev. A 51 R3433Google Scholar

    [49]

    Strelkov V V, Gonoskov A A, Gonoskov I A, Ryabikin M Yu 2011 Phys. Rev. Lett. 107 043902Google Scholar

    [50]

    Fleischer A, Kfir O, Diskin T, Sidorenko P, Cohen O 2014 Nat. Photonics 8 543Google Scholar

    [51]

    Kfir O, Grychtol P, Turgut E, Knut R, Zusin D, Popmintchev D, Popmintchev T, Nembach H, Shaw J M, Fleischer A, Kapteyn H, Murnane M, Cohen O 2015 Nat. Photonics 9 99Google Scholar

    [52]

    Lewenstein M, Balcou Ph, Ivanov M Yu, L’Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [53]

    Amini K, Biegert J, Calegari F, et al. 2019 Rep. Prog. Phys. 82 116001Google Scholar

    [54]

    Yost D C, Schibli T R, Ye J, Tate J L, Hostetter J, Gaarde M B, Schafer K J 2009 Nat. Phys. 5 815Google Scholar

    [55]

    Power E P, March A M, Catoire F, Sistrunk E, Krushelnick K, Agostini P, DiMauro L F 2010 Nat. Photonics 4 352Google Scholar

    [56]

    Zaïr A, Holler M, Guandalini A, et al. 2008 Phys. Rev. Lett. 100 143902Google Scholar

    [57]

    Schiessl K, Ishikawa K L, Persson E, Burgdörfer J 2007 Phys. Rev. Lett. 99 253903Google Scholar

    [58]

    Kim I J, Kim C M, Kim H T, Lee G H, Lee Y S, Park J Y, Cho D J, Nam C H 2005 Phys. Rev. Lett. 94 243901Google Scholar

    [59]

    Frumker E, Kajumba N, Bertrand J B, Wörner H J, Hebeisen C T, Hockett P, Spanner M, Patchkovskii S, Paulus G G, Villeneuve D M, Naumov A, Corkum P B 2012 Phys. Rev. Lett. 109 233904Google Scholar

    [60]

    DiChiara A D, Sistrunk E, Miller T A, Agostini P, DiMauro L F 2009 Opt. Express 17 20959Google Scholar

    [61]

    Luu T T, Yin Z, Jain A, Gaumnitz T, Pertot Y, Ma J, Wörner H J 2018 Nat. Commun. 9 3723Google Scholar

    [62]

    Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F, Reis D A 2011 Nat. Phys. 7 138Google Scholar

    [63]

    Ghimire S, Ndabashimiye G, DiChiara A D, Sistrunk E, Stockman M I, Agostini P, DiMauro L F, Reis D A 2014 J. Phys. B At. Mol. Opt. Phys. 47 204030Google Scholar

    [64]

    Vampa G, McDonald C R, Orlando G, Corkum P B, Brabec T 2015 Phys. Rev. B 91 064302Google Scholar

    [65]

    Kruchinin S Yu, Krausz F, Yakovlev V S 2018 Rev. Mod. Phys. 90 021002Google Scholar

    [66]

    Yu C, Jiang S, Lu R 2019 Adv. Phys. X 4 1562982Google Scholar

    [67]

    Park J, Subramani A, Kim S, Ciappina M F 2022 Adv. Phys. X 7 2003244Google Scholar

    [68]

    Ganeev R, Suzuki M, Baba M, Kuroda H, Ozaki T 2005 Opt. Lett. 30 768Google Scholar

    [69]

    Flettner A, Pfeifer T, Walter D, Winterfeldt C, Spielmann C, Gerber G 2003 Appl. Phys. B 77 747Google Scholar

    [70]

    Burnett N H, Baldis H A, Richardson M C, Enright G D 1977 Appl. Phys. Lett. 31 172Google Scholar

    [71]

    Carman R L, Forslund D W, Kindel J M 1981 Phys. Rev. Lett. 46 29Google Scholar

    [72]

    von der Linde D, Engers T, Jenke G, Agostini P, Grillon G, Nibbering E, Mysyrowicz A, Antonetti A 1995 Phys. Rev. A 52 R25Google Scholar

    [73]

    Norreys P A, Zepf M, Moustaizis S, Fews A P, Zhang J, Lee P, Bakarezos M, Danson C N, Dyson A, Gibbon P, Loukakos P, Neely D, Walsh F N, Wark J S, Dangor A E 1996 Phys. Rev. Lett. 76 1832Google Scholar

    [74]

    Chin A H, Calderón O G, Kono J 2001 Phys. Rev. Lett. 86 3292Google Scholar

    [75]

    Ndabashimiye G, Ghimire S, Wu M, Browne D A, Schafer K J, Gaarde M B, Reis D A 2016 Nature 534 520Google Scholar

    [76]

    Langer F, Hohenleutner M, Huttner U, Koch S W, Kira M, Huber R 2017 Nat. Photonics 11 227Google Scholar

    [77]

    You Y S, Reis D A, Ghimire S 2017 Nat. Phys. 13 345Google Scholar

    [78]

    Korobenko A, Saha S, Godfrey A T K, Gertsvolf M, Naumov A Yu, Villeneuve D M, Boltasseva A, Shalaev V M, Corkum P B 2021 Nat. Commun. 12 4981Google Scholar

    [79]

    Lou Z, Zheng Y, Liu C, Zhang L, Ge X, Li Y, Wang J, Zeng Z, Li R, Xu Z 2020 Opt. Commun. 469 125769Google Scholar

    [80]

    Baykusheva D, Chacón A, Lu J, Bailey T P, Sobota J A, Soifer H, Kirchmann P S, Rotundu C, Uher C, Heinz T F, Reis D A, Ghimire S 2021 Nano Lett. 21 8970Google Scholar

    [81]

    You Y S, Yin Y, Wu Y, Chew A, Ren X, Zhuang F, Gholam-Mirzaei S, Chini M, Chang Z, Ghimire S 2017 Nat. Commun. 8 724Google Scholar

    [82]

    Liu J Q, Bian X B 2021 Phys. Rev. Lett. 127 213901Google Scholar

    [83]

    Fedotov A B, Gladkov S M, Koroteev N I, Zheltikov A M 1991 J. Opt. Soc. Am. B 8 363Google Scholar

    [84]

    Theobald W, Wülker C, Schäfer F P, Chichkov B N 1995 Opt. Commun. 120 177Google Scholar

    [85]

    Ganeev R A, Redkorechev V I, Usmanov T 1997 Opt. Commun. 135 251Google Scholar

    [86]

    Ganeev R A, Suzuki M, Baba M, Kuroda H 2005 Appl. Phys. B 81 1081Google Scholar

    [87]

    Ganeev R A, Singhal H, Naik P A, Chakravarty U, Arora V, Chakera J A, Khan R A, Raghuramaiah M, Kumbhare S R, Kushwaha R P, Gupta P D 2007 Appl. Phys. B 87 243Google Scholar

    [88]

    Ganeev R A, Bom L B E, Kieffer J C, Suzuki M, Kuroda H, Ozaki T 2007 Phys. Rev. A 76 023831Google Scholar

    [89]

    Ganeev R A, Singhal H, Naik P A, Kulagin I A, Redkin P V, Chakera J A, Tayyab M, Khan R A, Gupta P D 2009 Phys. Rev. A 80 033845Google Scholar

    [90]

    Ganeev R A, Suzuki M, Kuroda H 2014 J. Opt. Soc. Am. B 31 911Google Scholar

    [91]

    Ganeev R A, Naik P A, Singhal H, Chakera J A, Gupta P D 2007 Opt. Lett. 32 65Google Scholar

    [92]

    Ganeev R A, Witting T, Hutchison C, Frank F, Tudorovskaya M, Lein M, Okell W A, Zaïr A, Marangos J P, Tisch J W G 2012 Opt. Express 20 25239Google Scholar

    [93]

    Ganeev R A 2014 J. Opt. Soc. Am. B 31 2221Google Scholar

    [94]

    海帮, 张少锋, 张敏, 董达谱, 雷建廷, 赵冬梅, 马新文 2020 69 234208Google Scholar

    Hai B, Zhang S F, Zhang M, Dong D P, Lei J T, Zhao D M, Ma X W 2020 Acta Phys. Sin. 69 234208Google Scholar

    [95]

    Zhang M, Najjari B, Hai B, Zhao D M, Lei J T, Dong D P, Zhang S F, Ma X W 2020 Chin. Phys. B 29 063302Google Scholar

    [96]

    Hai B, Zhang S F, Zhang M, Najjari B, Dong D P, Lei J T, Zhao D M, Ma X 2020 Phys. Rev. A 101 052706Google Scholar

    [97]

    雷建廷, 余璇, 史国强, 闫顺成, 孙少华, 王全军, 丁宝卫, 马新文, 张少锋, 丁晶洁 2022 71 143201Google Scholar

    Lei J T, Yu X, Shi G Q, Yan S C, Sun S H, Wang Q J, Ding B W, Ma X W, Zhang S F, Ding J J 2022 Acta Phys. Sin. 71 143201Google Scholar

    [98]

    Sansone G, Poletto L, Nisoli M 2011 Nat. Photonics 5 655Google Scholar

    [99]

    Hänsch T W 1990 Opt. Commun. 80 71Google Scholar

    [100]

    Antoine P, L’Huillier A, Lewenstein M 1996 Phys. Rev. Lett. 77 1234Google Scholar

    [101]

    Farkas Gy, Tóth Cs 1992 Phys. Lett. A 168 447Google Scholar

    [102]

    Hentschel M, Kienberger R, Spielmann Ch, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [103]

    Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G A, Corkum P B, Krausz F 2001 Science 291 1923Google Scholar

    [104]

    Kienberger R, Hentschel M, Uiberacker M, et al. 2002 Science 297 1144Google Scholar

    [105]

    Chipperfield L E, Gaier L N, Knight P L, Marangos J P, Tisch J W G 2005 J. Mod. Opt. 52 243Google Scholar

    [106]

    Xu L, Hänsch T W, Spielmann Ch, Poppe A, Brabec T, Krausz F 1996 Opt. Lett. 21 2008Google Scholar

    [107]

    Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635Google Scholar

    [108]

    Apolonski A, Poppe A, Tempea G, Spielmann Ch, Udem Th, Holzwarth R, Hänsch T W, Krausz F 2000 Phys. Rev. Lett. 85 740Google Scholar

    [109]

    Christov I P, Zhou J, Peatross J, Rundquist A, Murnane M M, Kapteyn H C 1996 Phys. Rev. Lett. 77 1743Google Scholar

    [110]

    Zhou J, Peatross J, Murnane M M, Kapteyn H C, Christov I P 1996 Phys. Rev. Lett. 76 752Google Scholar

    [111]

    Christov I P, Murnane M M, Kapteyn H C 1997 Phys. Rev. Lett. 78 1251Google Scholar

    [112]

    Spielmann Ch, Burnett N H, Sartania S, Koppitsch R, Schnürer M, Kan C, Lenzner M, Wobrauschek P, Krausz F 1997 Science 278 661Google Scholar

    [113]

    Paulus G G, Grasbon F, Walther H, Villoresi P, Nisoli M, Stagira S, Priori E, De Silvestri S 2001 Nature 414 182Google Scholar

    [114]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614Google Scholar

    [115]

    Nisoli M, Sansone G, Stagira S, De Silvestri S, Vozzi C, Pascolini M, Poletto L, Villoresi P, Tondello G 2003 Phys. Rev. Lett. 91 213905Google Scholar

    [116]

    Baltuška A, Udem Th, Uiberacker M, Hentschel M, Goulielmakis E, Gohle Ch, Holzwarth R, Yakovlev V S, Scrinzi A, Hänsch T W, Krausz F 2003 Nature 421 611Google Scholar

    [117]

    Protopapas M, Lappas D G, Keitel C H, Knight P L 1996 Phys. Rev. A 53 R2933Google Scholar

    [118]

    Le Kien F, Midorikawa K, Suda A 1998 Phys. Rev. A 58 3311Google Scholar

    [119]

    Kienberger R, Goulielmakis E, Uiberacker M, et al. 2004 Nature 427 817Google Scholar

    [120]

    Witting T, Frank F, Okell W A, Arrell C A, Marangos J P, Tisch J W G 2012 J. Phys. B At. Mol. Opt. Phys. 45 074014Google Scholar

    [121]

    Zhan M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013 Chin. Phys. Lett. 30 093201Google Scholar

    [122]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express 25 27506Google Scholar

    [123]

    Yakovlev V S, Scrinzi A 2003 Phys. Rev. Lett. 91 153901Google Scholar

    [124]

    Haworth C A, Chipperfield L E, Robinson J S, Knight P L, Marangos J P, Tisch J W G 2007 Nat. Phys. 3 52Google Scholar

    [125]

    Pfeifer T, Jullien A, Abel M J, Nagel P M, Gallmann L, Neumark D M, Leone S R 2007 Opt. Express 15 17120Google Scholar

    [126]

    Jullien A, Pfeifer T, Abel M J, Nagel P M, Bell M J, Neumark D M, Leone S R 2008 Appl. Phys. B 93 433Google Scholar

    [127]

    Cao W, Lu P, Lan P, Wang X, Yang G 2006 Phys. Rev. A 74 063821Google Scholar

    [128]

    Ferrari F, Calegari F, Lucchini M, Vozzi C, Stagira S, Sansone G, Nisoli M 2010 Nat. Photonics 4 875Google Scholar

    [129]

    Abel M J, Pfeifer T, Nagel P M, Boutu W, Bell M J, Steiner C P, Neumark D M, Leone S R 2009 Chem. Phys. 366 9Google Scholar

    [130]

    Budil K S, Salières P, L’Huillier A, Ditmire T, Perry M D 1993 Phys. Rev. A 48 R3437Google Scholar

    [131]

    Corkum P B, Burnett N H, Ivanov M Y 1994 Opt. Lett. 19 1870Google Scholar

    [132]

    Möller M, Cheng Y, Khan S D, Zhao B, Zhao K, Chini M, Paulus G G, Chang Z 2012 Phys. Rev. A 86 011401Google Scholar

    [133]

    Sola I J, Mével E, Elouga L, Constant E, Strelkov V, Poletto L, Villoresi P, Benedetti E, Caumes J P, Stagira S, Vozzi C, Sansone G, Nisoli M 2006 Nat. Phys. 2 319Google Scholar

    [134]

    Tcherbakoff O, Mével E, Descamps D, Plumridge J, Constant E 2003 Phys. Rev. A 68 043804Google Scholar

    [135]

    Chang Z 2004 Phys. Rev. A 70 043802Google Scholar

    [136]

    Strelkov V, Zaïr A, Tcherbakoff O, López-Martens R, Cormier E, Mével E, Constant E 2005 J. Phys. B At. Mol. Opt. Phys. 38 L161Google Scholar

    [137]

    Chang Z 2005 Phys. Rev. A 71 023813Google Scholar

    [138]

    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, De Silvestri S, Nisoli M 2006 Science 314 443Google Scholar

    [139]

    Sansone G, Ferrari F, Vozzi C, Calegari F, Stagira S, Nisoli M 2009 J. Phys. B At. Mol. Opt. Phys. 42 134005Google Scholar

    [140]

    Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M, Chang Z 2017 Nat. Commun. 8 186Google Scholar

    [141]

    Yin Y, Li J, Ren X, Zhao K, Wu Y, Cunningham E, Chang Z 2016 Opt. Lett. 41 1142Google Scholar

    [142]

    Chang Z 2007 Phys. Rev. A 76 051403Google Scholar

    [143]

    Mauritsson J, Johnsson P, Gustafsson E, L’Huillier A, Schafer K J, Gaarde M B 2006 Phys. Rev. Lett. 97 013001Google Scholar

    [144]

    Merdji H, Auguste T, Boutu W, Caumes J P, Carré B, Pfeifer T, Jullien A, Neumark D M, Leone S R 2007 Opt. Lett. 32 3134Google Scholar

    [145]

    Mashiko H, Gilbertson S, Li C, Khan S D, Shakya M M, Moon E, Chang Z 2008 Phys. Rev. Lett. 100 103906Google Scholar

    [146]

    Mashiko H, Gilbertson S, Chini M, Feng X, Yun C, Wang H, Khan S D, Chen S, Chang Z 2009 Opt. Lett. 34 3337Google Scholar

    [147]

    Gilbertson S, Mashiko H, Li C, Khan S D, Shakya M M, Moon E, Chang Z 2008 Appl. Phys. Lett. 92 071109Google Scholar

    [148]

    Zhao K, Zhang Q, Chini M, Wu Y, Wang X, Chang Z 2012 Opt. Lett. 37 3891Google Scholar

    [149]

    Wang X, Wang L, Xiao F, Zhang D, Lü Z, Yuan J, Zhao Z 2020 Chin. Phys. Lett. 37 023201Google Scholar

    [150]

    Oron D, Silberberg Y, Dudovich N, Villeneuve D M 2005 Phys. Rev. A 72 063816Google Scholar

    [151]

    Feng X, Gilbertson S, Mashiko H, Wang H, Khan S D, Chini M, Wu Y, Zhao K, Chang Z 2009 Phys. Rev. Lett. 103 183901Google Scholar

    [152]

    Gilbertson S, Wu Y, Khan S D, Chini M, Zhao K, Feng X, Chang Z 2010 Phys. Rev. A 81 043810Google Scholar

    [153]

    Mashiko H, Oguri K, Sogawa T 2013 Appl. Phys. Lett. 102 171111Google Scholar

    [154]

    Wu Y, Cunningham E, Zang H, Li J, Chini M, Wang X, Wang Y, Zhao K, Chang Z 2013 Appl. Phys. Lett. 102 201104Google Scholar

    [155]

    Tzallas P, Skantzakis E, Kalpouzos C, Benis E P, Tsakiris G D, Charalambidis D 2007 Nat. Phys. 3 846Google Scholar

    [156]

    Skantzakis E, Tzallas P, Kruse J, Kalpouzos C, Charalambidis D 2009 Opt. Lett. 34 1732Google Scholar

    [157]

    Vincenti H, Quéré F 2012 Phys. Rev. Lett. 108 113904Google Scholar

    [158]

    Akturk S, Gu X, Bowlan P, Trebino R 2010 J. Opt. 12 093001Google Scholar

    [159]

    Akturk S, Gu X, Gabolde P, Trebino R 2005 Opt. Express 13 8642Google Scholar

    [160]

    Wheeler J A, Borot A, Monchocé S, Vincenti H, Ricci A, Malvache A, Lopez-Martens R, Quéré F 2012 Nat. Photonics 6 829Google Scholar

    [161]

    Kim K T, Zhang C, Ruchon T, Hergott J F, Auguste T, Villeneuve D M, Corkum P B, Quéré F 2013 Nat. Photonics 7 651Google Scholar

    [162]

    Zhang C, Vampa G, Villeneuve D M, Corkum P B 2015 J. Phys. B At. Mol. Opt. Phys. 48 061001Google Scholar

    [163]

    Hammond T J, Brown G G, Kim K T, Villeneuve D M, Corkum P B 2016 Nat. Photonics 10 171Google Scholar

    [164]

    Marangos J P, Baker S, Kajumba N, Robinson J S, Tisch J W G, Torres R 2008 Phys. Chem. Chem. Phys. 10 35Google Scholar

    [165]

    Peng P, Marceau C, Villeneuve D M 2019 Nat. Rev. Phys. 1 144Google Scholar

    [166]

    Le A T, Lucchese R R, Lin C D 2013 Phys. Rev. A 87 063406Google Scholar

    [167]

    Frolov M V, Manakov N L, Sarantseva T S, Starace A F 2009 J. Phys. B At. Mol. Opt. Phys. 42 035601Google Scholar

    [168]

    Frolov M V, Manakov N L, Sarantseva T S, Emelin M Yu, Ryabikin M Yu, Starace A F 2009 Phys. Rev. Lett. 102 243901Google Scholar

    [169]

    Yun H, Yun S J, Lee G H, Nam C H 2017 J. Phys. B At. Mol. Opt. Phys. 50 022001Google Scholar

    [170]

    Samson J A R, Stolte W C 2002 J. Electron Spectrosc. Relat. Phenom. 123 265Google Scholar

    [171]

    Cooper J W 1962 Phys. Rev. 128 681Google Scholar

    [172]

    Minemoto S, Umegaki T, Oguchi Y, Morishita T, Le A T, Watanabe S, Sakai H 2008 Phys. Rev. A 78 061402Google Scholar

    [173]

    Wörner H J, Niikura H, Bertrand J B, Corkum P B, Villeneuve D M 2009 Phys. Rev. Lett. 102 103901Google Scholar

    [174]

    Higuet J, Ruf H, Thiré N, Cireasa R, Constant E, Cormier E, Descamps D, Mével E, Petit S, Pons B, Mairesse Y, Fabre B 2011 Phys. Rev. A 83 053401Google Scholar

    [175]

    Farrell J P, Spector L S, McFarland B K, Bucksbaum P H, Gühr M, Gaarde M B, Schafer K J 2011 Phys. Rev. A 83 023420Google Scholar

    [176]

    Shiner A D, Schmidt B E, Trallero-Herrero C, Wörner H J, Patchkovskii S, Corkum P B, Kieffer J C, Légaré F, Villeneuve D M 2011 Nat. Phys. 7 464Google Scholar

    [177]

    Pabst S, Santra R 2013 Phys. Rev. Lett. 111 233005Google Scholar

    [178]

    Zhou X X, Tong X M, Zhao Z X, Lin C D 2005 Phys. Rev. A 71 061801Google Scholar

    [179]

    Torres R, Kajumba N, Underwood J G, Robinson J S, Baker S, Tisch J W G, de Nalda R, Bryan W A, Velotta R, Altucci C, Turcu I C E, Marangos J P 2007 Phys. Rev. Lett. 98 203007Google Scholar

    [180]

    Ramakrishna S, Seideman T 2007 Phys. Rev. Lett. 99 113901Google Scholar

    [181]

    Seideman T 1995 J. Chem. Phys. 103 7887Google Scholar

    [182]

    Stapelfeldt H, Seideman T 2003 Rev. Mod. Phys. 75 543Google Scholar

    [183]

    Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867Google Scholar

    [184]

    Burnett K, Reed V C, Cooper J, Knight P L 1992 Phys. Rev. A 45 3347Google Scholar

    [185]

    Levesque J, Zeidler D, Marangos J P, Corkum P B, Villeneuve D M 2007 Phys. Rev. Lett. 98 183903Google Scholar

    [186]

    Mairesse Y, Levesque J, Dudovich N, Corkum P B, Villeneuve D M 2008 J. Mod. Opt. 55 2591Google Scholar

    [187]

    Vozzi C, Calegari F, Benedetti E, Caumes J P, Sansone G, Stagira S, Nisoli M, Torres R, Heesel E, Kajumba N, Marangos J P, Altucci C, Velotta R 2005 Phys. Rev. Lett. 95 153902Google Scholar

    [188]

    Kanai T, Minemoto S, Sakai H 2005 Nature 435 470Google Scholar

    [189]

    Lein M, Hay N, Velotta R, Marangos J P, Knight P L 2002 Phys. Rev. A 66 023805Google Scholar

    [190]

    Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P, Ivanov M Yu 2009 Nature 460 972Google Scholar

    [191]

    Zerne R, Altucci C, Bellini M, Gaarde M B, Hänsch T W, L’Huillier A, Lyngå C, Wahlström C G 1997 Phys. Rev. Lett. 79 1006Google Scholar

    [192]

    Haessler S, Caillat J, Boutu W, Giovanetti-Teixeira C, Ruchon T, Auguste T, Diveki Z, Breger P, Maquet A, Carré B, Taïeb R, Salières P 2010 Nat. Phys. 6 200Google Scholar

    [193]

    Vozzi C, Negro M, Calegari F, Sansone G, Nisoli M, De Silvestri S, Stagira S 2011 Nat. Phys. 7 822Google Scholar

    [194]

    Bertrand J B, Wörner H J, Salières P, Villeneuve D M, Corkum P B 2013 Nat. Phys. 9 174Google Scholar

    [195]

    Zhou X, Lock R, Li W, Wagner N, Murnane M M, Kapteyn H C 2008 Phys. Rev. Lett. 100 073902Google Scholar

    [196]

    Wagner N, Zhou X, Lock R, Li W, Wüest A, Murnane M, Kapteyn H 2007 Phys. Rev. A 76 061403Google Scholar

    [197]

    McFarland B K, Farrell J P, Bucksbaum P H, Gühr M 2009 Phys. Rev. A 80 033412Google Scholar

    [198]

    Levesque J, Mairesse Y, Dudovich N, Pépin H, Kieffer J C, Corkum P B, Villeneuve D M 2007 Phys. Rev. Lett. 99 243001Google Scholar

    [199]

    Uzan A J, Soifer H, Pedatzur O, Clergerie A, Larroque S, Bruner B D, Pons B, Ivanov M, Smirnova O, Dudovich N 2020 Nat. Photonics 14 188Google Scholar

    [200]

    Mairesse Y, Higuet J, Dudovich N, Shafir D, Fabre B, Mével E, Constant E, Patchkovskii S, Walters Z, Ivanov M Yu, Smirnova O 2010 Phys. Rev. Lett. 104 213601Google Scholar

    [201]

    Huang Y, Zhao J, Shu Z, Zhu Y, Liu J, Dong W, Wang X, Lü Z, Zhang D, Yuan J, Chen J, Zhao Z 2021 Ultrafast Sci. 2021 1Google Scholar

    [202]

    Huang Y, Meng C, Wang X, Lü Z, Zhang D, Chen W, Zhao J, Yuan J, Zhao Z 2015 Phys. Rev. Lett. 115 123002Google Scholar

    [203]

    Lü Z, Zhang D, Meng C, Du X, Zhou Z, Huang Y, Zhao Z, Yuan J 2013 J. Phys. B At. Mol. Opt. Phys. 46 155602Google Scholar

    [204]

    Zhang D, Lü Z, Meng C, Du X, Zhou Z, Zhao Z, Yuan J 2012 Phys. Rev. Lett. 109 243002Google Scholar

    [205]

    Shu Z, Liang H, Wang Y, Hu S, Chen S, Xu H, Ma R, Ding D, Chen J 2022 Phys. Rev. Lett. 128 183202Google Scholar

    [206]

    Steinberg A M, Kwiat P G, Chiao R Y 1993 Phys. Rev. Lett. 71 708Google Scholar

    [207]

    Steinberg A M 1995 Phys. Rev. Lett. 74 2405Google Scholar

    [208]

    Dahlström J M, L’Huillier A, Maquet A 2012 J. Phys. B At. Mol. Opt. Phys. 45 183001Google Scholar

    [209]

    Pedersen S, Herek J L, Zewail A H 1994 Science 266 1359Google Scholar

    [210]

    Tzallas P, Skantzakis E, Nikolopoulos L A A, Tsakiris G D, Charalambidis D 2011 Nat. Phys. 7 781Google Scholar

    [211]

    Pazourek R, Nagele S, Burgdörfer J 2015 Rev. Mod. Phys. 87 765Google Scholar

    [212]

    Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh Th, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 803Google Scholar

    [213]

    Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou Ph, Muller H G, Agostini P 2001 Science 292 1689Google Scholar

    [214]

    Muller H G 2002 Appl. Phys. B 74 s17Google Scholar

    [215]

    Klünder K, Dahlström J M, Gisselbrecht M, Fordell T, Swoboda M, Guénot D, Johnsson P, Caillat J, Mauritsson J, Maquet A, Taïeb R, L’Huillier A 2011 Phys. Rev. Lett. 106 143002Google Scholar

    [216]

    Schultze M, Fieß M, Karpowicz N, Gagnon J, Korbman M, Hofstetter M, Neppl S, Cavalieri A L, Komninos Y, Mercouris Th, Nicolaides C A, Pazourek R, Nagele S, Feist J, Burgdörfer J, Azzeer A M, Ernstorfer R, Kienberger R, Kleineberg U, Goulielmakis E, Krausz F, Yakovlev V S 2010 Science 328 1658Google Scholar

    [217]

    Kheifets A S, Ivanov I A 2010 Phys. Rev. Lett. 105 233002Google Scholar

    [218]

    Nagele S, Pazourek R, Feist J, Doblhoff-Dier K, Lemell C, Tőkési K, Burgdörfer J 2011 J. Phys. B At. Mol. Opt. Phys. 44 081001Google Scholar

    [219]

    Zhang C H, Thumm U 2011 Phys. Rev. A 84 033401Google Scholar

    [220]

    Nagele S, Pazourek R, Wais M, Wachter G, Burgdörfer J 2014 J. Phys. Conf. Ser. 488 012004Google Scholar

    [221]

    Wigner E P 1955 Phys. Rev. 98 145Google Scholar

    [222]

    Smith F T 1960 Phys. Rev. 118 349Google Scholar

    [223]

    Isinger M, Squibb R J, Busto D, Zhong S, Harth A, Kroon D, Nandi S, Arnold C L, Miranda M, Dahlström J M, Lindroth E, Feifel R, Gisselbrecht M, L’Huillier A 2017 Science 358 893Google Scholar

    [224]

    Bolognesi P, Avaldi L, Cooper D R, Coreno M, Camilloni R, King G C 2002 J. Phys. B At. Mol. Opt. Phys. 35 2927Google Scholar

    [225]

    Kikas A, Osborne S J, Ausmees A, Svensson S, Sairanen O P, Aksela S 1996 J. Electron Spectrosc. Relat. Phenom. 77 241Google Scholar

    [226]

    Svensson S, Eriksson B, Mårtensson N, Wendin G, Gelius U 1988 J. Electron Spectrosc. Relat. Phenom. 47 327Google Scholar

    [227]

    Ossiander M, Siegrist F, Shirvanyan V, Pazourek R, Sommer A, Latka T, Guggenmos A, Nagele S, Feist J, Burgdörfer J, Kienberger R, Schultze M 2017 Nat. Phys. 13 280Google Scholar

    [228]

    Palatchi C, Dahlström J M, Kheifets A S, Ivanov I A, Canaday D M, Agostini P, DiMauro L F 2014 J. Phys. B At. Mol. Opt. Phys. 47 245003Google Scholar

    [229]

    Busto D, Vinbladh J, Zhong S, Isinger M, Nandi S, Maclot S, Johnsson P, Gisselbrecht M, L’Huillier A, Lindroth E, Dahlström J M 2019 Phys. Rev. Lett. 123 133201Google Scholar

    [230]

    Fano U 1985 Phys. Rev. A 32 617Google Scholar

    [231]

    Peschel J, Busto D, Plach M, Bertolino M, Hoflund M, Maclot S, Vinbladh J, Wikmark H, Zapata F, Lindroth E, Gisselbrecht M, Dahlström J M, L’Huillier A, Eng-Johnsson P 2022 Nat. Commun. 13 5205Google Scholar

    [232]

    Weinkauf R, Schanen P, Metsala A, Schlag E W, Bürgle M, Kessler H 1996 J. Phys. Chem. 100 18567Google Scholar

    [233]

    Sansone G, Kelkensberg F, Pérez-Torres J F, et al. 2010 Nature 465 763Google Scholar

    [234]

    Neidel Ch, Klei J, Yang C H, et al. 2013 Phys. Rev. Lett. 111 033001Google Scholar

    [235]

    Cederbaum L S, Zobeley J 1999 Chem. Phys. Lett. 307 205Google Scholar

    [236]

    Remacle F, Levine R D 2006 Proc. Natl. Acad. Sci. 103 6793Google Scholar

    [237]

    Kraus P M, Mignolet B, Baykusheva D, Rupenyan A, Horný L, Penka E F, Grassi G, Tolstikhin O I, Schneider J, Jensen F, Madsen L B, Bandrauk A D, Remacle F, Wörner H J 2015 Science 350 790Google Scholar

    [238]

    Jia D, Manz J, Yang Y 2019 J. Phys. Chem. Lett. 10 4273Google Scholar

    [239]

    Kuleff A I, Cederbaum L S 2007 Chem. Phys. 338 320Google Scholar

    [240]

    Despré V, Golubev N V, Kuleff A I 2018 Phys. Rev. Lett. 121 203002Google Scholar

    [241]

    Vacher M, Bearpark M J, Robb M A, Malhado J P 2017 Phys. Rev. Lett. 118 083001Google Scholar

    [242]

    Folorunso A S, Bruner A, Mauger F, Hamer K A, Hernandez S, Jones R R, DiMauro L F, Gaarde M B, Schafer K J, Lopata K 2021 Phys. Rev. Lett. 126 133002Google Scholar

    [243]

    He L, Sun S, Lan P, He Y, Wang B, Wang P, Zhu X, Li L, Cao W, Lu P, Lin C D 2022 Nat. Commun. 13 4595Google Scholar

    [244]

    Bucksbaum P H 2007 Science 317 766Google Scholar

    [245]

    Schultz T, Samoylova E, Radloff W, Hertel I V, Sobolewski A L, Domcke W 2004 Science 306 1765Google Scholar

    [246]

    Polli D, Altoè P, Weingart O, Spillane K M, Manzoni C, Brida D, Tomasello G, Orlandi G, Kukura P, Mathies R A, Garavelli M, Cerullo G 2010 Nature 467 440Google Scholar

    [247]

    Jasper A W, Zhu C, Nangia S, Truhlar D G 2004 Faraday Discuss. 127 1Google Scholar

    [248]

    Yarkony D R 2012 Chem. Rev. 112 481Google Scholar

    [249]

    Wörner H J, Bertrand J B, Fabre B, Higuet J, Ruf H, Dubrouil A, Patchkovskii S, Spanner M, Mairesse Y, Blanchet V, Mével E, Constant E, Corkum P B, Villeneuve D M 2011 Science 334 208Google Scholar

    [250]

    Mairesse Y, Zeidler D, Dudovich N, Spanner M, Levesque J, Villeneuve D M, Corkum P B 2008 Phys. Rev. Lett. 100 143903Google Scholar

    [251]

    Wörner H J, Bertrand J B, Kartashov D V, Corkum P B, Villeneuve D M 2010 Nature 466 604Google Scholar

    [252]

    Ruf H, Handschin C, Ferré A, et al. 2012 J. Chem. Phys. 137 224303Google Scholar

    [253]

    von Conta A, Tehlar A, Schletter A, Arasaki Y, Takatsuka K, Wörner H J 2018 Nat. Commun. 9 3162Google Scholar

    [254]

    Trabattoni A, Klinker M, González-Vázquez J, Liu C, Sansone G, Linguerri R, Hochlaf M, Klei J, Vrakking M J J, Martín F, Nisoli M, Calegari F 2015 Phys. Rev. X 5 041053Google Scholar

    [255]

    Galbraith M C E, Scheit S, Golubev N V, Reitsma G, Zhavoronkov N, Despré V, Lépine F, Kuleff A I, Vrakking M J J, Kornilov O, Köppel H, Mikosch J 2017 Nat. Commun. 8 1018Google Scholar

    [256]

    Corrales M E, González-Vázquez J, de Nalda R, Bañares L 2019 J. Phys. Chem. Lett. 10 138Google Scholar

    [257]

    Boyer A, Hervé M, Despré V, Castellanos Nash P, Loriot V, Marciniak A, Tielens A G G M, Kuleff A I, Lépine F 2021 Phys. Rev. X 11 041012Google Scholar

    [258]

    Timmers H, Zhu X, Li Z, Kobayashi Y, Sabbar M, Hollstein M, Reduzzi M, Martínez T J, Neumark D M, Leone S R 2019 Nat. Commun. 10 3133Google Scholar

    [259]

    Chang K F, Reduzzi M, Wang H, Poullain S M, Kobayashi Y, Barreau L, Prendergast D, Neumark D M, Leone S R 2020 Nat. Commun. 11 4042Google Scholar

    [260]

    Chang K F, Wang H, Poullain S M, Prendergast D, Neumark D M, Leone S R 2021 J. Chem. Phys. 154 234301Google Scholar

    [261]

    Tully J C 1990 J. Chem. Phys. 93 1061Google Scholar

    [262]

    Wang H, Odelius M, Prendergast D 2019 J. Chem. Phys. 151 124106Google Scholar

    [263]

    Chang K F, Wang H, Poullain S M, González-Vázquez J, Bañares L, Prendergast D, Neumark D M, Leone S R 2022 J. Chem. Phys. 156 114304Google Scholar

  • 图 1  高次谐波频谱示意图[5]

    Fig. 1.  Schematic representation of the HHG spectrum[5].

    图 2  HHG的半经典三步模型示意图[40]

    Fig. 2.  Schematic of semi-classical three-step model for HHG[40].

    图 3  波长1600 nm, 峰值强度1×1014 W/cm2激光驱动下, H原子的典型谐波谱[3], 其中BTH表示阈下谐波

    Fig. 3.  Typical harmonic spectrum from H atom with a driving laser of wavelength 1600 nm at the peak intensity of 1×1014 W/cm2[3]. The below threshold harmonics are abbreviated as BTH.

    图 4  (a) ZnO晶体HHG谱, 其中绿色和蓝色曲线分别表示驱动脉冲能量为0.52 µJ和2.63 µJ产生的谐波谱, 插图为2.63 µJ谐波谱的截止点及其附近的展开图[62]; (b) 高能截止点与驱动激光电场的线性关系[62]; (c1)固相Ar的HHG谱, 展示了低强度(16 TW/cm2)下的单平台和较高强度(26 TW/cm2)下的双平台[75]; (c2)固相Kr的HHG谱, 谐波谱(11.4 TW/cm2)由不同谱仪分别获取的两个光谱连接而成[75]

    Fig. 4.  (a) HHG spectrum of ZnO crystal, the green and blue curves represent the HHG spectrum generated by the driving pulse energies of 0.52 µJ and 2.63 µJ, and the inset shows the expanded view at and near the cutoff of the 2.63 µJ spectrum[62]; (b) high-energy cutoff scales linearly with drive-laser electric field[62]; (c1) HHG spectra from solid Ar, and single-platform at low intensity (16 TW/cm2) and dual-platform at higher intensity (26 TW/cm2) are shown[75]; (c2) HHG spectra from solid Kr, and the spectrum (11.4 TW/cm2) is composed of two spectra taken by different spectrometers[75].

    图 5  线偏振少周期激光产生的相干XUV和软X射线辐射 (a)最高能量光子在脉冲峰值附近出射, 蓝线($\varphi = 0$)和红线($\varphi = {\text{π }}/2$)分别为不同CEP下的脉冲发射[116]; (b)不同CEP下X射线光谱截止区的连续性(蓝线, $\varphi = 0$)和准周期性(红线, $\varphi = {\text{π }}/2$)特征[116]; (c)振幅选通示意图[8]

    Fig. 5.  Coherent XUV and soft-X-ray radiation generated by a linearly polarized, few-cycle light pulse: (a) Highest-energy photons are emitted near the pulse peak, the blue line ($\varphi = 0$) and the red line ($\varphi = {\text{π }}/2$) are the pulse emission under different CEPs, respectively[116]; (b) the continuous (blue line, $\varphi = 0$) and quasi-periodic (red line, $\varphi = {\text{π }}/2$) features of the X-ray spectral distribution in the ‘cut-off ’ range under different CEPs[116]; (c) schematic of amplitude gating[8].

    图 6  HCOs [124]和电离选通的原理示意图[126] (a)左侧: 由SFA计算得到的两周期激光脉冲电场(虚线)与对应的HCO电子轨迹. 灰度表示发射轨迹的相对强度. 右侧: 利用量子轨道模型分离出单个轨迹对应的谐波谱和截止位置. (b)在不同激光脉冲强度(虚线)下计算得到的相位匹配因子 (蓝线). 灰线表示介质的对应电离程度. 蓝色方格为从HCO中提取的脉冲强度. 左右图框分别对应7 fs, 6.7×1014 W/cm2和10 fs, 1.1×1015 W/cm2高斯脉冲拟合的强度包络

    Fig. 6.  Schematic diagram of the HCOs[124] and the ionization gating[126]. (a) Left: the electric field of a two-cycle laser pulse (dashed line) with the corresponding HCO electron trajectories, calculated by the SFA. The grey scale indicates the relative intensity of emission trajectories. Right: using the quantum orbital model to isolate the harmonic spectrum and cut-off position corresponding to a single trajectory. (b) Calculated phase matching factor (blue line) at different laser pulse intensities (dashed line). The corresponding ionization of extent of the medium is represented by gray lines. Blue squares are pulse intensities extracted from the HCOs. The left and right frames correspond to the intensity envelopes fitted by the 7 fs, 6.7×1014 W/cm2 and 10 fs, 1.1×1015 W/cm2 Gaussian pulses, respectively.

    图 7  时间选通示意图[98] (a)偏振选通(上)和双光选通(下); (b)多周期驱动光场(蓝线)产生的APT, 单色驱动下的半个光周期脉冲间隔(上)和双色驱动下的完整光周期脉冲间隔(下)

    Fig. 7.  Schematic diagram of the temporal gating[98]: (a) Polarization gating (top) and double optical gating (bottom); (b) APT is generated by a multi-cycle driving field (blue curves), the half photo-period pulse intervals under monochromatic drive (top) and the complete photo-period pulse intervals under two-color drive (bottom).

    图 8  (a)广义双光选通装置[151] (光学器件由石英片(QP1)、一个布儒斯特窗(BW)、第二个石英片(QP2)和一个BBO晶体组成); (b)双迈克耳孙干涉仪[155] (BS, 分束器; M, 平面反射镜; TS1—3, 压电平移台; A, 光强衰减器; First M1和Second M2, 第一台和第二台迈克尔逊干涉仪)

    Fig. 8.  (a) Generalized double optical gating[151] (The optics consist of a quartz plate (QP1), a Brewster window (BW), a second quartz plate (QP2), and a BBO crystal); (b) dual Michelson interferometer[155] (BS, beam splitters; M, flat mirrors; TS1—3, piezoelectric translation stages; A, intensity attenuator; First M1 and second M2, the first and the second Michelson interferometers).

    图 9  阿秒灯塔示意图 (a) 等离子体镜中谐波产生的阿秒灯塔效应[160] (a1) 阿秒脉冲沿垂直于焦点处激光波前的方向传播(左); WFR导致阿秒脉冲发生空间分离(右); (a2) WFR效应示意图; (a3) 等离子体镜阿秒灯塔实验示意图. (b) 气体靶阿秒灯塔实验示意图[161], 角色散在聚焦前被一对错位楔形施加在激光束上在焦点产生空间啁啾, 激光脉冲每个半周期内产生的阿秒脉冲沿不同方向传播

    Fig. 9.  Schematic diagram of attosecond lighthouses. (a) Attosecond lighthouse effect in harmonics generated from a plasma mirror[160]: (a1) The attosecond pulse propagates in a collimated beam perpendicular to the laser wavefront at the focal point (left); WFR leads to spatial separation of attosecond pulses (right); (a2) schematic diagram of the WFR effect; (a3) schematic diagram of the plasma mirror attosecond lighthouse experiment. (b) Schematic diagram of the gas target attosecond lighthouse experiment[161]. Angular dispersion is imposed on the laser beam before focusing using a misaligned pair of wedges, leading to spatial chirp at the focus. The attosecond pulses generated in each half-cycle of the laser pulse propagate in different directions.

    图 10  (a) 780 nm, 8 fs驱动脉冲在Ar气中产生的HHS[173], 三个面板对应的激光强度分别为 ① 2.5×1014 W/cm2, ② 2.9×1014 W/cm2, ③ 3.5×1014 W/cm2. (b) Xe的多电子动力学示意图[176], 电子以两种不同的方式与离子重新结合 (b1) 电子与5p壳层的空穴结合; (b2) 电子与4d壳层的空穴结合. (c) N2, O2和CO2的HHS[186], 其中100 fs, 800 nm的激光脉冲实现气相分子定向, 另一束更强的800 nm激光脉冲电离分子产生HHS. 横轴表示高次谐波脉冲的偏振平行于分子轴, 半径范围为0—50的谐波阶次

    Fig. 10.  (a) HHS generated in argon using an 8 fs laser pulse centered at 780 nm[173]. The three different panels correspond to the laser intensities 2.5×1014 W/cm2 ①, 2.9×1014 W/cm2 ②, 3.5×1014 W/cm2 ③. (b) Schematic diagram of multi-electron dynamics in xenon[176]. The electron recombines with the ion in two different ways: the electron recombines with the hole in 5p shell (b1) and in 4d shell (b2). (c) HHS of molecules N2, O2 and CO2[186]. The gas-phase molecules are aligned by a 100 fs, 800 nm laser pulse, and ionized by another stronger 800 nm laser pulse to generate HHS. The horizontal axis denotes that the high-harmonic pulse’s polarization axis is parallel to the molecular axis, and the radius covers harmonic orders from 0 to 50.

    图 11  分子轨道层析成像 (a) N2分子的HOMO的图像[183], 分子轴沿水平方向 (a1)使用层析重建算法从一系列角度下实验HHS中得到的轨道波函数图像; (a2) 使用量子化学包计算的$3{\sigma _{\text{g}}}$轨道波函数图像. (b) N2最高的两个分子轨道的重建图像[192](b1) 利用复合偶极子的虚部并施加${\sigma _{\text{g}}}$对称性还原的HOMO; (b2)利用复合偶极子的实部并施加πu对称性还原的HOMO-1; (b3), (b4) 分别是用GAMESS 计算的Hartree-Fock HOMO和HOMO-1. (c) CO2中HOMO的轨道重建[193], 分子轴沿垂直方向 (c1) 根据广义层析方法从实验数据中检索的HOMO图像; (c2) 用量子化学程序计算出的CO2中HOMO的二维投影

    Fig. 11.  Tomographic imaging of molecular orbitals. (a) Image of HOMO of a N2 molecule[183], the molecular axis is horizontal: (a1) Shows the orbital wavefunction image derived from the experimental HHS at a range of angles using the tomographic reconstruction algorithm; (a2) shows the $3{\sigma _{\text{g}}}$orbital wavefunction image calculated with a quantum chemistry package. (b) Reconstructed images of the highest two molecular orbitals of N2[192]: (b1) HOMO is recovered by using the imaginary part of the recombination dipole and imposing ${\sigma _{\text{g}}}$-symmetry; (b2) HOMO-1 is recovered by using the real part of the recombination dipole and imposing πu-symmetry; (b3), (b4) Hartree-Fock HOMO and HOMO-1 calculated with GAMESS, respectively. (c) HOMO reconstruction of CO2[193], the molecular axis is vertical: (c1) HOMO image retrieved from the experimental data following the generalized tomographic procedure; (c2) bidimensional projection of the HOMO of CO2 calculated with a quantum chemistry program.

    图 12  Pump-probe方案[208] (紫色区域表示阿秒XUV脉冲包络, 红色区域表示一个probe激光脉冲, 红色虚线是probe脉冲对应的电场) (a) 传统pump-probe方案, 从不同延迟probe脉冲下的重复实验[209,210]中实时提取出关于系统无场传播的时间信息; (b) SAP和少周期IR场的pump-probe实验; (c) APT和单色IR场的pump-probe实验

    Fig. 12.  Pump-probe schemes[208] (The purple area represents the attosecond XUV pulse envelope and the red area represents the one of the probing laser pulses, while the dotted red lines indicate the corresponding E-field): (a) Traditional pump-probe experiment, the temporal information about the field-free propagation of the system, can then be extracted in real time by repeating the experiment systematically for different delays of the probe pulse[209,210]; (b) simultaneous pump-probe experiment between a SAP and a few-cycle IR field; (c) simultaneous pump-probe experiment between an APT and a monochromatic IR field.

    图 13  (a) 提取光电离时间延迟的阿秒条纹的典型图像[3] (a1) 阿秒脉冲(蓝线)和条纹IR脉冲的矢势(红线); (a2) 平行于激光偏振的电子动量分布${p_z}$随两个脉冲之间时间延迟$\tau $的变化(中央的白色曲线代表瞬时动量分布${\bar p_z}$, 插图展示了${\bar p_z}$和IR矢势间峰值的差异, 其为条纹时间延迟${\tau _{\text{S}}}$). (b) He原子的阿秒条纹实验[227], 左侧表示结合能为24.6 eV的He原子基态; 中间表示He+ 1s1(shake-down)态离子势, 由于一个电子被电离, 剩余的电子会重新分布并占据更紧密的束缚态; 右侧表示He+2s1/2p1(shake-up)态离子势, 一个电子出射, 剩余电子被激发到一系列shake-up态n (插图表示He原子单电离阿秒条纹图像)

    Fig. 13.  (a) Typical configurations of the attosecond streaking for extraction of the photoionization time delay[3]: (a1) The vector potential of the attosecond pulse (blue line) and the streaking IR pulse (red line); (a2) electron momentum distribution parallel to the laser polarization${p_z}$as a function of the time delay$\tau $between the two pulses, where the central white curve stands for the first moment of the momentum distribution${\bar p_z}$. The insert shows the difference between the peaks of the ${\bar p_z}$and the IR vector potential is the streaking time delay${\tau _{\text{S}}}$. (b) Attosecond streaking spectroscopy of helium[227]: Left panel is the helium ground state with a binding energy of 24.6 eV; the middle panel represents the ion potential of the He+ 1s1 (shake-down) state (The ionic potential rearranges as result of an electron loss, and the remaining electron occupies a more tightly bound state); the right panel represents the ion potential of He+ 2s1/2p1 (shake-up) state, and the electron emission can be accompanied by the excitation of the remaining electron into one out of a series of shake-up states n (The inset shows the single ionization attosecond streaking image of helium).

    图 14  (a), (b) Ar的 3s和3p壳层相对电离时间延迟的测量[215] (a) RABBIT原理示意图; (b1), (b2) 分别为3s壳层和3p壳层释放的电子能谱随脉冲时间延迟的变化; (b3) 修正Cr滤波器群延迟后的3p壳层延迟(虚线)与3s壳层延迟的对比. (c) Ar光电离时间延迟对电子出射角度的依赖和光电子角分布的延迟依赖的测量[229] (c1), (c2) 分别为实验和理论中不对称参数${\beta _2}$随延迟的变化; (c3)实验(圆圈)和理论(实线)中原子延迟的角依赖关系 (不同的边带表示为14ω(蓝色), 20ω(品红色)和22ω(黄色))

    Fig. 14.  (a), (b) Measurement of relative ionization time delay of 3s and 3p shells of Ar[215]: (a) Schematic diagram of RABBIT principle; (b1), (b2) energy spectra as a function of pulse time delay from electrons liberated from the 3s shell and the 3p shell, respectively; (b3) after correcting the Cr filter group delay, comparison of the 3p shell delay (dashed line) versus the 3s shell delay. (c) The electron emission angular dependence of the photoionization time delay and the delay dependence of the photo-electron angular distribution are measured in Ar[229]: (c1), (c2) Experimental and theoretical variation of the asymmetric parameters ${\beta _2}$ as a function of delay; (c3) experimental (circles) and theoretical (solid curves) angle dependence of the atomic delay (Different sidebands are indicated as 14ω (blue), 20ω (magenta) and 22ω (yellow)).

    图 15  (a1), (a2)分别表示H2在XUV-IR作用下不对称电离解离的两种机制[233], 蓝色和红色箭头分别表示EUV脉冲和IR脉冲的影响, 紫色线和箭头表示分子固有动力学. (b)氨基酸中发生的纯电子动力学行为[15] ①二价亚胺离子的产量随pump-probe延迟的变化; ②位于①中虚线框所示的时间窗口内; ③表示实验数据同①中指数拟合曲线的差值, 红色曲线为频率为0.234 PHz的正弦函数. (c) 准无场CM的重建[237] ①重建的HCCI分子电离后随时间变化的电子动力学过程; ②, ③分别为在分子垂直排列和平行排列下, 电离时空穴密度的重建

    Fig. 15.  (a1), (a2) Represent the two mechanisms of asymmetric ionization dissociation of H2 under the action of XUV-IR, respectively[233]. Blue and red arrows indicate the effects of EUV and IR pulses respectively. Purple lines and arrows signify dynamics that is intrinsic to the molecule. (b) Pure electron dynamics occurring in amino acids[15]: ① Yield of doubly charged immonium ion as a function of pump-probe delay[15]; ② within the temporal window shown as dotted box in ①; ③ difference between the experimental data and the exponential fitting curve displayed in ①, red curve is a sinusoidal function of frequency 0.234 PHz. (c) Reconstruction of quasi-field-free CM[237]: ① The reconstructed electron dynamics of HCCI molecule are displayed as a function of time after ionization; ②, ③ the reconstructed hole density at the time of ionization is shown for perpendicular and parallel alignment, respectively.

    图 16  (a) HHG瞬态光栅光谱实验装置[249] (a1) 瞬态光栅实现激发态与非激发态分子布居的空间调制导致谐波在远场产生一阶衍射图像; (a2) 探测分子锥形交叉动力学中电子特性的原理, 激发态(蓝色波包)分子有强的衍射图样, 布居转移产生的基态(红色波包)分子衍射强度减弱. 上图为瞬态光栅的空间强度结构, 下图表示NO2最低的两个势能面. (b1) CH3Br的中性激发态动力学ATAS 图像[258]; (b2) CH3Br中性激发态的ATAS动力学模拟[258]; (b3) CH3Br的基态、激发态和Rydberg态势能曲线, 粗体彩色曲线表示构成激发带的主要能态, 在$^1{Q_1}$$^{\text{3}}{Q_{\text{0}}}$激发态间存在的CIs导致产物为Br和Br*的两个解离路径之间的布局转移[258]. (c) C4H${}_3^+ $碎片产额随XUV-VIS/NIR延迟(红点)的变化[255], 黑线是对实验数据的双指数拟合, 虚线表示两个时间尺度的贡献; 插图显示了C4H${}_3^+ $的大范围pump-probe扫描

    Fig. 16.  (a) Experimental setup for HHG transient grating spectroscopy[249]: (a1) A first-order diffraction image of harmonics in the far field, caused by the spatial modulation of excited and unexcited molecularpopulations realized by transient gratings; (a2) principles for probing the electronic character of the molecule during the conical intersection dynamics, molecules in the excited state (indicated by blue wave packets) have a strong diffraction pattern, and the diffraction intensity of the ground state (indicated by red wave packets) generated by population transfer is decreased. The top illustrates the spatial intensity structure of the transient grating, and the bottom shows schematically the lowest two potential energy surfaces of NO2. (b1) ATAS image of the neutral excited state dynamics in CH3Br[258]; (b2) simulated ATAS dynamics for neutral excited states in CH3Br[258]; (b3) different potential energy curves for CH3Br, the bold color curves represent the primary states that compose the excited state band, CIs exist between the $^1{Q_1}$ and$^{\text{3}}{Q_{\text{0}}}$ excited states that can lead to population transfer between the two dissociation paths with products Br and Br*[258]. (c) C4H${}_3^+ $fragment yield as a function of the XUV-VIS/NIR delay (red dots)[255], the bold black line is a biexponential fit to the data, and the dashed lines represent the contributions from the two timescales. The inset displays a long range pump-probe scan of C4H${}_3^+ $.

    Baidu
  • [1]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595Google Scholar

    [2]

    Ferray M, L’Huillier A, Li X F, Lompre L A, Mainfray G, Manus C 1988 J. Phys. B At. Mol. Opt. Phys. 21 L31Google Scholar

    [3]

    Peng L Y, Jiang W C, Geng J W, Xiong W H, Gong Q 2015 Phys. Rep. 575 1Google Scholar

    [4]

    Pupeza I, Zhang C, Högner M, Ye J 2021 Nat. Photonics 15 175Google Scholar

    [5]

    Chini M, Beetar J E, Gholam-Mirzaei S 2022 Prog. Opt. 67 125Google Scholar

    [6]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [7]

    Nisoli M, Sansone G 2009 Prog. Quantum Electron. 33 17Google Scholar

    [8]

    Chini M, Zhao K, Chang Z 2014 Nat. Photonics 8 178Google Scholar

    [9]

    Gallmann L, Jordan I, Wörner H J, Castiglioni L, Hengsberger M, Osterwalder J, Arrell C A, Chergui M, Liberatore E, Rothlisberger U, Keller U 2017 Struct. Dyn. 4 061502Google Scholar

    [10]

    Deshmukh P C, Banerjee S 2021 Int. Rev. Phys. Chem. 40 127Google Scholar

    [11]

    Kheifets A S 2023 J. Phys. B At. Mol. Opt. Phys. 56 022001Google Scholar

    [12]

    Calegari F, Trabattoni A, Palacios A, Ayuso D, Castrovilli M C, Greenwood J B, Decleva P, Martín F, Nisoli M 2016 J. Phys. B At. Mol. Opt. Phys. 49 142001Google Scholar

    [13]

    Wörner H J, Arrell C A, Banerji N, et al. 2017 Struct. Dyn. 4 061508Google Scholar

    [14]

    Belshaw L, Calegari F, Duffy M J, Trabattoni A, Poletto L, Nisoli M, Greenwood J B 2012 J. Phys. Chem. Lett. 3 3751Google Scholar

    [15]

    Calegari F, Ayuso D, Trabattoni A, et al. 2014 Science 346 336Google Scholar

    [16]

    Calegari F, Ayuso D, Trabattoni A, Belshaw L, De Camillis S, Frassetto F, Poletto L, Palacios A, Decleva P, Greenwood J B, Martin F, Nisoli M 2015 IEEE J. Sel. Top. Quantum Electron. 21 1Google Scholar

    [17]

    Tehlar A, von Conta A, Arasaki Y, Takatsuka K, Wörner H J 2018 J. Chem. Phys. 149 034307Google Scholar

    [18]

    Schnappinger T, de Vivie-Riedle R 2021 J. Chem. Phys. 154 134306Google Scholar

    [19]

    Maiman T H 1969 Essent. Lasers 5 134Google Scholar

    [20]

    Hargrove L E, Fork R L, Pollack M A 1964 Appl. Phys. Lett. 5 4Google Scholar

    [21]

    Mocker H W, Collins R J 1965 Appl. Phys. Lett. 7 270Google Scholar

    [22]

    Ippen E P, Shank C V, Dienes A 1972 Appl. Phys. Lett. 21 348Google Scholar

    [23]

    Sutter D H, Steinmeyer G, Gallmann L, Matuschek N, Morier-Genoud F, Keller U, Scheuer V, Angelow G, Tschudi T 1999 Opt. Lett. 24 631Google Scholar

    [24]

    Wirth A, Hassan M Th, Grguraš I, Gagnon J, Moulet A, Luu T T, Pabst S, Santra R, Alahmed Z A, Azzeer A M, Yakovlev V S, Pervak V, Krausz F, Goulielmakis E 2011 Science 334 195Google Scholar

    [25]

    Hassan M Th, Wirth A, Grguraš I, Moulet A, Luu T T, Gagnon J, Pervak V, Goulielmakis E 2012 Rev. Sci. Instrum. 83 111301Google Scholar

    [26]

    Silva F, Alonso B, Holgado W, Romero R, Román J S, Jarque E C, Koop H, Pervak V, Crespo H, Sola Í J 2018 Opt. Lett. 43 337Google Scholar

    [27]

    Hassan M Th, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66Google Scholar

    [28]

    Calegari F, Sansone G, Stagira S, Vozzi C, Nisoli M 2016 J. Phys. B At. Mol. Opt. Phys. 49 062001Google Scholar

    [29]

    Howard A J, Cheng C, Forbes R, McCracken G A, Mills W H, Makhija V, Spanner M, Weinacht T, Bucksbaum P H 2021 Phys. Rev. A 103 043120Google Scholar

    [30]

    Chen M C, Arpin P, Popmintchev T, Gerrity M, Zhang B, Seaberg M, Popmintchev D, Murnane M M, Kapteyn H C 2010 Phys. Rev. Lett. 105 173901Google Scholar

    [31]

    Popmintchev T, Chen M C, Bahabad A, Gerrity M, Sidorenko P, Cohen O, Christov I P, Murnane M M, Kapteyn H C 2009 Proc. Natl. Acad. Sci. 106 10516Google Scholar

    [32]

    Li X F, L’Huillier A, Ferray M, Lompré L A, Mainfray G 1989 Phys. Rev. A 39 5751Google Scholar

    [33]

    Macklin J J, Kmetec J D, Gordon C L 1993 Phys. Rev. Lett. 70 766Google Scholar

    [34]

    L’Huillier A, Balcou P 1993 Phys. Rev. Lett. 70 774Google Scholar

    [35]

    Popmintchev T, Chen M C, Arpin P, Murnane M M, Kapteyn H C 2010 Nat. Photonics 4 822Google Scholar

    [36]

    Yu X, Wang N, Lei J T, Shao J X, Morishita T, Zhao S F, Najjari B, Ma X W, Zhang S F 2022 Phys. Rev. A 106 023114Google Scholar

    [37]

    Eberly J H, Su Q, Javanainen J 1989 Phys. Rev. Lett 62 881Google Scholar

    [38]

    Schafer K J, Yang B, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett 70 1599Google Scholar

    [39]

    Corkum P B 1993 Phys. Rev. Lett 71 1994Google Scholar

    [40]

    Arnold C L, Isinger M, Busto D, Guénot D, Nandi S, Zhong S, Dahlström J M, Gisselbrecht M, l’Huillier A 2018 Photoniques 28

    [41]

    Gallagher T F 1988 Phys. Rev. Lett. 61 2304Google Scholar

    [42]

    Krause J L, Schafer K J, Kulander K C 1992 Phys. Rev. Lett. 68 3535Google Scholar

    [43]

    Papadogiannis N A, Witzel B, Kalpouzos C, Charalambidis D 1999 Phys. Rev. Lett. 83 4289Google Scholar

    [44]

    Shan B, Chang Z 2001 Phys. Rev. A 65 011804Google Scholar

    [45]

    Lai C J, Cirmi G, Hong K H, Moses J, Huang S W, Granados E, Keathley P, Bhardwaj S, Kärtner F X 2013 Phys. Rev. Lett. 111 073901Google Scholar

    [46]

    Shiner A D, Trallero-Herrero C, Kajumba N, Bandulet H C, Comtois D, Légaré F, Giguère M, Kieffer J C, Corkum P B, Villeneuve D M 2009 Phys. Rev. Lett. 103 073902Google Scholar

    [47]

    Eichmann H, Egbert A, Nolte S, Momma C, Wellegehausen B, Becker W, Long S, McIver J K 1995 Phys. Rev. A 51 R3414Google Scholar

    [48]

    Weihe F A, Dutta S K, Korn G, Du D, Bucksbaum P H, Shkolnikov P L 1995 Phys. Rev. A 51 R3433Google Scholar

    [49]

    Strelkov V V, Gonoskov A A, Gonoskov I A, Ryabikin M Yu 2011 Phys. Rev. Lett. 107 043902Google Scholar

    [50]

    Fleischer A, Kfir O, Diskin T, Sidorenko P, Cohen O 2014 Nat. Photonics 8 543Google Scholar

    [51]

    Kfir O, Grychtol P, Turgut E, Knut R, Zusin D, Popmintchev D, Popmintchev T, Nembach H, Shaw J M, Fleischer A, Kapteyn H, Murnane M, Cohen O 2015 Nat. Photonics 9 99Google Scholar

    [52]

    Lewenstein M, Balcou Ph, Ivanov M Yu, L’Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [53]

    Amini K, Biegert J, Calegari F, et al. 2019 Rep. Prog. Phys. 82 116001Google Scholar

    [54]

    Yost D C, Schibli T R, Ye J, Tate J L, Hostetter J, Gaarde M B, Schafer K J 2009 Nat. Phys. 5 815Google Scholar

    [55]

    Power E P, March A M, Catoire F, Sistrunk E, Krushelnick K, Agostini P, DiMauro L F 2010 Nat. Photonics 4 352Google Scholar

    [56]

    Zaïr A, Holler M, Guandalini A, et al. 2008 Phys. Rev. Lett. 100 143902Google Scholar

    [57]

    Schiessl K, Ishikawa K L, Persson E, Burgdörfer J 2007 Phys. Rev. Lett. 99 253903Google Scholar

    [58]

    Kim I J, Kim C M, Kim H T, Lee G H, Lee Y S, Park J Y, Cho D J, Nam C H 2005 Phys. Rev. Lett. 94 243901Google Scholar

    [59]

    Frumker E, Kajumba N, Bertrand J B, Wörner H J, Hebeisen C T, Hockett P, Spanner M, Patchkovskii S, Paulus G G, Villeneuve D M, Naumov A, Corkum P B 2012 Phys. Rev. Lett. 109 233904Google Scholar

    [60]

    DiChiara A D, Sistrunk E, Miller T A, Agostini P, DiMauro L F 2009 Opt. Express 17 20959Google Scholar

    [61]

    Luu T T, Yin Z, Jain A, Gaumnitz T, Pertot Y, Ma J, Wörner H J 2018 Nat. Commun. 9 3723Google Scholar

    [62]

    Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F, Reis D A 2011 Nat. Phys. 7 138Google Scholar

    [63]

    Ghimire S, Ndabashimiye G, DiChiara A D, Sistrunk E, Stockman M I, Agostini P, DiMauro L F, Reis D A 2014 J. Phys. B At. Mol. Opt. Phys. 47 204030Google Scholar

    [64]

    Vampa G, McDonald C R, Orlando G, Corkum P B, Brabec T 2015 Phys. Rev. B 91 064302Google Scholar

    [65]

    Kruchinin S Yu, Krausz F, Yakovlev V S 2018 Rev. Mod. Phys. 90 021002Google Scholar

    [66]

    Yu C, Jiang S, Lu R 2019 Adv. Phys. X 4 1562982Google Scholar

    [67]

    Park J, Subramani A, Kim S, Ciappina M F 2022 Adv. Phys. X 7 2003244Google Scholar

    [68]

    Ganeev R, Suzuki M, Baba M, Kuroda H, Ozaki T 2005 Opt. Lett. 30 768Google Scholar

    [69]

    Flettner A, Pfeifer T, Walter D, Winterfeldt C, Spielmann C, Gerber G 2003 Appl. Phys. B 77 747Google Scholar

    [70]

    Burnett N H, Baldis H A, Richardson M C, Enright G D 1977 Appl. Phys. Lett. 31 172Google Scholar

    [71]

    Carman R L, Forslund D W, Kindel J M 1981 Phys. Rev. Lett. 46 29Google Scholar

    [72]

    von der Linde D, Engers T, Jenke G, Agostini P, Grillon G, Nibbering E, Mysyrowicz A, Antonetti A 1995 Phys. Rev. A 52 R25Google Scholar

    [73]

    Norreys P A, Zepf M, Moustaizis S, Fews A P, Zhang J, Lee P, Bakarezos M, Danson C N, Dyson A, Gibbon P, Loukakos P, Neely D, Walsh F N, Wark J S, Dangor A E 1996 Phys. Rev. Lett. 76 1832Google Scholar

    [74]

    Chin A H, Calderón O G, Kono J 2001 Phys. Rev. Lett. 86 3292Google Scholar

    [75]

    Ndabashimiye G, Ghimire S, Wu M, Browne D A, Schafer K J, Gaarde M B, Reis D A 2016 Nature 534 520Google Scholar

    [76]

    Langer F, Hohenleutner M, Huttner U, Koch S W, Kira M, Huber R 2017 Nat. Photonics 11 227Google Scholar

    [77]

    You Y S, Reis D A, Ghimire S 2017 Nat. Phys. 13 345Google Scholar

    [78]

    Korobenko A, Saha S, Godfrey A T K, Gertsvolf M, Naumov A Yu, Villeneuve D M, Boltasseva A, Shalaev V M, Corkum P B 2021 Nat. Commun. 12 4981Google Scholar

    [79]

    Lou Z, Zheng Y, Liu C, Zhang L, Ge X, Li Y, Wang J, Zeng Z, Li R, Xu Z 2020 Opt. Commun. 469 125769Google Scholar

    [80]

    Baykusheva D, Chacón A, Lu J, Bailey T P, Sobota J A, Soifer H, Kirchmann P S, Rotundu C, Uher C, Heinz T F, Reis D A, Ghimire S 2021 Nano Lett. 21 8970Google Scholar

    [81]

    You Y S, Yin Y, Wu Y, Chew A, Ren X, Zhuang F, Gholam-Mirzaei S, Chini M, Chang Z, Ghimire S 2017 Nat. Commun. 8 724Google Scholar

    [82]

    Liu J Q, Bian X B 2021 Phys. Rev. Lett. 127 213901Google Scholar

    [83]

    Fedotov A B, Gladkov S M, Koroteev N I, Zheltikov A M 1991 J. Opt. Soc. Am. B 8 363Google Scholar

    [84]

    Theobald W, Wülker C, Schäfer F P, Chichkov B N 1995 Opt. Commun. 120 177Google Scholar

    [85]

    Ganeev R A, Redkorechev V I, Usmanov T 1997 Opt. Commun. 135 251Google Scholar

    [86]

    Ganeev R A, Suzuki M, Baba M, Kuroda H 2005 Appl. Phys. B 81 1081Google Scholar

    [87]

    Ganeev R A, Singhal H, Naik P A, Chakravarty U, Arora V, Chakera J A, Khan R A, Raghuramaiah M, Kumbhare S R, Kushwaha R P, Gupta P D 2007 Appl. Phys. B 87 243Google Scholar

    [88]

    Ganeev R A, Bom L B E, Kieffer J C, Suzuki M, Kuroda H, Ozaki T 2007 Phys. Rev. A 76 023831Google Scholar

    [89]

    Ganeev R A, Singhal H, Naik P A, Kulagin I A, Redkin P V, Chakera J A, Tayyab M, Khan R A, Gupta P D 2009 Phys. Rev. A 80 033845Google Scholar

    [90]

    Ganeev R A, Suzuki M, Kuroda H 2014 J. Opt. Soc. Am. B 31 911Google Scholar

    [91]

    Ganeev R A, Naik P A, Singhal H, Chakera J A, Gupta P D 2007 Opt. Lett. 32 65Google Scholar

    [92]

    Ganeev R A, Witting T, Hutchison C, Frank F, Tudorovskaya M, Lein M, Okell W A, Zaïr A, Marangos J P, Tisch J W G 2012 Opt. Express 20 25239Google Scholar

    [93]

    Ganeev R A 2014 J. Opt. Soc. Am. B 31 2221Google Scholar

    [94]

    海帮, 张少锋, 张敏, 董达谱, 雷建廷, 赵冬梅, 马新文 2020 69 234208Google Scholar

    Hai B, Zhang S F, Zhang M, Dong D P, Lei J T, Zhao D M, Ma X W 2020 Acta Phys. Sin. 69 234208Google Scholar

    [95]

    Zhang M, Najjari B, Hai B, Zhao D M, Lei J T, Dong D P, Zhang S F, Ma X W 2020 Chin. Phys. B 29 063302Google Scholar

    [96]

    Hai B, Zhang S F, Zhang M, Najjari B, Dong D P, Lei J T, Zhao D M, Ma X 2020 Phys. Rev. A 101 052706Google Scholar

    [97]

    雷建廷, 余璇, 史国强, 闫顺成, 孙少华, 王全军, 丁宝卫, 马新文, 张少锋, 丁晶洁 2022 71 143201Google Scholar

    Lei J T, Yu X, Shi G Q, Yan S C, Sun S H, Wang Q J, Ding B W, Ma X W, Zhang S F, Ding J J 2022 Acta Phys. Sin. 71 143201Google Scholar

    [98]

    Sansone G, Poletto L, Nisoli M 2011 Nat. Photonics 5 655Google Scholar

    [99]

    Hänsch T W 1990 Opt. Commun. 80 71Google Scholar

    [100]

    Antoine P, L’Huillier A, Lewenstein M 1996 Phys. Rev. Lett. 77 1234Google Scholar

    [101]

    Farkas Gy, Tóth Cs 1992 Phys. Lett. A 168 447Google Scholar

    [102]

    Hentschel M, Kienberger R, Spielmann Ch, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [103]

    Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G A, Corkum P B, Krausz F 2001 Science 291 1923Google Scholar

    [104]

    Kienberger R, Hentschel M, Uiberacker M, et al. 2002 Science 297 1144Google Scholar

    [105]

    Chipperfield L E, Gaier L N, Knight P L, Marangos J P, Tisch J W G 2005 J. Mod. Opt. 52 243Google Scholar

    [106]

    Xu L, Hänsch T W, Spielmann Ch, Poppe A, Brabec T, Krausz F 1996 Opt. Lett. 21 2008Google Scholar

    [107]

    Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635Google Scholar

    [108]

    Apolonski A, Poppe A, Tempea G, Spielmann Ch, Udem Th, Holzwarth R, Hänsch T W, Krausz F 2000 Phys. Rev. Lett. 85 740Google Scholar

    [109]

    Christov I P, Zhou J, Peatross J, Rundquist A, Murnane M M, Kapteyn H C 1996 Phys. Rev. Lett. 77 1743Google Scholar

    [110]

    Zhou J, Peatross J, Murnane M M, Kapteyn H C, Christov I P 1996 Phys. Rev. Lett. 76 752Google Scholar

    [111]

    Christov I P, Murnane M M, Kapteyn H C 1997 Phys. Rev. Lett. 78 1251Google Scholar

    [112]

    Spielmann Ch, Burnett N H, Sartania S, Koppitsch R, Schnürer M, Kan C, Lenzner M, Wobrauschek P, Krausz F 1997 Science 278 661Google Scholar

    [113]

    Paulus G G, Grasbon F, Walther H, Villoresi P, Nisoli M, Stagira S, Priori E, De Silvestri S 2001 Nature 414 182Google Scholar

    [114]

    Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F, Kleineberg U 2008 Science 320 1614Google Scholar

    [115]

    Nisoli M, Sansone G, Stagira S, De Silvestri S, Vozzi C, Pascolini M, Poletto L, Villoresi P, Tondello G 2003 Phys. Rev. Lett. 91 213905Google Scholar

    [116]

    Baltuška A, Udem Th, Uiberacker M, Hentschel M, Goulielmakis E, Gohle Ch, Holzwarth R, Yakovlev V S, Scrinzi A, Hänsch T W, Krausz F 2003 Nature 421 611Google Scholar

    [117]

    Protopapas M, Lappas D G, Keitel C H, Knight P L 1996 Phys. Rev. A 53 R2933Google Scholar

    [118]

    Le Kien F, Midorikawa K, Suda A 1998 Phys. Rev. A 58 3311Google Scholar

    [119]

    Kienberger R, Goulielmakis E, Uiberacker M, et al. 2004 Nature 427 817Google Scholar

    [120]

    Witting T, Frank F, Okell W A, Arrell C A, Marangos J P, Tisch J W G 2012 J. Phys. B At. Mol. Opt. Phys. 45 074014Google Scholar

    [121]

    Zhan M J, Ye P, Teng H, He X K, Zhang W, Zhong S Y, Wang L F, Yun C X, Wei Z Y 2013 Chin. Phys. Lett. 30 093201Google Scholar

    [122]

    Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F, Wörner H J 2017 Opt. Express 25 27506Google Scholar

    [123]

    Yakovlev V S, Scrinzi A 2003 Phys. Rev. Lett. 91 153901Google Scholar

    [124]

    Haworth C A, Chipperfield L E, Robinson J S, Knight P L, Marangos J P, Tisch J W G 2007 Nat. Phys. 3 52Google Scholar

    [125]

    Pfeifer T, Jullien A, Abel M J, Nagel P M, Gallmann L, Neumark D M, Leone S R 2007 Opt. Express 15 17120Google Scholar

    [126]

    Jullien A, Pfeifer T, Abel M J, Nagel P M, Bell M J, Neumark D M, Leone S R 2008 Appl. Phys. B 93 433Google Scholar

    [127]

    Cao W, Lu P, Lan P, Wang X, Yang G 2006 Phys. Rev. A 74 063821Google Scholar

    [128]

    Ferrari F, Calegari F, Lucchini M, Vozzi C, Stagira S, Sansone G, Nisoli M 2010 Nat. Photonics 4 875Google Scholar

    [129]

    Abel M J, Pfeifer T, Nagel P M, Boutu W, Bell M J, Steiner C P, Neumark D M, Leone S R 2009 Chem. Phys. 366 9Google Scholar

    [130]

    Budil K S, Salières P, L’Huillier A, Ditmire T, Perry M D 1993 Phys. Rev. A 48 R3437Google Scholar

    [131]

    Corkum P B, Burnett N H, Ivanov M Y 1994 Opt. Lett. 19 1870Google Scholar

    [132]

    Möller M, Cheng Y, Khan S D, Zhao B, Zhao K, Chini M, Paulus G G, Chang Z 2012 Phys. Rev. A 86 011401Google Scholar

    [133]

    Sola I J, Mével E, Elouga L, Constant E, Strelkov V, Poletto L, Villoresi P, Benedetti E, Caumes J P, Stagira S, Vozzi C, Sansone G, Nisoli M 2006 Nat. Phys. 2 319Google Scholar

    [134]

    Tcherbakoff O, Mével E, Descamps D, Plumridge J, Constant E 2003 Phys. Rev. A 68 043804Google Scholar

    [135]

    Chang Z 2004 Phys. Rev. A 70 043802Google Scholar

    [136]

    Strelkov V, Zaïr A, Tcherbakoff O, López-Martens R, Cormier E, Mével E, Constant E 2005 J. Phys. B At. Mol. Opt. Phys. 38 L161Google Scholar

    [137]

    Chang Z 2005 Phys. Rev. A 71 023813Google Scholar

    [138]

    Sansone G, Benedetti E, Calegari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, De Silvestri S, Nisoli M 2006 Science 314 443Google Scholar

    [139]

    Sansone G, Ferrari F, Vozzi C, Calegari F, Stagira S, Nisoli M 2009 J. Phys. B At. Mol. Opt. Phys. 42 134005Google Scholar

    [140]

    Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M, Chang Z 2017 Nat. Commun. 8 186Google Scholar

    [141]

    Yin Y, Li J, Ren X, Zhao K, Wu Y, Cunningham E, Chang Z 2016 Opt. Lett. 41 1142Google Scholar

    [142]

    Chang Z 2007 Phys. Rev. A 76 051403Google Scholar

    [143]

    Mauritsson J, Johnsson P, Gustafsson E, L’Huillier A, Schafer K J, Gaarde M B 2006 Phys. Rev. Lett. 97 013001Google Scholar

    [144]

    Merdji H, Auguste T, Boutu W, Caumes J P, Carré B, Pfeifer T, Jullien A, Neumark D M, Leone S R 2007 Opt. Lett. 32 3134Google Scholar

    [145]

    Mashiko H, Gilbertson S, Li C, Khan S D, Shakya M M, Moon E, Chang Z 2008 Phys. Rev. Lett. 100 103906Google Scholar

    [146]

    Mashiko H, Gilbertson S, Chini M, Feng X, Yun C, Wang H, Khan S D, Chen S, Chang Z 2009 Opt. Lett. 34 3337Google Scholar

    [147]

    Gilbertson S, Mashiko H, Li C, Khan S D, Shakya M M, Moon E, Chang Z 2008 Appl. Phys. Lett. 92 071109Google Scholar

    [148]

    Zhao K, Zhang Q, Chini M, Wu Y, Wang X, Chang Z 2012 Opt. Lett. 37 3891Google Scholar

    [149]

    Wang X, Wang L, Xiao F, Zhang D, Lü Z, Yuan J, Zhao Z 2020 Chin. Phys. Lett. 37 023201Google Scholar

    [150]

    Oron D, Silberberg Y, Dudovich N, Villeneuve D M 2005 Phys. Rev. A 72 063816Google Scholar

    [151]

    Feng X, Gilbertson S, Mashiko H, Wang H, Khan S D, Chini M, Wu Y, Zhao K, Chang Z 2009 Phys. Rev. Lett. 103 183901Google Scholar

    [152]

    Gilbertson S, Wu Y, Khan S D, Chini M, Zhao K, Feng X, Chang Z 2010 Phys. Rev. A 81 043810Google Scholar

    [153]

    Mashiko H, Oguri K, Sogawa T 2013 Appl. Phys. Lett. 102 171111Google Scholar

    [154]

    Wu Y, Cunningham E, Zang H, Li J, Chini M, Wang X, Wang Y, Zhao K, Chang Z 2013 Appl. Phys. Lett. 102 201104Google Scholar

    [155]

    Tzallas P, Skantzakis E, Kalpouzos C, Benis E P, Tsakiris G D, Charalambidis D 2007 Nat. Phys. 3 846Google Scholar

    [156]

    Skantzakis E, Tzallas P, Kruse J, Kalpouzos C, Charalambidis D 2009 Opt. Lett. 34 1732Google Scholar

    [157]

    Vincenti H, Quéré F 2012 Phys. Rev. Lett. 108 113904Google Scholar

    [158]

    Akturk S, Gu X, Bowlan P, Trebino R 2010 J. Opt. 12 093001Google Scholar

    [159]

    Akturk S, Gu X, Gabolde P, Trebino R 2005 Opt. Express 13 8642Google Scholar

    [160]

    Wheeler J A, Borot A, Monchocé S, Vincenti H, Ricci A, Malvache A, Lopez-Martens R, Quéré F 2012 Nat. Photonics 6 829Google Scholar

    [161]

    Kim K T, Zhang C, Ruchon T, Hergott J F, Auguste T, Villeneuve D M, Corkum P B, Quéré F 2013 Nat. Photonics 7 651Google Scholar

    [162]

    Zhang C, Vampa G, Villeneuve D M, Corkum P B 2015 J. Phys. B At. Mol. Opt. Phys. 48 061001Google Scholar

    [163]

    Hammond T J, Brown G G, Kim K T, Villeneuve D M, Corkum P B 2016 Nat. Photonics 10 171Google Scholar

    [164]

    Marangos J P, Baker S, Kajumba N, Robinson J S, Tisch J W G, Torres R 2008 Phys. Chem. Chem. Phys. 10 35Google Scholar

    [165]

    Peng P, Marceau C, Villeneuve D M 2019 Nat. Rev. Phys. 1 144Google Scholar

    [166]

    Le A T, Lucchese R R, Lin C D 2013 Phys. Rev. A 87 063406Google Scholar

    [167]

    Frolov M V, Manakov N L, Sarantseva T S, Starace A F 2009 J. Phys. B At. Mol. Opt. Phys. 42 035601Google Scholar

    [168]

    Frolov M V, Manakov N L, Sarantseva T S, Emelin M Yu, Ryabikin M Yu, Starace A F 2009 Phys. Rev. Lett. 102 243901Google Scholar

    [169]

    Yun H, Yun S J, Lee G H, Nam C H 2017 J. Phys. B At. Mol. Opt. Phys. 50 022001Google Scholar

    [170]

    Samson J A R, Stolte W C 2002 J. Electron Spectrosc. Relat. Phenom. 123 265Google Scholar

    [171]

    Cooper J W 1962 Phys. Rev. 128 681Google Scholar

    [172]

    Minemoto S, Umegaki T, Oguchi Y, Morishita T, Le A T, Watanabe S, Sakai H 2008 Phys. Rev. A 78 061402Google Scholar

    [173]

    Wörner H J, Niikura H, Bertrand J B, Corkum P B, Villeneuve D M 2009 Phys. Rev. Lett. 102 103901Google Scholar

    [174]

    Higuet J, Ruf H, Thiré N, Cireasa R, Constant E, Cormier E, Descamps D, Mével E, Petit S, Pons B, Mairesse Y, Fabre B 2011 Phys. Rev. A 83 053401Google Scholar

    [175]

    Farrell J P, Spector L S, McFarland B K, Bucksbaum P H, Gühr M, Gaarde M B, Schafer K J 2011 Phys. Rev. A 83 023420Google Scholar

    [176]

    Shiner A D, Schmidt B E, Trallero-Herrero C, Wörner H J, Patchkovskii S, Corkum P B, Kieffer J C, Légaré F, Villeneuve D M 2011 Nat. Phys. 7 464Google Scholar

    [177]

    Pabst S, Santra R 2013 Phys. Rev. Lett. 111 233005Google Scholar

    [178]

    Zhou X X, Tong X M, Zhao Z X, Lin C D 2005 Phys. Rev. A 71 061801Google Scholar

    [179]

    Torres R, Kajumba N, Underwood J G, Robinson J S, Baker S, Tisch J W G, de Nalda R, Bryan W A, Velotta R, Altucci C, Turcu I C E, Marangos J P 2007 Phys. Rev. Lett. 98 203007Google Scholar

    [180]

    Ramakrishna S, Seideman T 2007 Phys. Rev. Lett. 99 113901Google Scholar

    [181]

    Seideman T 1995 J. Chem. Phys. 103 7887Google Scholar

    [182]

    Stapelfeldt H, Seideman T 2003 Rev. Mod. Phys. 75 543Google Scholar

    [183]

    Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867Google Scholar

    [184]

    Burnett K, Reed V C, Cooper J, Knight P L 1992 Phys. Rev. A 45 3347Google Scholar

    [185]

    Levesque J, Zeidler D, Marangos J P, Corkum P B, Villeneuve D M 2007 Phys. Rev. Lett. 98 183903Google Scholar

    [186]

    Mairesse Y, Levesque J, Dudovich N, Corkum P B, Villeneuve D M 2008 J. Mod. Opt. 55 2591Google Scholar

    [187]

    Vozzi C, Calegari F, Benedetti E, Caumes J P, Sansone G, Stagira S, Nisoli M, Torres R, Heesel E, Kajumba N, Marangos J P, Altucci C, Velotta R 2005 Phys. Rev. Lett. 95 153902Google Scholar

    [188]

    Kanai T, Minemoto S, Sakai H 2005 Nature 435 470Google Scholar

    [189]

    Lein M, Hay N, Velotta R, Marangos J P, Knight P L 2002 Phys. Rev. A 66 023805Google Scholar

    [190]

    Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P, Ivanov M Yu 2009 Nature 460 972Google Scholar

    [191]

    Zerne R, Altucci C, Bellini M, Gaarde M B, Hänsch T W, L’Huillier A, Lyngå C, Wahlström C G 1997 Phys. Rev. Lett. 79 1006Google Scholar

    [192]

    Haessler S, Caillat J, Boutu W, Giovanetti-Teixeira C, Ruchon T, Auguste T, Diveki Z, Breger P, Maquet A, Carré B, Taïeb R, Salières P 2010 Nat. Phys. 6 200Google Scholar

    [193]

    Vozzi C, Negro M, Calegari F, Sansone G, Nisoli M, De Silvestri S, Stagira S 2011 Nat. Phys. 7 822Google Scholar

    [194]

    Bertrand J B, Wörner H J, Salières P, Villeneuve D M, Corkum P B 2013 Nat. Phys. 9 174Google Scholar

    [195]

    Zhou X, Lock R, Li W, Wagner N, Murnane M M, Kapteyn H C 2008 Phys. Rev. Lett. 100 073902Google Scholar

    [196]

    Wagner N, Zhou X, Lock R, Li W, Wüest A, Murnane M, Kapteyn H 2007 Phys. Rev. A 76 061403Google Scholar

    [197]

    McFarland B K, Farrell J P, Bucksbaum P H, Gühr M 2009 Phys. Rev. A 80 033412Google Scholar

    [198]

    Levesque J, Mairesse Y, Dudovich N, Pépin H, Kieffer J C, Corkum P B, Villeneuve D M 2007 Phys. Rev. Lett. 99 243001Google Scholar

    [199]

    Uzan A J, Soifer H, Pedatzur O, Clergerie A, Larroque S, Bruner B D, Pons B, Ivanov M, Smirnova O, Dudovich N 2020 Nat. Photonics 14 188Google Scholar

    [200]

    Mairesse Y, Higuet J, Dudovich N, Shafir D, Fabre B, Mével E, Constant E, Patchkovskii S, Walters Z, Ivanov M Yu, Smirnova O 2010 Phys. Rev. Lett. 104 213601Google Scholar

    [201]

    Huang Y, Zhao J, Shu Z, Zhu Y, Liu J, Dong W, Wang X, Lü Z, Zhang D, Yuan J, Chen J, Zhao Z 2021 Ultrafast Sci. 2021 1Google Scholar

    [202]

    Huang Y, Meng C, Wang X, Lü Z, Zhang D, Chen W, Zhao J, Yuan J, Zhao Z 2015 Phys. Rev. Lett. 115 123002Google Scholar

    [203]

    Lü Z, Zhang D, Meng C, Du X, Zhou Z, Huang Y, Zhao Z, Yuan J 2013 J. Phys. B At. Mol. Opt. Phys. 46 155602Google Scholar

    [204]

    Zhang D, Lü Z, Meng C, Du X, Zhou Z, Zhao Z, Yuan J 2012 Phys. Rev. Lett. 109 243002Google Scholar

    [205]

    Shu Z, Liang H, Wang Y, Hu S, Chen S, Xu H, Ma R, Ding D, Chen J 2022 Phys. Rev. Lett. 128 183202Google Scholar

    [206]

    Steinberg A M, Kwiat P G, Chiao R Y 1993 Phys. Rev. Lett. 71 708Google Scholar

    [207]

    Steinberg A M 1995 Phys. Rev. Lett. 74 2405Google Scholar

    [208]

    Dahlström J M, L’Huillier A, Maquet A 2012 J. Phys. B At. Mol. Opt. Phys. 45 183001Google Scholar

    [209]

    Pedersen S, Herek J L, Zewail A H 1994 Science 266 1359Google Scholar

    [210]

    Tzallas P, Skantzakis E, Nikolopoulos L A A, Tsakiris G D, Charalambidis D 2011 Nat. Phys. 7 781Google Scholar

    [211]

    Pazourek R, Nagele S, Burgdörfer J 2015 Rev. Mod. Phys. 87 765Google Scholar

    [212]

    Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh Th, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 803Google Scholar

    [213]

    Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou Ph, Muller H G, Agostini P 2001 Science 292 1689Google Scholar

    [214]

    Muller H G 2002 Appl. Phys. B 74 s17Google Scholar

    [215]

    Klünder K, Dahlström J M, Gisselbrecht M, Fordell T, Swoboda M, Guénot D, Johnsson P, Caillat J, Mauritsson J, Maquet A, Taïeb R, L’Huillier A 2011 Phys. Rev. Lett. 106 143002Google Scholar

    [216]

    Schultze M, Fieß M, Karpowicz N, Gagnon J, Korbman M, Hofstetter M, Neppl S, Cavalieri A L, Komninos Y, Mercouris Th, Nicolaides C A, Pazourek R, Nagele S, Feist J, Burgdörfer J, Azzeer A M, Ernstorfer R, Kienberger R, Kleineberg U, Goulielmakis E, Krausz F, Yakovlev V S 2010 Science 328 1658Google Scholar

    [217]

    Kheifets A S, Ivanov I A 2010 Phys. Rev. Lett. 105 233002Google Scholar

    [218]

    Nagele S, Pazourek R, Feist J, Doblhoff-Dier K, Lemell C, Tőkési K, Burgdörfer J 2011 J. Phys. B At. Mol. Opt. Phys. 44 081001Google Scholar

    [219]

    Zhang C H, Thumm U 2011 Phys. Rev. A 84 033401Google Scholar

    [220]

    Nagele S, Pazourek R, Wais M, Wachter G, Burgdörfer J 2014 J. Phys. Conf. Ser. 488 012004Google Scholar

    [221]

    Wigner E P 1955 Phys. Rev. 98 145Google Scholar

    [222]

    Smith F T 1960 Phys. Rev. 118 349Google Scholar

    [223]

    Isinger M, Squibb R J, Busto D, Zhong S, Harth A, Kroon D, Nandi S, Arnold C L, Miranda M, Dahlström J M, Lindroth E, Feifel R, Gisselbrecht M, L’Huillier A 2017 Science 358 893Google Scholar

    [224]

    Bolognesi P, Avaldi L, Cooper D R, Coreno M, Camilloni R, King G C 2002 J. Phys. B At. Mol. Opt. Phys. 35 2927Google Scholar

    [225]

    Kikas A, Osborne S J, Ausmees A, Svensson S, Sairanen O P, Aksela S 1996 J. Electron Spectrosc. Relat. Phenom. 77 241Google Scholar

    [226]

    Svensson S, Eriksson B, Mårtensson N, Wendin G, Gelius U 1988 J. Electron Spectrosc. Relat. Phenom. 47 327Google Scholar

    [227]

    Ossiander M, Siegrist F, Shirvanyan V, Pazourek R, Sommer A, Latka T, Guggenmos A, Nagele S, Feist J, Burgdörfer J, Kienberger R, Schultze M 2017 Nat. Phys. 13 280Google Scholar

    [228]

    Palatchi C, Dahlström J M, Kheifets A S, Ivanov I A, Canaday D M, Agostini P, DiMauro L F 2014 J. Phys. B At. Mol. Opt. Phys. 47 245003Google Scholar

    [229]

    Busto D, Vinbladh J, Zhong S, Isinger M, Nandi S, Maclot S, Johnsson P, Gisselbrecht M, L’Huillier A, Lindroth E, Dahlström J M 2019 Phys. Rev. Lett. 123 133201Google Scholar

    [230]

    Fano U 1985 Phys. Rev. A 32 617Google Scholar

    [231]

    Peschel J, Busto D, Plach M, Bertolino M, Hoflund M, Maclot S, Vinbladh J, Wikmark H, Zapata F, Lindroth E, Gisselbrecht M, Dahlström J M, L’Huillier A, Eng-Johnsson P 2022 Nat. Commun. 13 5205Google Scholar

    [232]

    Weinkauf R, Schanen P, Metsala A, Schlag E W, Bürgle M, Kessler H 1996 J. Phys. Chem. 100 18567Google Scholar

    [233]

    Sansone G, Kelkensberg F, Pérez-Torres J F, et al. 2010 Nature 465 763Google Scholar

    [234]

    Neidel Ch, Klei J, Yang C H, et al. 2013 Phys. Rev. Lett. 111 033001Google Scholar

    [235]

    Cederbaum L S, Zobeley J 1999 Chem. Phys. Lett. 307 205Google Scholar

    [236]

    Remacle F, Levine R D 2006 Proc. Natl. Acad. Sci. 103 6793Google Scholar

    [237]

    Kraus P M, Mignolet B, Baykusheva D, Rupenyan A, Horný L, Penka E F, Grassi G, Tolstikhin O I, Schneider J, Jensen F, Madsen L B, Bandrauk A D, Remacle F, Wörner H J 2015 Science 350 790Google Scholar

    [238]

    Jia D, Manz J, Yang Y 2019 J. Phys. Chem. Lett. 10 4273Google Scholar

    [239]

    Kuleff A I, Cederbaum L S 2007 Chem. Phys. 338 320Google Scholar

    [240]

    Despré V, Golubev N V, Kuleff A I 2018 Phys. Rev. Lett. 121 203002Google Scholar

    [241]

    Vacher M, Bearpark M J, Robb M A, Malhado J P 2017 Phys. Rev. Lett. 118 083001Google Scholar

    [242]

    Folorunso A S, Bruner A, Mauger F, Hamer K A, Hernandez S, Jones R R, DiMauro L F, Gaarde M B, Schafer K J, Lopata K 2021 Phys. Rev. Lett. 126 133002Google Scholar

    [243]

    He L, Sun S, Lan P, He Y, Wang B, Wang P, Zhu X, Li L, Cao W, Lu P, Lin C D 2022 Nat. Commun. 13 4595Google Scholar

    [244]

    Bucksbaum P H 2007 Science 317 766Google Scholar

    [245]

    Schultz T, Samoylova E, Radloff W, Hertel I V, Sobolewski A L, Domcke W 2004 Science 306 1765Google Scholar

    [246]

    Polli D, Altoè P, Weingart O, Spillane K M, Manzoni C, Brida D, Tomasello G, Orlandi G, Kukura P, Mathies R A, Garavelli M, Cerullo G 2010 Nature 467 440Google Scholar

    [247]

    Jasper A W, Zhu C, Nangia S, Truhlar D G 2004 Faraday Discuss. 127 1Google Scholar

    [248]

    Yarkony D R 2012 Chem. Rev. 112 481Google Scholar

    [249]

    Wörner H J, Bertrand J B, Fabre B, Higuet J, Ruf H, Dubrouil A, Patchkovskii S, Spanner M, Mairesse Y, Blanchet V, Mével E, Constant E, Corkum P B, Villeneuve D M 2011 Science 334 208Google Scholar

    [250]

    Mairesse Y, Zeidler D, Dudovich N, Spanner M, Levesque J, Villeneuve D M, Corkum P B 2008 Phys. Rev. Lett. 100 143903Google Scholar

    [251]

    Wörner H J, Bertrand J B, Kartashov D V, Corkum P B, Villeneuve D M 2010 Nature 466 604Google Scholar

    [252]

    Ruf H, Handschin C, Ferré A, et al. 2012 J. Chem. Phys. 137 224303Google Scholar

    [253]

    von Conta A, Tehlar A, Schletter A, Arasaki Y, Takatsuka K, Wörner H J 2018 Nat. Commun. 9 3162Google Scholar

    [254]

    Trabattoni A, Klinker M, González-Vázquez J, Liu C, Sansone G, Linguerri R, Hochlaf M, Klei J, Vrakking M J J, Martín F, Nisoli M, Calegari F 2015 Phys. Rev. X 5 041053Google Scholar

    [255]

    Galbraith M C E, Scheit S, Golubev N V, Reitsma G, Zhavoronkov N, Despré V, Lépine F, Kuleff A I, Vrakking M J J, Kornilov O, Köppel H, Mikosch J 2017 Nat. Commun. 8 1018Google Scholar

    [256]

    Corrales M E, González-Vázquez J, de Nalda R, Bañares L 2019 J. Phys. Chem. Lett. 10 138Google Scholar

    [257]

    Boyer A, Hervé M, Despré V, Castellanos Nash P, Loriot V, Marciniak A, Tielens A G G M, Kuleff A I, Lépine F 2021 Phys. Rev. X 11 041012Google Scholar

    [258]

    Timmers H, Zhu X, Li Z, Kobayashi Y, Sabbar M, Hollstein M, Reduzzi M, Martínez T J, Neumark D M, Leone S R 2019 Nat. Commun. 10 3133Google Scholar

    [259]

    Chang K F, Reduzzi M, Wang H, Poullain S M, Kobayashi Y, Barreau L, Prendergast D, Neumark D M, Leone S R 2020 Nat. Commun. 11 4042Google Scholar

    [260]

    Chang K F, Wang H, Poullain S M, Prendergast D, Neumark D M, Leone S R 2021 J. Chem. Phys. 154 234301Google Scholar

    [261]

    Tully J C 1990 J. Chem. Phys. 93 1061Google Scholar

    [262]

    Wang H, Odelius M, Prendergast D 2019 J. Chem. Phys. 151 124106Google Scholar

    [263]

    Chang K F, Wang H, Poullain S M, González-Vázquez J, Bañares L, Prendergast D, Neumark D M, Leone S R 2022 J. Chem. Phys. 156 114304Google Scholar

  • [1] 贾韫哲, 孟胜. 光激发下水体系的超快动力学.  , 2024, 73(8): 084204. doi: 10.7498/aps.73.20240047
    [2] 杜进旭, 王国利, 李小勇, 周效信. 优化双色近红外激光及其二次谐波场驱动原子产生孤立阿秒脉冲.  , 2022, 71(23): 233207. doi: 10.7498/aps.71.20221375
    [3] 汉琳, 苗淑莉, 李鹏程. 优化组合激光场驱动原子产生高次谐波及单个超短阿秒脉冲理论研究.  , 2022, 71(23): 233204. doi: 10.7498/aps.71.20221298
    [4] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展.  , 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [5] 范鑫, 梁红静, 单立宇, 闫博, 高庆华, 马日, 丁大军. 基于高次谐波产生的极紫外偏振涡旋光.  , 2020, 69(4): 044203. doi: 10.7498/aps.69.20190834
    [6] 布玛丽亚·阿布力米提, 凌丰姿, 邓绪兰, 魏洁, 宋辛黎, 向梅, 张冰. 2-甲基吡嗪分子激发态系间交叉过程的飞秒时间分辨光电子影像研究.  , 2020, 69(10): 103301. doi: 10.7498/aps.69.20200092
    [7] 海帮, 张少锋, 张敏, 董达谱, 雷建廷, 赵冬梅, 马新文. 桌面飞秒极紫外光原子超快动力学实验装置.  , 2020, 69(23): 234208. doi: 10.7498/aps.69.20201035
    [8] 叶树集, 李传召, 张佳慧, 谈军军, 罗毅. 生物分子结合水的结构与动力学研究进展.  , 2019, 68(1): 013101. doi: 10.7498/aps.68.20181273
    [9] 陈聪, 梁盼, 胡蓉蓉, 贾天卿, 孙真荣, 冯东海. 抽运-自旋定向-探测技术及其应用.  , 2018, 67(9): 097201. doi: 10.7498/aps.67.20180244
    [10] 刘阳阳, 赵昆, 何鹏, 江昱佼, 黄杭东, 滕浩, 魏志义. 基于固体薄片超连续飞秒光源驱动的高次谐波产生实验.  , 2017, 66(13): 134207. doi: 10.7498/aps.66.134207
    [11] 罗金龙, 凌丰姿, 李帅, 王艳梅, 张冰. 丁酮3s里德堡态的超快光解动力学研究.  , 2017, 66(2): 023301. doi: 10.7498/aps.66.023301
    [12] 管仲, 李伟, 王国利, 周效信. 激光驱动晶体发射高次谐波的特性研究.  , 2016, 65(6): 063201. doi: 10.7498/aps.65.063201
    [13] 李贵花, 谢红强, 姚金平, 储蔚, 程亚, 柳晓军, 陈京, 谢新华. 中红外飞秒激光场中氮分子高次谐波的多轨道干涉特性研究.  , 2016, 65(22): 224208. doi: 10.7498/aps.65.224208
    [14] 罗香怡, 贲帅, 葛鑫磊, 王群, 郭静, 刘学深. 空间非均匀啁啾双色场驱动下氦离子的高次谐波以及孤立阿秒脉冲的产生.  , 2015, 64(19): 193201. doi: 10.7498/aps.64.193201
    [15] 卢发铭, 夏元钦, 张盛, 陈德应. 飞秒强激光脉冲驱动Ne高次谐波蓝移产生相干可调谐极紫外光实验研究.  , 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [16] 李霞, 冯东海, 何红燕, 贾天卿, 单璐繁, 孙真荣, 徐至展. CdTe/CdS核壳结构量子点超快载流子动力学.  , 2012, 61(19): 197801. doi: 10.7498/aps.61.197801
    [17] 成春芝, 周效信, 李鹏程. 原子在红外激光场中产生高次谐波及阿秒脉冲随波长的变化规律.  , 2011, 60(3): 033203. doi: 10.7498/aps.60.033203
    [18] 顾 斌, 崔 磊, 曾祥华, 张丰收. 超强飞秒激光脉冲作用下氢分子的高次谐波行为——基于含时密度泛函理论的模拟.  , 2006, 55(6): 2972-2976. doi: 10.7498/aps.55.2972
    [19] 曾志男, 李儒新, 谢新华, 徐至展. 采用双脉冲驱动产生高次谐波阿秒脉冲.  , 2004, 53(7): 2316-2319. doi: 10.7498/aps.53.2316
    [20] 王大威, 刘婷婷, 杨宏, 蒋红兵, 龚旗煌. 介质的非均匀性对高次谐波影响的研究.  , 2002, 51(9): 2034-2037. doi: 10.7498/aps.51.2034
计量
  • 文章访问数:  12637
  • PDF下载量:  507
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-26
  • 修回日期:  2023-02-03
  • 上网日期:  2023-02-23
  • 刊出日期:  2023-03-05

/

返回文章
返回
Baidu
map