-
基于太赫兹时域光谱技术搭建了近单站宽带太赫兹脉冲一维距离像的测量系统, 其距离分辨率可达亚毫米量级. 首先, 利用该系统测量了多种形状目标的一维距离像, 验证了测量系统的可靠性及通过目标的一维距离像中的散射特征位置分布来识别其外形特征的可行性. 进而, 通过测量不同粗糙度的铝板目标, 结合粗糙表面散射基尔霍夫近似和微扰法理论, 探究了目标表面粗糙度对于一维距离像强度及脉冲宽度的影响规律. 此外, 发现双站系统中一维距离像的时延与目标姿态的改变方向有关. 相关研究结果对太赫兹雷达目标探测与识别具有一定的指导意义.
The one-dimensional (1D) range profile is an important back scattering characteristic of objective, which reveals the longitudinal distribution of radar cross section (RCS) along the detection beam. Since the shape and posture can be reflected by the 1D range profile, it is of great significance in military to determine the target orientation, velocity and whether it is armed. In this paper, broadband terahertz 1D-range-profile measurement system is built based on the time-domain spectroscopy (TDS) system. It is in bistatic configuration (bistatic angle of 9°) and the signal-to-noise ratio (SNR) is 34.5 dB, with a gold mirror used as a reflector. Benefiting from the ultrashort terahertz pulse width (full pulse width of 0.52 ps), the bandwidth covers the frequency range from 0.1 THz to 2.5 THz (peaked at 0.9 THz), corresponding to the range resolution on a submillimeter scale. Firstly, the 1D range profiles of several objects in different shapes are measured, including the step, cylinder, step cone and their combination, which indicates that the geometric profile of the target in the detection direction is adequate to identify the shape feature of the target and proves the reliability of the 1D range profile measuring system based on TDS. Secondly, aluminum plates with different surface roughness in a range of 0–25 μm are also characterized. The Kirchhoff approximation theory and small perturbation method (SPM) are introduced to illustrate the characteristics of broadband terahertz 1D range profile related to the surface roughness of target. It is found that the scattering characteristic of metal object in the terahertz range is sensitive to surface roughness. If the surface roughness of the object is larger, the peak intensity of the 1D range profile will be weaker and the echo signal pulse width becomes wider. The rule is also applicable for the cases with different incident angles. Furthermore, it is revealed that the time delay of the 1D range profile in the bistatic system is related to the rotation direction of the target, which is useful in estimating the posture of the target. In summary, the characteristics of 1D range profile for metal objects relating to shape, surface roughness and posture are studied. The conclusions have certain guiding significance for the target detection and recognition of terahertz radar. -
Keywords:
- terahertz radar /
- rough surface scattering characteristic /
- terahertz time-domain spectroscopy system /
- one-dimensional range profile
[1] Beard M C, Turner G M, Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146Google Scholar
[2] Lee S, Baek S, Kim T T, Cho H, Lee S, Kang J H, Min B 2020 Adv. Mater. 32 2000250Google Scholar
[3] Naftaly M, Miles R E 2007 Proc. IEEE 95 1658Google Scholar
[4] Sheen D M, Fernandes J L, Tedeschi J R, McMakin D L, Jones A M, Lechelt W M, Severtsen R H 2013 Proc. SPIE 8715 871509
[5] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强2015 64 024101Google Scholar
Jiang Y S, Nie M Y, Zhang C H, Xin C W, Hua H Q 2015 Acta Phys. Sin. 64 024101Google Scholar
[6] 梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力 2014 63 214102Google Scholar
Liang D C, Wei M G, Gu J Q, Yin Z P, Ouyang C M, Tian Z, He M X, Han J G, Zhang W L 2014 Acta Phys. Sin. 63 214102Google Scholar
[7] Jansen C, Krumbholz N, Geise R, Enders A, Koch M 2009 3rd European Conference on Antennas and Propagation Berlin, Germany, March 23–27, 2009 p3645
[8] Brooks L D, Wolfe W L 1980 Proc. SPIE 257 177Google Scholar
[9] Cheville R A, Daniel R G 1995 Appl. Phys. Lett. 67 1960Google Scholar
[10] Gente R, Jansen C, Geise R, Peters O, Gente M, Krumbholz N, Moller C, Busch S F, Koch M 2012 IEEE Trans. Terahertz Sci. Technol. 2 424Google Scholar
[11] 王瑞君 2015 博士学位论文 (长沙: 国防科学技术大学)
Wang R H 2015 Ph. D. Dissertation (Changsha: National University of Defense Technology
[12] Li Y, Tong L, Yang X, Li M 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) Valencia, Spain, July 22–27, 2018 p2131
[13] Li J, Guo L X, Zeng H 2008 Prog. Electromagn. Res. 88 197Google Scholar
[14] Jiang D, Xu X J 2010 International Conference on Electromagnetics in Advanced Applications Sydney, Australia, September 20–24, 2010 p847
[15] Erich N G, Nina P, Richard A C, Joshua G, David N 2017 IEEE Trans. Terahertz Sci. Technol. 7 546Google Scholar
[16] Dikmelik Y, Spicer J B, Fitch M J, Osiander R 2006 Opt. Lett. 31 3653Google Scholar
[17] DiGiovanni D A, Gatesman A J, Goyette T M, Giles R H 2014 Proc. SPIE 9078 90780A
[18] Wei J C, Chen H, Qin X, Cui T J, 2017 IEEE Trans. Antennas Propag. 65 3154Google Scholar
[19] Gao J K, Wang R J, Deng B, Qin Y L, Wang H Q, Li X 2017 IEEE Antennas Wirel. Propag. Lett. 16 975Google Scholar
[20] 牟媛, 吴振森, 赵豪, 武光玲 2018雷达学报7 83Google Scholar
Mou Y, Wu Z S, Zhao H, Wu G L 2018 J. Radars 7 83Google Scholar
[21] 陈刚, 党红杏, 谭小敏, 陈珲, 崔铁军 2018 雷达学报7 75Google Scholar
Chen G, Dang H X, Tan X M, Chen H, Cui T J 2018 J. Radars 7 75Google Scholar
[22] Jun C W, Chen H, Cui T J 2016 Geoscience and Remote Sensing Symposium Beijing, China, July 10–15, 2016 p3680
[23] 史杰, 钟凯, 刘楚, 王茂榕, 乔鸿展, 李吉宁, 徐德刚, 姚建铨 2018 红外与激光工程 47 194
Shi J, Zhong K, Liu C, Wang M R, Qiao H Z, Li J N, Xu D G, Yao J Q 2018 Infrared Laser Eng. 47 194
[24] 欧湛, 郑小平, 耿华 2019 清华大学学报(自然科学版) 59 388Google Scholar
Ou Z, Zheng X P, Geng H 2019 J. Tsinghua Univ. (Sci. Technol. ) 59 388Google Scholar
[25] Bennett H E, Porteus J O 1961 J. Opt. Soc. Am. 51 123Google Scholar
[26] 郭立新, 王蕊, 吴振森 2010 随机粗糙面散射的基本理论与方法 (北京: 科学出版社) 第47页
Guo L X, Wang R, Wu Z S 2010 Basic Theories and Methods of Random Rough Surface Scattering (Beijing: Science Press) p47
-
图 5 不同粗糙度铝合金平板的一维距离像实验与基尔霍夫近似理论对比结果. 其中理论计算中选取太赫兹频率为0.9 THz, 光滑铝合金表面反射率设为0.995
Fig. 5. Comparison of 1D range profile experimental results with Kirchhoff approximation theoretical results of Al plates with different surface roughness. The terahertz frequency is 0.9 THz and reflectance of smooth Al surface is 0.995 in theoretical calculation.
-
[1] Beard M C, Turner G M, Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146Google Scholar
[2] Lee S, Baek S, Kim T T, Cho H, Lee S, Kang J H, Min B 2020 Adv. Mater. 32 2000250Google Scholar
[3] Naftaly M, Miles R E 2007 Proc. IEEE 95 1658Google Scholar
[4] Sheen D M, Fernandes J L, Tedeschi J R, McMakin D L, Jones A M, Lechelt W M, Severtsen R H 2013 Proc. SPIE 8715 871509
[5] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强2015 64 024101Google Scholar
Jiang Y S, Nie M Y, Zhang C H, Xin C W, Hua H Q 2015 Acta Phys. Sin. 64 024101Google Scholar
[6] 梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力 2014 63 214102Google Scholar
Liang D C, Wei M G, Gu J Q, Yin Z P, Ouyang C M, Tian Z, He M X, Han J G, Zhang W L 2014 Acta Phys. Sin. 63 214102Google Scholar
[7] Jansen C, Krumbholz N, Geise R, Enders A, Koch M 2009 3rd European Conference on Antennas and Propagation Berlin, Germany, March 23–27, 2009 p3645
[8] Brooks L D, Wolfe W L 1980 Proc. SPIE 257 177Google Scholar
[9] Cheville R A, Daniel R G 1995 Appl. Phys. Lett. 67 1960Google Scholar
[10] Gente R, Jansen C, Geise R, Peters O, Gente M, Krumbholz N, Moller C, Busch S F, Koch M 2012 IEEE Trans. Terahertz Sci. Technol. 2 424Google Scholar
[11] 王瑞君 2015 博士学位论文 (长沙: 国防科学技术大学)
Wang R H 2015 Ph. D. Dissertation (Changsha: National University of Defense Technology
[12] Li Y, Tong L, Yang X, Li M 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) Valencia, Spain, July 22–27, 2018 p2131
[13] Li J, Guo L X, Zeng H 2008 Prog. Electromagn. Res. 88 197Google Scholar
[14] Jiang D, Xu X J 2010 International Conference on Electromagnetics in Advanced Applications Sydney, Australia, September 20–24, 2010 p847
[15] Erich N G, Nina P, Richard A C, Joshua G, David N 2017 IEEE Trans. Terahertz Sci. Technol. 7 546Google Scholar
[16] Dikmelik Y, Spicer J B, Fitch M J, Osiander R 2006 Opt. Lett. 31 3653Google Scholar
[17] DiGiovanni D A, Gatesman A J, Goyette T M, Giles R H 2014 Proc. SPIE 9078 90780A
[18] Wei J C, Chen H, Qin X, Cui T J, 2017 IEEE Trans. Antennas Propag. 65 3154Google Scholar
[19] Gao J K, Wang R J, Deng B, Qin Y L, Wang H Q, Li X 2017 IEEE Antennas Wirel. Propag. Lett. 16 975Google Scholar
[20] 牟媛, 吴振森, 赵豪, 武光玲 2018雷达学报7 83Google Scholar
Mou Y, Wu Z S, Zhao H, Wu G L 2018 J. Radars 7 83Google Scholar
[21] 陈刚, 党红杏, 谭小敏, 陈珲, 崔铁军 2018 雷达学报7 75Google Scholar
Chen G, Dang H X, Tan X M, Chen H, Cui T J 2018 J. Radars 7 75Google Scholar
[22] Jun C W, Chen H, Cui T J 2016 Geoscience and Remote Sensing Symposium Beijing, China, July 10–15, 2016 p3680
[23] 史杰, 钟凯, 刘楚, 王茂榕, 乔鸿展, 李吉宁, 徐德刚, 姚建铨 2018 红外与激光工程 47 194
Shi J, Zhong K, Liu C, Wang M R, Qiao H Z, Li J N, Xu D G, Yao J Q 2018 Infrared Laser Eng. 47 194
[24] 欧湛, 郑小平, 耿华 2019 清华大学学报(自然科学版) 59 388Google Scholar
Ou Z, Zheng X P, Geng H 2019 J. Tsinghua Univ. (Sci. Technol. ) 59 388Google Scholar
[25] Bennett H E, Porteus J O 1961 J. Opt. Soc. Am. 51 123Google Scholar
[26] 郭立新, 王蕊, 吴振森 2010 随机粗糙面散射的基本理论与方法 (北京: 科学出版社) 第47页
Guo L X, Wang R, Wu Z S 2010 Basic Theories and Methods of Random Rough Surface Scattering (Beijing: Science Press) p47
计量
- 文章访问数: 3526
- PDF下载量: 53
- 被引次数: 0