-
介质内分子在飞秒激光场中的准直会诱导介质内部折射率发生变化并产生光谱调制效应. 本文实验上采用泵浦-探测方法测量了N2中探测光波长偏移量的时间演化, 提取了N2分子的准直度信息; 理论上通过求解含时薛定谔方程, 计算了分子非绝热准直的时间演化, 探究了分子非绝热准直和克尔效应两种机制共同影响所诱导的双折射效应对探测光光谱的调制作用. 实验和理论结果符合良好, 证实了光谱测量法可以用来表征分子的准直度. 进一步采用双脉冲泵浦方式对分子准直进行调控, 发现双脉冲泵浦可以有效增强分子的准直度. 通过调节双脉冲间的延迟时间, 即在分子的一个转动恢复周期及半个转动恢复周期处引入第二束泵浦脉冲, 可以分别控制分子准直的增强与消失, 起到“准直开关”的作用. 双脉冲调控方式同样适用于其他多个分子体系, 具有一定的普适性.The alignment of molecules in the femtosecond laser field induces the refractive index of the propagation medium to change, resulting in the spectral modulation effect. In this paper, the time evolution of the wavelength offset of a probe laser pulse under the influence of the non-adiabatic molecular alignment and Kerr effect is measured experimentally by the pump-probe method in nitrogen medium, and the alignment degree of N2 molecules is obtained. By solving the time-dependent Schrödinger equation theoretically, the expression of the degree of molecular non-adiabatic alignment is obtained, and the time evolution of non-adiabatic alignment of N2 molecules is calculated. Taking into account the combined influence of the non-adiabatic molecular alignment and Kerr effect on the change of refractive index of the propagation medium, the modulation effect of birefringence on the spectrum of the probe pulse is achieved. The experimental result accords well with the theoretical calculation, demonstrating that the spectral modulation results obtained by experimental measurement can be used to characterize the alignment degree. Further, the double pulse pump method is used to control the degree of molecular alignment. It is found that the degree of molecular alignment can be enhanced by the double pulse pump method. Moreover, by adjusting the delay time between the two pump laser pulses, that is, adding the second pump laser pulse at one rotational period and half rotational period, respectively, the enhancement and loss of the alignment of N2 molecules can be achieved, which is named the “alignment switch” effect. The molecular alignment control induced by the double pulse pump method can also be applied to the other molecular systems with different alignment and anti-alignment times, such as CO2 molecules and O2 molecules, indicating that the double pulse pump method can be used universally.
-
Keywords:
- femtosecond laser /
- non-adiabatic molecular alignment /
- birefringence /
- alignment modulation
[1] Zon B A, Katsnelson B G 1975 Zh. Eksp. Teor. Fiz. 69 1166Google Scholar
[2] Litvinyuk I V, Lee K F, Dooley P W, Rayner D M, Villeneuve D M, Corkum P B 2003 Phys. Rev. Lett. 90 233003Google Scholar
[3] Cai H, Wu J, Couairon A, Zeng H 2009 Opt. Lett. 34 827Google Scholar
[4] Feng Y H, Pan H F, Liu J, Chen C, Wu J, Zeng H P 2011 Opt. Express 19 2852Google Scholar
[5] Marceau C, Chen Y P, Théberge F, Châteauneuf M, Dubois J, Chin S L 2009 Opt. Lett. 34 1417Google Scholar
[6] Yu Z Q, Su Q, Zhang N, Gao H, Zhang Z, Chu C Y, Xu Q, Zhang Y, Liu W W 2021 Opt. Laser Technol. 141 107179Google Scholar
[7] Kaya N, Kaya G, Boran Y, Kolomenski A, Schuessler H A 2021 Optik 242 167360Google Scholar
[8] Akagi H, Kumada T, Otobe T, Itakura R, Hasegawa H, Ohshima Y 2018 Appl. Phys. B 124 14Google Scholar
[9] Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867Google Scholar
[10] Gordon R J, Zhu L, Schroeder W A, Seideman T 2003 J. Appl. Phys. 94 669Google Scholar
[11] Guo X L, Jin C, He Z Q, Yao J P, Zhou X X, Cheng Y 2021 Opt. Express 29 1613Google Scholar
[12] Qin M Y, Zhu X S 2017 Opt. Laser Technol. 87 79Google Scholar
[13] Zhai C, Zhang X, Zhu X, He L, Zhang Y, Wang B, Zhang Q, Lan P, Lu P 2018 Opt. Express 26 2775Google Scholar
[14] Wang J, Liu A H, Yuan K J 2020 Opt. Commun 460 125216Google Scholar
[15] Jiang C Z, Jiang H R, Chen Y B, Li B C, Lin C D, Jin C 2022 Phys. Rev. A 105 023111Google Scholar
[16] Yang Z, Cao W, Mo Y, Xu H, Mi K, Lan P, Zhang Q, Lu P 2021 Natl. Sci. Rev. 8 nwaa211Google Scholar
[17] Jin C, Wang S J, Zhao S F, Le A T, Lin C D 2020 Phys. Rev. A 102 013108Google Scholar
[18] He Y, He L, Lan P, Wang B, Li L, Zhu X, Cao W, Lu P 2019 Phys. Rev. A 99 053419Google Scholar
[19] Bisgaard C Z, Poulsen M D, Péronne E, Viftrup S S, Stapelfeldt H 2004 Phys. Rev. Lett. 92 173004Google Scholar
[20] Ma Z R, Zou X, Zhao L R, Qi F F, Jiang T, Zhu P F, Xiang D, Zhang J 2022 Proc. Natl. Acad. Sci. 119 e2122793119Google Scholar
[21] Langevin D, Brown J M, Gaarde M B, Couairon A 2019 Phys. Rev. A 99 063418Google Scholar
[22] Wang Q J, Chen R, Zhao J C, Sun C L, Wang X Z, Ding J J, Liu Z Y, Hu B T 2020 Chin. Phys. B 29 013301Google Scholar
[23] Ding J J, Ding P J, Liu Z Y, Hu B T 2016 Sci. Chin. Phy. Mech. Astron. 59 633001Google Scholar
[24] Yuan S, Li M, Feng Y, Li H, Zheng L, Chin S L, Zeng H 2015 J. Phys. B: At. Mol. Opt. Phys. 48 094018Google Scholar
[25] Loriot V, Hertz E, Faucher O, Lavorel B 2010 Opt. Express 18 3011Google Scholar
[26] Boyd R W 2020 Nonlinear Optics (4th Ed.) (New York: Academic Press) p358
[27] Kumarappan V, Bisgaard C Z, Viftrup S S, Holmegaard L, Stapelfeldt H 2006 J. Chem. Phys. 125 194309Google Scholar
[28] Averbukh I S, Arvieu R 2001 Phys. Rev. Lett. 87 163601Google Scholar
[29] Karamatskos E T, Raabe S, Mullins T, Trabattoni, Stammer P, Goidsztejn G, Johansen R R, Dlugolecki K, Stapelfeldt H, Vrakking M J J, Trippel S, Rouzée A, Küpper J 2019 Nat. Commun. 10 3364Google Scholar
-
图 5 延迟时间为8.4 ps的双脉冲泵浦与单脉冲泵浦下N2分子准直度的时间演化 (a) 激光功率密度为3×1013 W/cm2的单脉冲泵浦; (b) 激光功率密度为6×1013 W/cm2的单脉冲泵浦
Fig. 5. Time evolution of alignment of N2 molecules for double pulses pumping with a delay of 8.4 ps and single-pulse pumping: (a) Single-pulse pumping with the same laser power density; (b) single-pulse pumping with double laser power density.
-
[1] Zon B A, Katsnelson B G 1975 Zh. Eksp. Teor. Fiz. 69 1166Google Scholar
[2] Litvinyuk I V, Lee K F, Dooley P W, Rayner D M, Villeneuve D M, Corkum P B 2003 Phys. Rev. Lett. 90 233003Google Scholar
[3] Cai H, Wu J, Couairon A, Zeng H 2009 Opt. Lett. 34 827Google Scholar
[4] Feng Y H, Pan H F, Liu J, Chen C, Wu J, Zeng H P 2011 Opt. Express 19 2852Google Scholar
[5] Marceau C, Chen Y P, Théberge F, Châteauneuf M, Dubois J, Chin S L 2009 Opt. Lett. 34 1417Google Scholar
[6] Yu Z Q, Su Q, Zhang N, Gao H, Zhang Z, Chu C Y, Xu Q, Zhang Y, Liu W W 2021 Opt. Laser Technol. 141 107179Google Scholar
[7] Kaya N, Kaya G, Boran Y, Kolomenski A, Schuessler H A 2021 Optik 242 167360Google Scholar
[8] Akagi H, Kumada T, Otobe T, Itakura R, Hasegawa H, Ohshima Y 2018 Appl. Phys. B 124 14Google Scholar
[9] Itatani J, Levesque J, Zeidler D, Niikura H, Pepin H, Kieffer J C, Corkum P B, Villeneuve D M 2004 Nature 432 867Google Scholar
[10] Gordon R J, Zhu L, Schroeder W A, Seideman T 2003 J. Appl. Phys. 94 669Google Scholar
[11] Guo X L, Jin C, He Z Q, Yao J P, Zhou X X, Cheng Y 2021 Opt. Express 29 1613Google Scholar
[12] Qin M Y, Zhu X S 2017 Opt. Laser Technol. 87 79Google Scholar
[13] Zhai C, Zhang X, Zhu X, He L, Zhang Y, Wang B, Zhang Q, Lan P, Lu P 2018 Opt. Express 26 2775Google Scholar
[14] Wang J, Liu A H, Yuan K J 2020 Opt. Commun 460 125216Google Scholar
[15] Jiang C Z, Jiang H R, Chen Y B, Li B C, Lin C D, Jin C 2022 Phys. Rev. A 105 023111Google Scholar
[16] Yang Z, Cao W, Mo Y, Xu H, Mi K, Lan P, Zhang Q, Lu P 2021 Natl. Sci. Rev. 8 nwaa211Google Scholar
[17] Jin C, Wang S J, Zhao S F, Le A T, Lin C D 2020 Phys. Rev. A 102 013108Google Scholar
[18] He Y, He L, Lan P, Wang B, Li L, Zhu X, Cao W, Lu P 2019 Phys. Rev. A 99 053419Google Scholar
[19] Bisgaard C Z, Poulsen M D, Péronne E, Viftrup S S, Stapelfeldt H 2004 Phys. Rev. Lett. 92 173004Google Scholar
[20] Ma Z R, Zou X, Zhao L R, Qi F F, Jiang T, Zhu P F, Xiang D, Zhang J 2022 Proc. Natl. Acad. Sci. 119 e2122793119Google Scholar
[21] Langevin D, Brown J M, Gaarde M B, Couairon A 2019 Phys. Rev. A 99 063418Google Scholar
[22] Wang Q J, Chen R, Zhao J C, Sun C L, Wang X Z, Ding J J, Liu Z Y, Hu B T 2020 Chin. Phys. B 29 013301Google Scholar
[23] Ding J J, Ding P J, Liu Z Y, Hu B T 2016 Sci. Chin. Phy. Mech. Astron. 59 633001Google Scholar
[24] Yuan S, Li M, Feng Y, Li H, Zheng L, Chin S L, Zeng H 2015 J. Phys. B: At. Mol. Opt. Phys. 48 094018Google Scholar
[25] Loriot V, Hertz E, Faucher O, Lavorel B 2010 Opt. Express 18 3011Google Scholar
[26] Boyd R W 2020 Nonlinear Optics (4th Ed.) (New York: Academic Press) p358
[27] Kumarappan V, Bisgaard C Z, Viftrup S S, Holmegaard L, Stapelfeldt H 2006 J. Chem. Phys. 125 194309Google Scholar
[28] Averbukh I S, Arvieu R 2001 Phys. Rev. Lett. 87 163601Google Scholar
[29] Karamatskos E T, Raabe S, Mullins T, Trabattoni, Stammer P, Goidsztejn G, Johansen R R, Dlugolecki K, Stapelfeldt H, Vrakking M J J, Trippel S, Rouzée A, Küpper J 2019 Nat. Commun. 10 3364Google Scholar
计量
- 文章访问数: 3358
- PDF下载量: 77
- 被引次数: 0