搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于拓扑绝缘体纳米线约瑟夫森结的反常临界超流增强和半整数夏皮洛台阶

侯延亮 王翔 孙晓培 吕力

引用本文:
Citation:

基于拓扑绝缘体纳米线约瑟夫森结的反常临界超流增强和半整数夏皮洛台阶

侯延亮, 王翔, 孙晓培, 吕力

Anomalous critical supercurrent and half-integer Shapiro steps based on Josephson junction of topological insulator nanowires

Hou Yan-Liang, Wang Xiang, Sun Xiao-Pei, Lü Li
PDF
HTML
导出引用
  • 基于拓扑绝缘体材料的约瑟夫森结是寻找马约拉纳零能模的候选器件, 因而受到拓扑量子计算研究领域的关注. 这方面实验的关键之一, 是制备具有优质结区的约瑟夫森器件. 本工作在三维拓扑绝缘体Bi2Te3和Bi2(SexTe1–x)3纳米线上制作了约瑟夫森结器件, 研究了其结区的超导邻近效应、多重安德列夫反射和超流-相位关系, 观测到了约瑟夫森结的临界超流随磁场增大而反常地增大、其交流约瑟夫森效应出现半整数的夏皮洛台阶的实验结果. 本文还讨论了这些反常现象的可能来源, 特别是与结区界面处超导电极的Ti缓冲层和拓扑绝缘体纳米线中的Te元素形成TiTe铁磁性合金层的关系.
    Topological insulator-based Josephson junction, as a candidate device for searching for Majorana zero energy modes, has attracted much attention. One of the key issues along this direction is to fabricate Josephson junctions with high-quality interfaces, hoping to searching for 4π-period current-phase relation in topologically non-trivial Josephson junction. In this work, the Josephson junctions based on three-dimensional topological insulator nanowires Bi2Te3 and Bi2(SexTe1–x)3 are fabricated to study their superconducting proximity effects, multiple Andreev reflections, and current-phase relations. A number of interesting phenomena are observed, including the anomalous enhancement in junctions’ critical supercurrent with magnetic field, and the appearance of half-integer Shapiro steps in the ac Josephson effect. And, we discuss the possible origins of the observed anomalous behaviors in general, and their relation with the ferromagnetic layer of TiTe alloy formed at the interface between the topological insulator nanowires and the Ti buffer layer of the metallic electrodes, in particular. We provide the experimental evidence for the formation of a ferromagnetic TiTe alloy layer at the interface of our device. And, we believe that the formation of such a layer in our Josephson device breaks the time reversal symmetry, leading to the observed anomalous enhancement of the critical supercurrent with magnetic field, as well as the appearance of half-integer Shapiro steps. Our results suggest that to study the topologically non-trivial behaviors such as 4π-period current-phase relation, one still needs to improve the interface quality of the superconductor-normal metal-superconductor type of Josephson junction devices.
      通信作者: 吕力, lilu@aphy.iphy.ac.cn
      Corresponding author: Lü Li, lilu@aphy.iphy.ac.cn
    [1]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [2]

    Zhang H B, Yu H L, Bao D H, Li S W, Wang C X, Yang G W 2012 Phys. Rev. B 86 075102Google Scholar

    [3]

    Barreto L, Kühnemund L, Edler F, et al. 2014 Nano Lett. 14 3755Google Scholar

    [4]

    Lu H Z, Shen S Q 2011 Phys. Rev. B 84 125138Google Scholar

    [5]

    Brahlek M, Kim Y S, Bansal N, Edrey E, Oh S 2011 Appl. Phys. Lett. 99 012109Google Scholar

    [6]

    Krumrain J, Mussler G, Borisova S, et al. 2011 J. Cryst. Growth 324 115Google Scholar

    [7]

    Chen X, Ma X C, He K, Jia J F, Xue Q K 2011 Adv. Mater. 23 1162Google Scholar

    [8]

    Kong D, Randel J C, Peng H, Cha J J, Meister S, Lai K, Chen Y, Shen Z X, Manoharan H C, Cui Y 2010 Nano Lett. 10 329Google Scholar

    [9]

    Schönherr P, Collins-Mclntyre L J, Zhang S L, Kusch P, Reich S, Giles T, Daisenberger D, Prabhakaran D, Hesjedal T 2014 Nanoscale Res. Lett. 9 127Google Scholar

    [10]

    Han K B, Chong S K, Oliynyk A O, et al. 2018 Sci. Rep. 8 17290Google Scholar

    [11]

    Urkude R R, Rawat R, Palikundwar U A 2017 J. Phys. Condens. Matter 29 495602Google Scholar

    [12]

    Galletti L, Charpentier S, Song Y, Golubev D, Wang S M, Bauch T, Lombardi F 2017 IEEE Trans. Appl. Supercond. 27 1800404Google Scholar

    [13]

    Kunakova G, Bauch T, Trabaldo E, Andzane J, Erts D, Lombardi F 2019 Appl. Phys. Lett. 115 172601Google Scholar

    [14]

    Bai M, Wei X K, Feng J, Luysberg M, Bliesener A, Lippertz G, Uday A, Taskin A A, Mayer J, Ando Y 2022 Commun. Mater. 3 20Google Scholar

    [15]

    Noh H J, Jeong J, Cho E J, Kim K, Min B I, Park B G 2017 Phys. Rev. Lett. 119 016401Google Scholar

    [16]

    Leng H, Paulsen C, Huang Y K, de Visser A 2017 Phys. Rev. B 96 220506Google Scholar

    [17]

    Bai M, Yang F, Luysberg M, Feng J, Bliesener A, Lippertz G, Taskin A A, Mayer J, Ando Y 2020 Phys. Rev. Mater. 4 094801Google Scholar

    [18]

    Niebler G, Cuniberti G, Novotný T 2009 Supercond. Sci. Technol. 22 085016Google Scholar

    [19]

    Xuan X, Zhang Z, Chen C, Guo W 2022 Nano Lett. 22 5379Google Scholar

    [20]

    English C D, Hamilton D R, Chialvo C, Moraru I C, Mason N, Harlingen D J V 2016 Phys. Rev. B 94 115435Google Scholar

    [21]

    Spanton E M, Deng M, Vaitiekėnas S, Krogstrup P, Nygård J, Marcus C M, Moler K A 2017 Nat. Phys. 13 1177Google Scholar

    [22]

    Chen A Q, Park M J, Gill S T, et al. 2018 Nat. Commun. 9 3478Google Scholar

    [23]

    Hart S, Ren H, Kosowsky M, et al. 2017 Nat. Phys. 13 87Google Scholar

    [24]

    Trimble C J, Wei M T, Yuan N F Q, et al. 2021 NPJ Quantum Mater. 6 61Google Scholar

    [25]

    Yao Y, Cai R, Yang S H, Xing W, Ma Y, Mori M, Ji Y, Maekawa S, Xie X C, Han W 2021 Phys. Rev. B 104 104414Google Scholar

  • 图 1  (a), (b)分别为基于Bi2(SexTe1–x)3纳米线和Bi2Te3纳米线约瑟夫森结器件的SEM图, 以及各自对应的微分电阻随偏置电流和磁场而变化的实验数据, 其中Ib为直流偏置电流, iac为低频交流电流, V为结区电压, B为施加的磁场

    Fig. 1.  (a) and (b) Scanning electron microscope images of two Josephson junction devices based on Bi2(SexTe1–x)3 nanowire and Bi2Te3 nanowire, respectively, together with their differential resistance as a function of bias current and magnetic field. Ib, iac, V and B represent dc bias current, low-frequency ac current, voltage drop across the junction, and applied magnetic field, respectively.

    图 2  图1(b)中的器件在微波辐射下出现整数和半整数的夏皮洛台阶 (a), (b)分别为0 G和100 G垂直磁场下的微分电阻随微波功率和偏置电流而变化的实验数据, 白色数字标示的深蓝色区是对应序号的整数台阶出现的区域, 红色箭头标示的是半整数台阶出现的位置; (c), (d)是(a), (b)局部的放大图, 展示在100 G的垂直磁场下, 半整数台阶比零磁场下更为清晰; (e) 图(a)中几个不同微波功率处的微分电阻随偏置电压的变化关系曲线, 红色箭头标记的是半整数台阶出现的位置, 蓝色箭头标记的是整数台阶出现的位置

    Fig. 2.  Integer and half-integer Shapiro steps under microwave irradiation for the device shown in Fig. 1(b): (a), (b) The differential resistance as a function of microwave power and bias current under the perpendicular magnetic field of 0 G and 100 G, respectively, showing Shapiro steps. Integer steps appear in the dark blue regions indicated by the white numbers. And, half-integer steps appear in the positions indicated by the red arrows. (c), (d) Details of (a) and (b), showing that the half-integer steps can be more clearly seen in a perpendicular magnetic field of 100 G than in zero field. (e) Line-cuts in panel (a) at several different microwave powers and converted to bias voltage. Integer and half-integer Shapiro steps are marked with blue and red arrows, respectively.

    图 3  多重安德列夫反射 (a)基于图1(b)约瑟夫森结器件的Ib-V曲线, 过量电流为50 nA; (b)多重安德列夫反射导致的电导峰; (c)电压峰的电压位置与电导峰的序号符合理论预计; (d)根据OTBK理论得出的$ e{I_{\text{e}}}{R_{\text{n}}}/\varDelta ' $-Z的曲线[18]

    Fig. 3.  Multiple Andreev reflection: (a) The Ib-V curve of the Josephson junction device shown in Fig. 1(b), the excess current Ie is 50 nA; (b) the conductance peaks caused by multiple Andreev reflections; (c) the peak positions follow the expectation of the theory; (d) the $ e{I_{\text{e}}}{R_{\text{n}}}/\varDelta ' $-Z curve derived from OTBK theory[18].

    图 4  (a)基于三维Bi2Te3纳米线约瑟夫森器件截面的TEM图以及能谱分析的元素成分面扫描图, Bi2Te3与电极缓冲层Ti的界面处产生了TiTe合金层, 位置如图中黄色虚线框所示; (b) Bi2Te3薄片样品和蒸镀Ti后的Bi2Te3/Ti异质结样品在2 K温度下的M-H曲线数据图(1 emu = 10–3 A·m2), 插图为红色方框区域实验数据放大图

    Fig. 4.  (a) Transmission electron microscope image on the cross-section of the Josephson junction device composed of a three-dimensional topological insulator nanowire Bi2Te3 and superconducting electrodes with buffer layer Ti at the interface. Also shown are the elemental mappings at the interface by energy dispersive spectroscopy. The two dashed yellow lines indicate where TiTe alloy is formed at the interface; (b) the M-H curves measured at the temperature of 2 K on a Bi2Te3 flake before and after Ti film deposition, the inset shows the enlarged details in the red box.

    Baidu
  • [1]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [2]

    Zhang H B, Yu H L, Bao D H, Li S W, Wang C X, Yang G W 2012 Phys. Rev. B 86 075102Google Scholar

    [3]

    Barreto L, Kühnemund L, Edler F, et al. 2014 Nano Lett. 14 3755Google Scholar

    [4]

    Lu H Z, Shen S Q 2011 Phys. Rev. B 84 125138Google Scholar

    [5]

    Brahlek M, Kim Y S, Bansal N, Edrey E, Oh S 2011 Appl. Phys. Lett. 99 012109Google Scholar

    [6]

    Krumrain J, Mussler G, Borisova S, et al. 2011 J. Cryst. Growth 324 115Google Scholar

    [7]

    Chen X, Ma X C, He K, Jia J F, Xue Q K 2011 Adv. Mater. 23 1162Google Scholar

    [8]

    Kong D, Randel J C, Peng H, Cha J J, Meister S, Lai K, Chen Y, Shen Z X, Manoharan H C, Cui Y 2010 Nano Lett. 10 329Google Scholar

    [9]

    Schönherr P, Collins-Mclntyre L J, Zhang S L, Kusch P, Reich S, Giles T, Daisenberger D, Prabhakaran D, Hesjedal T 2014 Nanoscale Res. Lett. 9 127Google Scholar

    [10]

    Han K B, Chong S K, Oliynyk A O, et al. 2018 Sci. Rep. 8 17290Google Scholar

    [11]

    Urkude R R, Rawat R, Palikundwar U A 2017 J. Phys. Condens. Matter 29 495602Google Scholar

    [12]

    Galletti L, Charpentier S, Song Y, Golubev D, Wang S M, Bauch T, Lombardi F 2017 IEEE Trans. Appl. Supercond. 27 1800404Google Scholar

    [13]

    Kunakova G, Bauch T, Trabaldo E, Andzane J, Erts D, Lombardi F 2019 Appl. Phys. Lett. 115 172601Google Scholar

    [14]

    Bai M, Wei X K, Feng J, Luysberg M, Bliesener A, Lippertz G, Uday A, Taskin A A, Mayer J, Ando Y 2022 Commun. Mater. 3 20Google Scholar

    [15]

    Noh H J, Jeong J, Cho E J, Kim K, Min B I, Park B G 2017 Phys. Rev. Lett. 119 016401Google Scholar

    [16]

    Leng H, Paulsen C, Huang Y K, de Visser A 2017 Phys. Rev. B 96 220506Google Scholar

    [17]

    Bai M, Yang F, Luysberg M, Feng J, Bliesener A, Lippertz G, Taskin A A, Mayer J, Ando Y 2020 Phys. Rev. Mater. 4 094801Google Scholar

    [18]

    Niebler G, Cuniberti G, Novotný T 2009 Supercond. Sci. Technol. 22 085016Google Scholar

    [19]

    Xuan X, Zhang Z, Chen C, Guo W 2022 Nano Lett. 22 5379Google Scholar

    [20]

    English C D, Hamilton D R, Chialvo C, Moraru I C, Mason N, Harlingen D J V 2016 Phys. Rev. B 94 115435Google Scholar

    [21]

    Spanton E M, Deng M, Vaitiekėnas S, Krogstrup P, Nygård J, Marcus C M, Moler K A 2017 Nat. Phys. 13 1177Google Scholar

    [22]

    Chen A Q, Park M J, Gill S T, et al. 2018 Nat. Commun. 9 3478Google Scholar

    [23]

    Hart S, Ren H, Kosowsky M, et al. 2017 Nat. Phys. 13 87Google Scholar

    [24]

    Trimble C J, Wei M T, Yuan N F Q, et al. 2021 NPJ Quantum Mater. 6 61Google Scholar

    [25]

    Yao Y, Cai R, Yang S H, Xing W, Ma Y, Mori M, Ji Y, Maekawa S, Xie X C, Han W 2021 Phys. Rev. B 104 104414Google Scholar

  • [1] 蒋婧, 王小云, 孔鹏, 赵鹤平, 何兆剑, 邓科. 声学四极子拓扑绝缘体中的位错态.  , 2024, 73(15): 154302. doi: 10.7498/aps.73.20240640
    [2] 谢向男, 李成, 曾俊炜, 周珅, 江天. 本征磁性拓扑绝缘体MnBi2Te4研究进展.  , 2023, 72(18): 187101. doi: 10.7498/aps.72.20230704
    [3] 张帅, 宋凤麒. 拓扑绝缘体中量子霍尔效应的研究进展.  , 2023, 72(17): 177302. doi: 10.7498/aps.72.20230698
    [4] 刘畅, 王亚愚. 磁性拓扑绝缘体中的量子输运现象.  , 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [5] 黄月蕾, 单寅飞, 杜灵杰, 杜瑞瑞. 拓扑激子绝缘体的实验进展.  , 2023, 72(17): 177101. doi: 10.7498/aps.72.20230634
    [6] 房晓南, 危芹, 隋娜娜, 孔志勇, 刘静, 杜颜伶. 间隔层调控SrVO3/SrTiO3超晶格铁磁半金属-铁磁绝缘体转变.  , 2022, 71(23): 237301. doi: 10.7498/aps.71.20221765
    [7] 李云, 鲁文建. 掺杂维度和浓度调控的δ掺杂的La:SrTiO3超晶格结构金属-绝缘体转变.  , 2021, 70(22): 227102. doi: 10.7498/aps.70.20210830
    [8] 王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜. 高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子.  , 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [9] 刘畅, 刘祥瑞. 强三维拓扑绝缘体与磁性拓扑绝缘体的角分辨光电子能谱学研究进展.  , 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [10] 严忠波. 高阶拓扑绝缘体和高阶拓扑超导体简介.  , 2019, 68(22): 226101. doi: 10.7498/aps.68.20191101
    [11] 向天, 程亮, 齐静波. 拓扑绝缘体中的超快电荷自旋动力学.  , 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [12] 王泽霖, 张振华, 赵喆, 邵瑞文, 隋曼龄. 电触发二氧化钒纳米线发生金属-绝缘体转变的机理.  , 2018, 67(17): 177201. doi: 10.7498/aps.67.20180835
    [13] 陈锟, 邓友金. 用量子蒙特卡罗方法研究二维超流-莫特绝缘体相变点附近的希格斯粒子.  , 2015, 64(18): 180201. doi: 10.7498/aps.64.180201
    [14] 李兆国, 张帅, 宋凤麒. 拓扑绝缘体的普适电导涨落.  , 2015, 64(9): 097202. doi: 10.7498/aps.64.097202
    [15] 王青, 盛利. 磁场中的拓扑绝缘体边缘态性质.  , 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [16] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究.  , 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [17] 曾伦武, 宋润霞. 点电荷在拓扑绝缘体和导体中感应磁单极.  , 2012, 61(11): 117302. doi: 10.7498/aps.61.117302
    [18] 曾伦武, 张浩, 唐中良, 宋润霞. 拓扑绝缘体椭球粒子的电磁散射.  , 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
    [19] 张小明, 刘国栋, 杜音, 刘恩克, 王文洪, 吴光恒, 柳忠元. 半Heusler型拓扑绝缘体LaPtBi能带调控的研究.  , 2012, 61(12): 123101. doi: 10.7498/aps.61.123101
    [20] 陈锋, 应和平, 徐铁锋, 李文铸. 二维半充满Hubbard模型有限温度下绝缘体──金属相变的研究.  , 1994, 43(10): 1672-1676. doi: 10.7498/aps.43.1672
计量
  • 文章访问数:  4283
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-29
  • 修回日期:  2022-11-28
  • 上网日期:  2022-12-02
  • 刊出日期:  2023-02-05

/

返回文章
返回
Baidu
map