搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层Nb2SiTe4基化合物的带隙异常变化

王晓菲 孟威威 赵培丽 贾双凤 郑赫 王建波

引用本文:
Citation:

单层Nb2SiTe4基化合物的带隙异常变化

王晓菲, 孟威威, 赵培丽, 贾双凤, 郑赫, 王建波

Band gap anomaly in single-layer Nb2SiTe4-based compounds

Wang Xiao-Fei, Meng Wei-Wei, Zhao Pei-Li, Jia Shuang-Feng, Zheng He, Wang Jian-Bo
PDF
HTML
导出引用
  • 传统硫族化合物中阳离子相同时, 随着阴离子原子序数的增加, 价带顶逐渐升高, 带隙呈减小趋势. 在A2BX4基(A = V, Nb, Ta; B = Si, Ge, Sn; X = S, Se, Te)化合物中, 观察到随着阴离子原子序数增加, 其带隙呈现反常增大的现象. 为了探究其带隙异常变化的原因, 基于第一性原理计算, 对A2BX4基化合物的电子结构展开系统地研究, 包括能带结构、带边相对位置、轨道间耦合作用以及能带宽度等影响. 研究发现, Nb2SiX4基化合物中Nb原子4d轨道能量明显高于阴离子p轨道, 其价带顶和导带底主要由Nb原子4d轨道相互作用组成, 其带宽主要影响带隙大小. Nb2SiX4基化合物的带隙大小通过Nb—Nb和Nb—X键共同作用于Nb原子4d轨道的宽度来控制. 当阴离子序数增加时, Nb—Nb键长增加, 其相互作用减弱, 由Nb原子4d轨道主导的能带变宽, 带隙减小; 另一方面, Nb—X键长增加又使Nb原子4d带宽变窄, 带隙增加, 并且Nb—X键长增长占主导, 所以带隙最终呈现异常增加的趋势.
    Two-dimensional (2D) niobium silicon telluride (Nb2SiTe4) with good stability, a narrow band gap of 0.39 eV, high carrier mobility and superior photoresponsivity, is highly desired for applications in mid-infrared (MIR) detections, ambipolar transistors. Intensive investigations on its ferroelasticity, anisotropic carrier transport, anisotropic thermoelectric property, etc., have been reported recently. Motivated by the above prominent properties and promising applications, we systematically study the electronic properties of single-layer (SL) A2BX4 analogues (A = V, Nb, Ta; B = Si, Ge, Sn; X = S, Se, Te) and find a band-gap anomaly with respect to anion change, which differs from conventional 2D metal chalcogenide. In conventional binary chalcogenide, when cations are kept fixed, the bandgap tends to decrease as the atomic number of anions in the same group increases. However, in SL A2BX4, as atomic number of anions increases, its bandgaps tend to increase, with cations kept fixed. In order to find the underlying mechanism of such an abnormal bandgap, using first-principles calculations, we thoroughly investigate the electronic structures of Nb2SiX4 (X = S, Se, Te) surving as an example. It is found that the valance band maximum (VBM) and conduction band minimum (CBM) are mainly derived from the bonding and antibonding coupling between Nb 4d states. The bandwidth of Nb 4d states determines the relative value of the band gap in Nb2SiX4. We demonstrate that the band gap is largely influenced by the competition effect between Nb—Nb and Nb—X interactions in Nb2SiX4. As the anion atomic number increases, the Nb—Nb bond length increases, yielding an increased bandwidth of Nb 4d state and a smaller bandgap of Nb2SiX4. Meanwhile, as Nb—X bond length increases, the bandwidth of Nb 4d however decreases, yielding a larger bandgap. The interaction between Nb and X should be dominant and responsible for the overall bandgap increase of Nb2SiX4 compared with the Nb—Nb interaction.
      通信作者: 孟威威, meng@whu.edu.cn ; 郑赫, zhenghe@whu.edu.cn ; 王建波, wang@whu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52071237, 12074290, 51871169, 52101021, 12104345)、江苏省自然科学基金(批准号: BK20191187)、湖北省青年拔尖人才计划、深圳市科创委基础研究面上项目(批准号: JCYJ20190808150407522)和中国博士后科学基金(批准号: 2019M652685)资助的课题.
      Corresponding author: Meng Wei-Wei, meng@whu.edu.cn ; Zheng He, zhenghe@whu.edu.cn ; Wang Jian-Bo, wang@whu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52071237, 12074290, 51871169, 52101021, 12104345), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20191187), the Young Top-notch Talent Cultivation Program of Hubei Province, China, the Science and Technology Program of Shenzhen, China (Grant No. JCYJ20190808150407522), and the China Postdoctoral Science Foundation (Grant No. 2019M652685).
    [1]

    Guo Q, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B, Li C, Han S J, Wang H, Xia Q, Ma T P, Mueller T, Xia F 2016 Nano. Lett. 16 4648Google Scholar

    [2]

    Youngblood N, Chen C, Koester S J, Li M 2015 Nat. Photonics 9 247Google Scholar

    [3]

    Yuan H, Liu X, Afshinmanesh F, Li W, Xu G, Sun J, Lian B, Curto A G, Ye G, Hikita Y, Shen Z, Zhang S, Chen X, Brongersma M, Hwang H Y, Cui Y 2015 Nat. Nanotechnol. 10 707Google Scholar

    [4]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [5]

    Han C, Hu Z, Gomes L C, Bao Y, Carvalho A, Tan S J R, Lei B, Xiang D, Wu J, Qi D, Wang L, Huo F, Huang W, Loh K P, Chen W 2017 Nano. Lett. 17 4122Google Scholar

    [6]

    Tian H, Deng B, Chin M L, Yan X, Jiang H, Han S J, Sun V, Xia Q, Dubey M, Xia F, Wang H 2016 ACS Nano 10 10428Google Scholar

    [7]

    Castellanos-Gomez A, Vicarelli L, Prada E, Island J O, Narasimha-Acharya K L, Blanter S I, Groenendijk D J, Buscema M, Steele G A, Alvarez J V, Zandbergen H W, Palacios J J, vander Zant H S J 2014 2D Mater. 1 025001Google Scholar

    [8]

    Long M, Gao A, Wang P, Xia H, Ott C, Pan C, Fu Y, Liu E, Chen X, Lu W, Nilges T, Xu J, Wang X, Hu W, Miao F 2017 Sci. Adv. 3 e1700589Google Scholar

    [9]

    Wood J D, Wells S A, Jariwala D, Chen K S, Cho E, Sangwan V K, Liu X, Lauhon L J, Marks T J, Hersam M C 2014 Nano. Lett. 14 6964Google Scholar

    [10]

    Zhang T, Ma Y, Xu X, Lei C, Huang B, Dai Y 2020 J. Phys. Chem. Lett. 11 497Google Scholar

    [11]

    Wang W, Dai S, Li X, Yang J, Srolovitz D J, Zheng Q 2015 Nat. Commun. 6 7853Google Scholar

    [12]

    Zhao M, Xia W, Wang Y, Luo M, Tian Z, Guo Y, Hu W, Xue J 2019 ACS Nano 13 10705Google Scholar

    [13]

    Fang W Y, Li P A, Yuan J H, Xue K H, Wang J F 2020 J. Electron. Mater. 49 959Google Scholar

    [14]

    Ponce’S, Margine E R, Giustino F 2018 Phys. Rev. B 97 121201Google Scholar

    [15]

    Xu B, Xiang H, Yin J, Xia Y, Liu Z 2018 Nanoscale 10 215Google Scholar

    [16]

    Wu M, Zeng X 2016 Nano. Lett. 16 3236Google Scholar

    [17]

    Wang H, Li X, Sun J, Liu Z, Yang J 2017 2D Mater. 4 045020Google Scholar

    [18]

    罗雄, 孟威威, 陈国旭佳, 管晓溪, 贾双凤, 郑赫, 王建波 2020 69 197102Google Scholar

    Luo X, Meng W W, Chen G X J, Guan X X, Jia S F, Zheng H, Wang J B 2020 Acta Phys. Sin. 69 197102Google Scholar

    [19]

    Carrier P, Wei S H 2005 J. Appl. Phys. 97 033707Google Scholar

    [20]

    Wei S H, Zunger A 1997 Phys. Rev. B 55 13605Google Scholar

    [21]

    Ye Z Y, Deng H X, Wu H Z, Li S S, Wei S H, Luo J W 2015 Npj Comput. Mater. 1 15001Google Scholar

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [25]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [26]

    Deringer V L, Tchougréeff A L, Dronskowski R 2011 J. Phys. Chem. A 115 5461Google Scholar

    [27]

    Maintz S, Deringer V L, Tchougréeff A L, Dronskowski R 2016 J. Comput. Chem. 37 1030Google Scholar

    [28]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033Google Scholar

    [29]

    Wang F, Xu Y, Mu L, Zhang J, Xia W, Xue J, Guo Y, Yang J, Yan H 2022 ACS Nano 16 8107Google Scholar

    [30]

    Boucher F, Zhukov V, Evain M 1996 Inorg. Chem. 35 7649Google Scholar

    [31]

    Hu J, Liu X, Yue C L, Liu J Y, Zhu H W, He J B, Wei J, Mao Z Q, Antipina L Y, Popov Z I, Sorokin P B, Liu T J, Adams P W, Radmanesh S M A, Spinu L, Ji H, Natelson D 2015 Nat. Phys. 11 471Google Scholar

    [32]

    An L, Zhang H, Hu J, Zhu X, Gao W, Zhang J, Xi C, Ning W, Mao Z, Tian M 2018 Phys. Rev. B 97 235133Google Scholar

  • 图 1  A2BX4基(A = V, Nb, Ta; B = Si, Ge, Sn; X = S, Se, Te)化合物带隙异常变化, 阴离子从上往下对应带隙从大到小

    Fig. 1.  Band gap anomaly in A2BX4 (A = V, Nb, Ta; B = Si, Ge, Sn; X = S, Se, Te) analogues, with anions from the top down corresponds to the band gap from large to small.

    图 2  晶体结构及其单层晶体结构俯视图 (a), (d) Nb2SiTe4; (b), (e) Nb3SiTe6; (c), (f) Nb2CaO4

    Fig. 2.  Crystal structures and top view of single-layer: (a), (d) Nb2SiTe4; (b), (e) Nb3SiTe6; (c), (f) Nb2CaO4.

    图 3  (a) Nb2SiTe4的轨道投影能带图; (b) Nb2SiTe4 VBM处的电荷密度图; (c) Nb2SiTe4 CBM处的电荷密度图

    Fig. 3.  (a) Orbit-resolved band structures of Nb2SiTe4; (b) partial charge density at VBM of Nb2SiTe4; (c) partial charge density at CBM of Nb2SiTe4.

    图 4  Nb2SiTe4中不同原子间哈密顿轨道布局 (a) Nb-Nb; (b) Nb-Si; (c) Nb-Te; (d) Si-Te; (e)图(b)中红色圆圈的放大部分(横坐标的正(负)表示原子轨道间为成(反)键态, 用图中红(绿)色区域表示)

    Fig. 4.  Crystal orbital Hamilton populations for different interatomic in Nb2SiTe4: (a) Nb-Nb; (b) Nb-Si; (c) Nb-Te; (d) Si-Te; (e) enlarged portion of the red circle in Fig. (b) (The positive (negative) of COHP represents bonding (antibonding) interaction between ions, as colored in red (green)).

    图 5  Nb2SiX4 (X = S, Se, Te) 化合物的能带排列图

    Fig. 5.  Band alignment of Nb2SiX4 (X = S, Se, Te) compounds.

    图 6  HSE06计算的轨道投影能带结构 (a) Nb2SiS4; (b) Nb2SiSe4; (c) Nb2SiTe4 (蓝色箭头表示占据态中最靠近VBM的两条Nb原子4d能带的近似带宽)

    Fig. 6.  Orbit resolved band structures calculated by HSE06: (a) Nb2SiS4; (b) Nb2SiSe4; (c) Nb2SiTe4 (Bandwidths of the two Nb 4d bands below the VBM are represented by blue arrows).

    图 7  PBE计算的轨道投影能带结构 (a) Nb2SiTe4-1; (b) Nb2SiTe4-2; (c) Nb2SiTe4; (d) Nb2SiTe4-3; (e) Nb2SiTe4-4

    Fig. 7.  PBE calculated orbit resolved band structures: (a) Nb2SiTe4-1; (b) Nb2SiTe4-2; (c) Nb2SiTe4; (d) Nb2SiTe4-3; (e) Nb2SiTe4-4.

    表 1  系列Nb2SiTe4构型的参数对比

    Table 1.  Comparisons of representative Nb2SiTe4-based compounds.

    Nb—Nb键长/ÅNb—Te键长/ÅNb 4d带宽/Å带隙Eg /eV
    Nb2SiTe4-12.912.721.23–0.01
    Nb2SiTe4-22.912.761.140.21
    Nb2SiTe42.912.880.690.52
    Nb2SiTe4-32.812.711.030.53
    Nb2SiTe4-42.752.591.230.25
    下载: 导出CSV
    Baidu
  • [1]

    Guo Q, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B, Li C, Han S J, Wang H, Xia Q, Ma T P, Mueller T, Xia F 2016 Nano. Lett. 16 4648Google Scholar

    [2]

    Youngblood N, Chen C, Koester S J, Li M 2015 Nat. Photonics 9 247Google Scholar

    [3]

    Yuan H, Liu X, Afshinmanesh F, Li W, Xu G, Sun J, Lian B, Curto A G, Ye G, Hikita Y, Shen Z, Zhang S, Chen X, Brongersma M, Hwang H Y, Cui Y 2015 Nat. Nanotechnol. 10 707Google Scholar

    [4]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [5]

    Han C, Hu Z, Gomes L C, Bao Y, Carvalho A, Tan S J R, Lei B, Xiang D, Wu J, Qi D, Wang L, Huo F, Huang W, Loh K P, Chen W 2017 Nano. Lett. 17 4122Google Scholar

    [6]

    Tian H, Deng B, Chin M L, Yan X, Jiang H, Han S J, Sun V, Xia Q, Dubey M, Xia F, Wang H 2016 ACS Nano 10 10428Google Scholar

    [7]

    Castellanos-Gomez A, Vicarelli L, Prada E, Island J O, Narasimha-Acharya K L, Blanter S I, Groenendijk D J, Buscema M, Steele G A, Alvarez J V, Zandbergen H W, Palacios J J, vander Zant H S J 2014 2D Mater. 1 025001Google Scholar

    [8]

    Long M, Gao A, Wang P, Xia H, Ott C, Pan C, Fu Y, Liu E, Chen X, Lu W, Nilges T, Xu J, Wang X, Hu W, Miao F 2017 Sci. Adv. 3 e1700589Google Scholar

    [9]

    Wood J D, Wells S A, Jariwala D, Chen K S, Cho E, Sangwan V K, Liu X, Lauhon L J, Marks T J, Hersam M C 2014 Nano. Lett. 14 6964Google Scholar

    [10]

    Zhang T, Ma Y, Xu X, Lei C, Huang B, Dai Y 2020 J. Phys. Chem. Lett. 11 497Google Scholar

    [11]

    Wang W, Dai S, Li X, Yang J, Srolovitz D J, Zheng Q 2015 Nat. Commun. 6 7853Google Scholar

    [12]

    Zhao M, Xia W, Wang Y, Luo M, Tian Z, Guo Y, Hu W, Xue J 2019 ACS Nano 13 10705Google Scholar

    [13]

    Fang W Y, Li P A, Yuan J H, Xue K H, Wang J F 2020 J. Electron. Mater. 49 959Google Scholar

    [14]

    Ponce’S, Margine E R, Giustino F 2018 Phys. Rev. B 97 121201Google Scholar

    [15]

    Xu B, Xiang H, Yin J, Xia Y, Liu Z 2018 Nanoscale 10 215Google Scholar

    [16]

    Wu M, Zeng X 2016 Nano. Lett. 16 3236Google Scholar

    [17]

    Wang H, Li X, Sun J, Liu Z, Yang J 2017 2D Mater. 4 045020Google Scholar

    [18]

    罗雄, 孟威威, 陈国旭佳, 管晓溪, 贾双凤, 郑赫, 王建波 2020 69 197102Google Scholar

    Luo X, Meng W W, Chen G X J, Guan X X, Jia S F, Zheng H, Wang J B 2020 Acta Phys. Sin. 69 197102Google Scholar

    [19]

    Carrier P, Wei S H 2005 J. Appl. Phys. 97 033707Google Scholar

    [20]

    Wei S H, Zunger A 1997 Phys. Rev. B 55 13605Google Scholar

    [21]

    Ye Z Y, Deng H X, Wu H Z, Li S S, Wei S H, Luo J W 2015 Npj Comput. Mater. 1 15001Google Scholar

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [23]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [25]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [26]

    Deringer V L, Tchougréeff A L, Dronskowski R 2011 J. Phys. Chem. A 115 5461Google Scholar

    [27]

    Maintz S, Deringer V L, Tchougréeff A L, Dronskowski R 2016 J. Comput. Chem. 37 1030Google Scholar

    [28]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033Google Scholar

    [29]

    Wang F, Xu Y, Mu L, Zhang J, Xia W, Xue J, Guo Y, Yang J, Yan H 2022 ACS Nano 16 8107Google Scholar

    [30]

    Boucher F, Zhukov V, Evain M 1996 Inorg. Chem. 35 7649Google Scholar

    [31]

    Hu J, Liu X, Yue C L, Liu J Y, Zhu H W, He J B, Wei J, Mao Z Q, Antipina L Y, Popov Z I, Sorokin P B, Liu T J, Adams P W, Radmanesh S M A, Spinu L, Ji H, Natelson D 2015 Nat. Phys. 11 471Google Scholar

    [32]

    An L, Zhang H, Hu J, Zhu X, Gao W, Zhang J, Xi C, Ning W, Mao Z, Tian M 2018 Phys. Rev. B 97 235133Google Scholar

  • [1] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理.  , 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [2] 黄文军, 王亚平, 曹昕睿, 吴顺情, 朱梓忠. 富锂锰基三元材料Li1.208Ni0.333Co0.042Mn0.417O2的电子结构和缺陷性质.  , 2021, 70(20): 208201. doi: 10.7498/aps.70.20210398
    [3] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究.  , 2021, (): . doi: 10.7498/aps.70.20211631
    [4] 罗雄, 孟威威, 陈国旭佳, 管晓溪, 贾双凤, 郑赫, 王建波. 二维Nb2SiTe4基化合物稳定性、电子结构和光学性质的第一性原理研究.  , 2020, 69(19): 197102. doi: 10.7498/aps.69.20200848
    [5] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究.  , 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [6] 彭琼, 何朝宇, 李金, 钟建新. MoSi2薄膜电子性质的第一性原理研究.  , 2015, 64(4): 047102. doi: 10.7498/aps.64.047102
    [7] 王平, 郭立新, 杨银堂, 张志勇. 铝氮共掺杂氧化锌纳米管电子结构的第一性原理研究.  , 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [8] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究.  , 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [9] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算.  , 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [10] 李荣, 罗小玲, 梁国明, 付文升. 掺杂Fe对VH2解氢性能影响的第一性原理研究.  , 2011, 60(11): 117105. doi: 10.7498/aps.60.117105
    [11] 顾牡, 林玲, 刘波, 刘小林, 黄世明, 倪晨. M’型GdTaO4电子结构的第一性原理研究.  , 2010, 59(4): 2836-2842. doi: 10.7498/aps.59.2836
    [12] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究.  , 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [13] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算.  , 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [14] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究.  , 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [15] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究.  , 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [16] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算.  , 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [17] 胡方, 明星, 范厚刚, 陈岗, 王春忠, 魏英进, 黄祖飞. 梯形化合物NaV2O4F电子结构的第一性原理研究.  , 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [18] 黄 丹, 邵元智, 陈弟虎, 郭 进, 黎光旭. 纤锌矿结构Zn1-xMgxO电子结构及吸收光谱的第一性原理研究.  , 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
    [19] 宋庆功, 王延峰, 宋庆龙, 康建海, 褚 勇. 插层化合物Ag1/4TiSe2电子结构的第一性原理研究.  , 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [20] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算.  , 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
计量
  • 文章访问数:  3883
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-27
  • 修回日期:  2022-12-06
  • 上网日期:  2022-12-26
  • 刊出日期:  2023-03-05

/

返回文章
返回
Baidu
map