搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

H2S分子6320—6350 cm–1波段谱线参数高精度测量

田思迪 杜艳君 李济东 丁艳军 彭志敏 吕俊复 潘超 冯小雅

引用本文:
Citation:

H2S分子6320—6350 cm–1波段谱线参数高精度测量

田思迪, 杜艳君, 李济东, 丁艳军, 彭志敏, 吕俊复, 潘超, 冯小雅

High precision measurement of spectroscopic parameters of H2S in 6320—6350 cm–1 band

Tian Si-Di, Du Yan-Jun, Li Ji-Dong, Ding Yan-Jun, Peng Zhi-Min, Lü Jun-Fu, Pan Chao, Feng Xiao-Ya
PDF
HTML
导出引用
  • 硫化氢(H2S)作为一种强腐蚀性且具有剧毒的气体, 在化工、能源、环境等多个领域都是重要的中间产物或排放污染物, 在线精确测量其浓度对工艺过程控制、安全生产具有重要意义. 可调谐二极管激光吸收光谱(TDLAS)作为一种定量吸收光谱技术, 适用于大气环境监测、工业过程控制等领域H2S浓度高精度在线测量. 考虑到HITRAN2020数据库中H2S的谱线参数主要来自基于半经验理论模型的计算, 且缺乏实验数据验证, 本文首先采用直接吸收(DAS)法扫描获得H2S分子6320—6350 cm–1波段内谱线吸收截面, 选取其中6组吸收较强、相对独立、具有应用潜力的特征谱线作为实验测量的目标谱线; 然后采用免标定、高信噪比的波长调制-直接吸收(WM-DAS)法测量了该6组谱线在不同压力下的吸收截面并用Voigt, Raution等线型函数对吸收截面进行最小二乘拟合, 对谱线的碰撞展宽系数、线强度、Dicke收敛系数等光谱常数进行高精度测量, 其中吸收截面拟合的残差标准差低至7×10–5, 谱线线强度的测量不确定度小于2%, 碰撞展宽系数、Dicke收敛系数、速率依赖系数的测量不确定度小于10%. 完善了H2S光谱数据库, 为H2S浓度高精度测量提供基础光谱数据.
    As a highly corrosive and highly toxic gas, hydrogen sulfide (H2S) is an important intermediate product or pollutant in many fields such as chemical industry, energy and environment. Accurate online measurement of its concentration is of great significance for process control and production safety. Tunable diode laser absorption spectroscopy (TDLAS), as a quantitative absorption spectroscopy technique, is suitable for high-precision on-line measurement of H2S concentration in atmospheric environmental monitoring and industrial processes control. Considering that most of the spectroscopic parameters of H2S in the HITRAN2020 database are mainly calculated based on semi-empirical theoretical model and the experimental data to support them are lacking. In this work, direct absorption spectroscopy (DAS) method is firstly used to measure the absorption spectra of H2S in the band of 6320–6350 cm–1. Six groups of characteristic lines with strong absorption and relative independence are selected as the target transitions for experimental measurement. Then, the wavelength modulation-direct absorption (WM-DAS) method with no calibration and high signal-to-noise ratio is used to measure the absorbances of the six groups of transitions under different pressures. Voigt, Raution and quadratic speed-dependent Voigt profiles fit the measured absorbances by least squares method in order to obtain the spectroscopic parameters such as the collision broadening coefficient, line strength and Dicke narrowing coefficient. And the minimum standard deviation of residual error of absorbances is 7×10–5. The measurement uncertainty of each line strength is less than 2%, and the uncertainty of collision broadening coefficients, Dicke narrowing coefficients and the speed-dependent coefficients are all less than 10%. This work is helpful in improving the H2S spectral database and providing the spectral data basis for the high-precision measurement of H2S concentration.
      通信作者: 彭志敏, apspect@tsinghua.edu.cn
    • 基金项目: 国家重点研发计划(2019YFB2006002)和 国家自然科学基金(51906120)资助的课题.
      Corresponding author: Peng Zhi-Min, apspect@tsinghua.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFB2006002) and the National Natural Science Foundation of China (Grant No. 51906120).
    [1]

    Zhang C, Wang X, Liu H, Liu C, Li S, Xue J, Zeng X 2020 Fuel 269 117233Google Scholar

    [2]

    Li S, Huo F, Yin C 2022 Dyes. Pigm. 197 109825Google Scholar

    [3]

    Mohammed A, Devi P (Singh J, et al. ed) 2021 Hazardous Gases (Academic Press) pp209–223

    [4]

    Chen L, Li W, Zhao Y, Zhou Y, Zhang S, Meng L 2022 Bioresour. Technol. 345 126557Google Scholar

    [5]

    Malone Rubright S L, Pearce L L, Peterson J 2017 Nitric Oxide 71 1Google Scholar

    [6]

    GB/T 33443–2016 p12

    [7]

    Brown M D, Hall J R, Schoenfisch M H 2019 Anal. Chim. Acta 1045 67Google Scholar

    [8]

    王振, 杜艳君, 丁艳军, 彭志敏 2020 69 064205Google Scholar

    Wang Z, Du Y J, Ding Y J, Peng Z M 2020 Acta Phys. Sin. 69 064205Google Scholar

    [9]

    Shao L, Fang B, Zheng F, Qiu X, He Q, Wei J, Li C, Zhao W 2019 Spectrochim. Acta, Part A 222 117118Google Scholar

    [10]

    Wang Z, Tian C, Qian S, Yu Y, Chang J, Zhang Q, Feng Y, Li H, Feng Z 2022 Opt. Laser Technol. 145 107483Google Scholar

    [11]

    彭志敏, 贺拴玲, 周佩丽, 杜艳君, 王振, 丁艳军, 吴玉新, 吕俊复 2022 热力发电 51 145

    Peng Z M, He S L, Zhou P L, Du Y J, Wang Z, Ding YJ, Wu YX, Lv J F 2022 Thermal Power Generat. 51 145

    [12]

    Lan L J, Ding Y J, Peng Z M, Du Y J, Liu Y F, Li Z 2014 Appl. Phys. B Lasers Opt. 117 543Google Scholar

    [13]

    Azzam A a A A, Yurchenko S N, Tennyson J, Martin-Drumel M-A, Pirali O 2013 J. Quant. Spectrosc. Radiat. Transfer 130 341Google Scholar

    [14]

    Gordon I E, Rothman L S, Hargreaves R J, et al. 2022 J. Quant. Spectrosc. Radiat. Transfer 277 107949Google Scholar

    [15]

    Mouelhi M, Cuisset A, Hindle F, Jellali C, Galalou S, Aroui H, Bocquet R, Mouret G, Rohart F 2020 J. Quant. Spectrosc. Radiat. Transfer 247 106955Google Scholar

    [16]

    Naumenko O V, Polovtseva E R 2019 J. Quant. Spectrosc. Radiat. Transfer 236 106604Google Scholar

    [17]

    Ciaffoni L, Cummings B L, Denzer W, Peverall R, Procter S R, Ritchie G A D 2008 Appl. Phys. B:Lasers Opt. 92 627Google Scholar

    [18]

    Yan T, Kochanov R V, Rothman L S, Gordon I E https:// zenodo.org/record/345381#.YmpMA4VBx3h [2022-4-25 ]

    [19]

    Dicke R H 1952 Phys. Rev. 89 472

    [20]

    Boone C D, Walker K A, Bernath P F 2007 J. Quant. Spectrosc. Radiat. Transfer 105 525Google Scholar

    [21]

    Armstrong B H 1967 J. Quant. Spectrosc. Radiat. Transfer 7 61Google Scholar

    [22]

    Li J D, Peng Z M, Ding Y J 2020 Opt. Lasers Eng. 126 105875Google Scholar

    [23]

    Galatry L 1961 Phys. Rev. 122 1218Google Scholar

    [24]

    Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 681Google Scholar

    [25]

    Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 616Google Scholar

    [26]

    Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 9263Google Scholar

    [27]

    Reid J, Labrie D 1981 Appl. Phys. B: Lasers Opt. 26 203

    [28]

    Sur R, Spearrin R M, Peng W Y, Strand C L, Jeffries J B, Enns G M, Hanson R K 2016 J. Quant. Spectrosc. Radiat. Transfer 175 90Google Scholar

    [29]

    Li J D, Ding Y J, Li Z, Peng Z M 2021 J. Quant. Spectrosc. Radiat. Transfer 276 107901Google Scholar

  • 图 1  WM-DAS方法示意图, 测量信号为1 kHz的正弦波, 其中Etalon表示经过干涉仪的信号, FSR表示干涉仪的自由光谱区

    Fig. 1.  Schematic diagram of WM-DAS method. The measured signal is a sine wave of 1 kHz. Etalon is the light signal through the interferometer, FSR is free spectral range.

    图 2  H2S谱线参数测量实验装置示意图

    Fig. 2.  Schematic diagram of experimental setup for measuring the spectroscopic parameters of H2S.

    图 3  H2S, CO2, H2O分子谱线线强度分布

    Fig. 3.  The distribution of line strengths of H2S, CO2 and H2O.

    图 4  H2S在6320—6350 cm–1光谱测量结果和基于HITRAN2020数据的仿真结果, α为吸收率, ν为波数

    Fig. 4.  Measured absorption spectra of H2S in the range of 6320—6350 cm–1 and simulation results based on HITRAN2020. α is absorbance and ν is wave number.

    图 5  H2S特征谱线吸收率测量结果和基于HITRAN2020数据库的仿真结果以及残差

    Fig. 5.  Measured absorbance of H2S transitions, simulation results based on HITRAN2020 database and the residuals.

    图 6  不同压力下ν0 = 6344.000 cm–1谱线的吸收率测量结果和qSDVP对吸收率拟合的结果以及由VP, RP和qSDVP拟合所得残差

    Fig. 6.  Measured absorbance and the qSDVP best-fit results and the residuals for VP, RP and qSDVP of the transition centered at 6344.000 cm–1 at different pressures.

    图 7  (a) ν0 = 6344.000 cm–1的谱线ΔνLIA与压力的线性拟合结果, 分别由VP, RP和qSDVP得到; (b) νH与压力的线性拟合结果, 由RP得到; γ2与压力的线性拟合结果, 由qSDVP得到

    Fig. 7.  For the transition centered at 6344.000 cm–1 : (a) The linear fitting results of ΔνL and IA with pressure, which were obtained by VP, RP and qSDVP respectively; (b) the linear fitting results of νH and pressure, for RP; the linear fitting results of γ2 and pressure, for qSDVP.

    表 1  H2S在6320—6350 cm–1波段谱线的光谱常数测量结果

    Table 1.  Measured spectroscopic parameters of the H2S transitions in the range of 6320—6350 cm–1.

    ν0/cm–1φ${\gamma _{ { {\text{H} }_{\text{2} } }{\text{S-air} } } }\left( { {T_0} } \right)$
    /(10–2 cm–1·atm–1)
    ${\beta _0}\left( {{T_0}} \right)$/
    (10–2 cm–1·atm–1)
    ${\gamma _2}\left( {{T_0}} \right)$/
    (10–3 cm–1·atm–1)
    S (T0)
    / (10–3 cm–2·atm–1)
    Meas.Ref.Meas.Ref.
    6320.605VP8.99 c8.812.57 a2.63
    RP9.18 b2.80 c2.65 a
    qSDVP9.18 b7.85 c2.65 a
    6328.883VP8.62 b8.793.19 a3.35
    RP8.81 b1.75 c3.24 a
    qSDVP8.83 b5.89 c3.26 a
    6336.617VP7.87 b8.264.26 a3.49
    RP8.08 b1.05 c4.31 a
    qSDVP8.13 b4.52 b4.32 a
    6340.432VP9.07 b10.42.43 a2.66
    RP9.18 b2.38 b2.49 a
    qSDVP9.16 b7.00 b2.49 a
    6344.000VP7.79 b6.964.22 a3.27
    RP8.00 a2.18 a4.33 a
    qSDVP7.96 a7.36 b4.34 a
    6347.749VP8.62 b8.402.24 a2.36
    RP8.79 a2.40 b2.29 a
    qSDVP8.75 a7.80 c2.30 a
    注: a不确定度0—2%; b不确定度2%—5%; c不确定度5%—10%.
    下载: 导出CSV
    Baidu
  • [1]

    Zhang C, Wang X, Liu H, Liu C, Li S, Xue J, Zeng X 2020 Fuel 269 117233Google Scholar

    [2]

    Li S, Huo F, Yin C 2022 Dyes. Pigm. 197 109825Google Scholar

    [3]

    Mohammed A, Devi P (Singh J, et al. ed) 2021 Hazardous Gases (Academic Press) pp209–223

    [4]

    Chen L, Li W, Zhao Y, Zhou Y, Zhang S, Meng L 2022 Bioresour. Technol. 345 126557Google Scholar

    [5]

    Malone Rubright S L, Pearce L L, Peterson J 2017 Nitric Oxide 71 1Google Scholar

    [6]

    GB/T 33443–2016 p12

    [7]

    Brown M D, Hall J R, Schoenfisch M H 2019 Anal. Chim. Acta 1045 67Google Scholar

    [8]

    王振, 杜艳君, 丁艳军, 彭志敏 2020 69 064205Google Scholar

    Wang Z, Du Y J, Ding Y J, Peng Z M 2020 Acta Phys. Sin. 69 064205Google Scholar

    [9]

    Shao L, Fang B, Zheng F, Qiu X, He Q, Wei J, Li C, Zhao W 2019 Spectrochim. Acta, Part A 222 117118Google Scholar

    [10]

    Wang Z, Tian C, Qian S, Yu Y, Chang J, Zhang Q, Feng Y, Li H, Feng Z 2022 Opt. Laser Technol. 145 107483Google Scholar

    [11]

    彭志敏, 贺拴玲, 周佩丽, 杜艳君, 王振, 丁艳军, 吴玉新, 吕俊复 2022 热力发电 51 145

    Peng Z M, He S L, Zhou P L, Du Y J, Wang Z, Ding YJ, Wu YX, Lv J F 2022 Thermal Power Generat. 51 145

    [12]

    Lan L J, Ding Y J, Peng Z M, Du Y J, Liu Y F, Li Z 2014 Appl. Phys. B Lasers Opt. 117 543Google Scholar

    [13]

    Azzam A a A A, Yurchenko S N, Tennyson J, Martin-Drumel M-A, Pirali O 2013 J. Quant. Spectrosc. Radiat. Transfer 130 341Google Scholar

    [14]

    Gordon I E, Rothman L S, Hargreaves R J, et al. 2022 J. Quant. Spectrosc. Radiat. Transfer 277 107949Google Scholar

    [15]

    Mouelhi M, Cuisset A, Hindle F, Jellali C, Galalou S, Aroui H, Bocquet R, Mouret G, Rohart F 2020 J. Quant. Spectrosc. Radiat. Transfer 247 106955Google Scholar

    [16]

    Naumenko O V, Polovtseva E R 2019 J. Quant. Spectrosc. Radiat. Transfer 236 106604Google Scholar

    [17]

    Ciaffoni L, Cummings B L, Denzer W, Peverall R, Procter S R, Ritchie G A D 2008 Appl. Phys. B:Lasers Opt. 92 627Google Scholar

    [18]

    Yan T, Kochanov R V, Rothman L S, Gordon I E https:// zenodo.org/record/345381#.YmpMA4VBx3h [2022-4-25 ]

    [19]

    Dicke R H 1952 Phys. Rev. 89 472

    [20]

    Boone C D, Walker K A, Bernath P F 2007 J. Quant. Spectrosc. Radiat. Transfer 105 525Google Scholar

    [21]

    Armstrong B H 1967 J. Quant. Spectrosc. Radiat. Transfer 7 61Google Scholar

    [22]

    Li J D, Peng Z M, Ding Y J 2020 Opt. Lasers Eng. 126 105875Google Scholar

    [23]

    Galatry L 1961 Phys. Rev. 122 1218Google Scholar

    [24]

    Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 681Google Scholar

    [25]

    Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 616Google Scholar

    [26]

    Du Y J, Peng Z M, Ding Y J 2018 Opt. Express 26 9263Google Scholar

    [27]

    Reid J, Labrie D 1981 Appl. Phys. B: Lasers Opt. 26 203

    [28]

    Sur R, Spearrin R M, Peng W Y, Strand C L, Jeffries J B, Enns G M, Hanson R K 2016 J. Quant. Spectrosc. Radiat. Transfer 175 90Google Scholar

    [29]

    Li J D, Ding Y J, Li Z, Peng Z M 2021 J. Quant. Spectrosc. Radiat. Transfer 276 107901Google Scholar

  • [1] 李绍民, 孙利群. 基于改进波长调制光谱技术的高吸收度甲烷气体测量.  , 2023, 72(1): 010701. doi: 10.7498/aps.72.20221725
    [2] 龙江雄, 邵立, 张玉钧, 尤坤, 何莹, 叶庆, 孙晓泉. 4296—4302 cm–1范围内氨气光谱线强与自展宽系数测量研究.  , 2022, 71(16): 164204. doi: 10.7498/aps.71.20220504
    [3] 李绍民, 孙利群. 基于改进波长调制光谱技术的高吸收度甲烷气体测量.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221725
    [4] 王振, 杜艳君, 丁艳军, 吕俊复, 彭志敏. 基于CRDS和WM-DAS的宽量程免标定H2S体积分数的测量.  , 2022, 71(18): 184205. doi: 10.7498/aps.71.20220742
    [5] 王振, 杜艳君, 丁艳军, 李政, 彭志敏. 波长调制-直接吸收光谱(WM-DAS)在线监测大气CO浓度.  , 2022, 71(4): 044205. doi: 10.7498/aps.71.20211772
    [6] 王振, 杜艳君, 丁艳军, 李政, 彭志敏. 波长调制-直接吸收光谱(WM-DAS)在线监测大气CO浓度.  , 2021, (): . doi: 10.7498/aps.70.20211772
    [7] 王振, 杜艳君, 丁艳军, 彭志敏. 波长调制-直接吸收方法在线监测大气中CH4和CO2浓度.  , 2020, 69(6): 064205. doi: 10.7498/aps.69.20191569
    [8] 王振, 杜艳君, 丁艳军, 彭志敏. 基于波长调制-直接吸收光谱方法的CO分子1567 nm处谱线参数高精度标定.  , 2020, 69(6): 064204. doi: 10.7498/aps.69.20191865
    [9] 卢肖勇, 张小章, 张志忠. 吸收谱线Doppler展宽对原子多步光电离的影响.  , 2017, 66(19): 193201. doi: 10.7498/aps.66.193201
    [10] 孙江, 常晓阳, 张素恒, 熊志强. 应用双非简并四波混频理论研究原子的碰撞效应.  , 2016, 65(15): 154206. doi: 10.7498/aps.65.154206
    [11] 罗强, 唐斌, 张智, 冉曾令. H2S在Fe(100)面吸附的第一性原理研究.  , 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [12] 王晓波, 马维光, 王晶晶, 肖连团, 贾锁堂. 单光子波长调制吸收光谱用于1.5 m激光器的波长锁定.  , 2012, 61(10): 104205. doi: 10.7498/aps.61.104205
    [13] 孙江, 孙娟, 王颖, 苏红新. 双光子共振非简并四波混频测量Ba原子里德伯态的碰撞展宽和频移.  , 2012, 61(11): 114214. doi: 10.7498/aps.61.114214
    [14] 段斌, 吴泽清, 颜君, 李月明, 王建国. Ar+17和 Ar+16谱线的电子碰撞展宽.  , 2012, 61(4): 043204. doi: 10.7498/aps.61.043204
    [15] 孙江, 刘鹏, 孙娟, 苏红新, 王颖. 双光子共振非简并四波混频测量钡原子里德伯态碰撞展宽中的伴线研究.  , 2012, 61(12): 124205. doi: 10.7498/aps.61.124205
    [16] 李宁, 翁春生. 非标定波长调制吸收光谱气体测量研究.  , 2011, 60(7): 070701. doi: 10.7498/aps.60.070701
    [17] 宋晓书, 程新路, 杨向东, 令狐荣锋. 氧化亚氮3000—0200和1001—0110跃迁带在高温下的线强度.  , 2007, 56(8): 4428-4434. doi: 10.7498/aps.56.4428
    [18] 牟致栋, 魏琦瑛. MoⅩⅣ—RuⅩⅥ离子的3d104s—3d94s4p跃迁谱线波长和振子强度的计算.  , 2004, 53(6): 1742-1748. doi: 10.7498/aps.53.1742
    [19] 甘建华, 陈徐宗, 李义民, 吉望西, 华景山, 姚继良, 杨东海, 王义遒. 铯饱和吸收光谱随抽运光强度的变化.  , 1996, 45(10): 1622-1628. doi: 10.7498/aps.45.1622
    [20] 何怡贞, 徐升美. 有自吸收现象时谱线强度与物质浓度的关系.  , 1958, 14(1): 54-63. doi: 10.7498/aps.14.54
计量
  • 文章访问数:  4403
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-25
  • 修回日期:  2022-10-25
  • 上网日期:  2022-11-03
  • 刊出日期:  2023-01-20

/

返回文章
返回
Baidu
map