搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

退火温度对氧化镓薄膜及紫外探测器性能的影响

落巨鑫 高红丽 邓金祥 任家辉 张庆 李瑞东 孟雪

引用本文:
Citation:

退火温度对氧化镓薄膜及紫外探测器性能的影响

落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪

Effects of annealing temperature on properties of gallium oxide thin films and ultraviolet detectors

Luo Ju-Xin, Gao Hong-Li, Deng Jin-Xiang, Ren Jia-Hui, Zhang Qing, Li Rui-Dong, Meng Xue
PDF
HTML
导出引用
  • 采用射频磁控溅射法在石英基底上制备Ga2O3薄膜, 并在氩气气氛中控制不同的退火温度进行后退火, 通过对样品的晶体结构、透射率、表面形貌和光学带隙等性质进行测试分析, 发现退火工艺可以提升薄膜的结晶质量, 但同时高温退火也容易使得薄膜中的氧元素逸出薄膜外形成氧空位, 选取800 ℃ 退火后样品制备成金属-半导体-金属(metal-semiconductor-metal, MSM)型光电探测器件, 并与未退火样品器件对比发现在1.1 V的反向偏压下, 800 ℃ 的光暗电流比为 1021.3、响应度为0.106 A/W、比探测率为1.61 × 1012 Jones, 分别是未退火器件的7.5, 195和38.3倍, 外量子效率相较于未退火样品提升了51.6%, 上升时间(0.19/0.48 s)相较于未退火样品(0.93/0.93 s)减小, 下降时间(0.64/0.72 s)与未退火样品(0.45/0.49 s)相比有所增大, 表明氧空位的增加可以减缓光生载流子的复合来达到延长载流子寿命的效果, 最后详细分析了退火后氧空位的增多导致探测器性能参数提高的机理.
    In this work, gallium oxide (Ga2O3) thin films are deposited on quartz substrates by radio frequency magnetron sputtering at room temperature and annealed in argon atmosphere at different temperatures. The influences of annealing temperatures in the argon atmosphere on crystal structure, transmittance, surface morphology, and optical band gap of the samples are investigated in detail. It is found that the annealing process can improve the crystalline quality of the film, but high-temperature annealing can also easily cause oxygen elements in the film to escape from the film to form oxygen vacancies, which is evidenced by XPS test results. To obtain the effect of the annealing process on the performance of gallium oxide thin film detector, the metal-semiconductor-metal (MSM) photodetector based on the sample annealed at 800 °C, which is compared with untreated sample operated at a reverse bias voltage of 1.1 V, can achieve excellent comprehensive photo-detection properties for 254 nm ultraviolet light: the light-dark current ratio (I254/Idark), responsivity and specific detectivity are as high as 1021.3, 0.106 A/W and 1.61 × 1012 Jones, respectively, which are 7.5, 195 and 38.3 times those of the unannealed sample device. And the external quantum efficiency is improved by 51.6%. The rise time of sample detector (0.19/0.48 s) annealed at 800 ℃ decreases compared with that of the unannealed sample (0.93/0.93 s), and the descent time of 800 ℃ detector (0.64/0.72 s)increases compared with that of the unannealed sample (0.45/0.49 s), respectively. By comparing the parameters with those of other current gallium oxide-based MSM photodetectors, it is found that the detector parameters of this work have some gaps compared with the current optimal parameters, which is attributed to the fact that the quartz substrate is selected for this work and not the sapphire substrate that is better matching with gallium oxide, resulting in the poor quality of the film compared with that of the sample on the sapphire substrate, and in this work, the photodetector has the high light-dark current ratio (PDCR) and detection rate (D*). In the end, the mechanism of increasing oxygen vacancies after being annealed, which leads to the improvement of detector performance parameters, is analyzed in detail.
      通信作者: 邓金祥, jdeng@bjut.edu.cn
    • 基金项目: 北京市科技新星计划(批准号: Z211100002121079)和北京市自然科学基金(批准号: 4192016, 4102014)资助的课题.
      Corresponding author: Deng Jin-Xiang, jdeng@bjut.edu.cn
    • Funds: Project supported by the Beijing New-star Plan of Science and Technology, China (Grant No. Z211100002121079) and the Natural Science Foundation of Beijing City, China (Grant Nos. 4192016, 4102014).
    [1]

    Liu X Z, Guo P, Sheng T, Qian L X, Zhang W L, Li Y R 2016 Opt. Mater. 51 203Google Scholar

    [2]

    Xu J J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar

    [3]

    Wang H, Ma J, Cong L, Zhou H, Li P, Fei L, Li B, Xu H, Liu Y 2021 Mater. Today Phys. 20 100464Google Scholar

    [4]

    Xie C, Lu X T, Liang Y, Chen H H, Wang L, Wu C Y, Wu D, Yang W H, Luo L B 2021 J. Mater. Sci. Technol. 72 189Google Scholar

    [5]

    Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M, Tang W H 2016 J. Alloys Compd. 660 136Google Scholar

    [6]

    Lu N Y, Gu Y, Weng Y Y, Da Z C, Ding Y 2019 Mater. Res. Express 6 095033Google Scholar

    [7]

    Wang L, Gu D W, Shen L J 2017 Solid State Sci. 72 10Google Scholar

    [8]

    Yu M, Wang H Q, Wei W, Peng B, Yuan L, Hu J C, Zhang Y M, Jia R X 2021 Appl. Surf. Sci. 568 150826Google Scholar

    [9]

    Ghosh S, Baral M, Kamparath R, Singh S D, Gangul T 2019 Appl. Phys. Lett. 115 251603Google Scholar

    [10]

    Kaur D, Kumar M 2021 Adv. Opt. Mater. 3 2002160Google Scholar

    [11]

    Wang D, Ma X C, Xiao H D, Chen R R, Le Yong, Luan C N, Zhang B, Ma J 2022 Mater. Res. Bull. 149 111718Google Scholar

    [12]

    Mukhopadhyay P, Hatipoglu I, Sakthivel T S, Hunter D A, Edwards P R, Martin R W, Naresh-Kumar G, Seal S, Schoenfeld W V 2021 Adv. Photonics Res. 2 2000067Google Scholar

    [13]

    Jeong S H, Vu Ti K O, Kim E K 2021 J. Alloys Compd. 877 160291Google Scholar

    [14]

    Yu M, Lv C D, Yu J G, Shen Y M, Yuan L, Hu J C, Zhang S N, Cheng H J, Zhang Y M, Jia R X 2020 Mater. Today Commun. 25 101532Google Scholar

    [15]

    Shen H, Yin Y N, Tian K, Baskaran K, Duan L B, Zhao X R, Tiwari A 2018 J. Alloys Compd. 766 601Google Scholar

    [16]

    Patila V, Lee B T, Jeong S H 2022 J. Alloys Compd. 894 162551Google Scholar

    [17]

    Li M Q, Yang N, Wang G G, Zhang H Y, Han J C 2019 Appl. Surf. Sci. 471 694Google Scholar

    [18]

    Zhang Y J, Yan J L, Li Q S, Qu C, Zhang L Y, Li T 2011 Physica B 406 3079Google Scholar

    [19]

    Goyal A, Yadav B S, Thakur O P, Kapoor A K, Muralidharan R 2014 J. Alloys Compd. 583 214Google Scholar

    [20]

    Feng Z Q, Huang L, Feng Q, Li X, Zhang H, Tang W h, Zhang J C, Hao Y 2018 Opt. Mater. Express 8 2229Google Scholar

    [21]

    Tien C H, Hsiao B W, Chen C M, Chen M I, Chiang J L, Wuu D S 2020 Ceram. Int. 46 24147Google Scholar

    [22]

    Singh A K, Gupta M, Sathe V, Katharria Y S 2021 Superlattice Microst. 156 106976Google Scholar

    [23]

    Yu J G, Nie Z Z, Dong L P, Yuan L, Li D J, Huang Y, Zhang L C, Zhang Y M, Jia R X 2019 J. Alloys Compd. 798 458Google Scholar

    [24]

    Wang H Y, Tang C M, Yang W J, Zhao J J, Liu L H, Mu J X, Zhang Y P, Zeng C Y 2022 Ceram. Int. 48 3481Google Scholar

    [25]

    Cui R R, Zhang J, Luo Z J, Guo X, Ding Z, Deng C Y 2021 Chinese Phys. B 2 028505Google Scholar

    [26]

    Wei P, Zhu D M, Huang S S, Zhou W C, Luo F 2013 Appl. Surf. Sci. 285P 577

    [27]

    Zhou H T, Cong L J, Ma J G, Chen M Z, Song D Y, Wang H B, Li P, Li B S, Xu H Y, Liu Y C 2020 J. Alloys Compd. 847 156536Google Scholar

    [28]

    Han J F, Yang D Z, Ma D G, Qiao W Q, Wang Z Y 2019 Org. Electron. 68 242Google Scholar

    [29]

    Gong. X, Tong M, Xia Y J, Cai W Z, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B, Heeger A J 2009 Science 325 1665Google Scholar

    [30]

    周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊 2021 70 178503Google Scholar

    Zhou S R, Zhang H, Mo H L, Liu H W, Xiong Y Q, Li H L, Kong C Y, Ye L J, Li W J 2021 Acta Phys. Sin. 70 178503Google Scholar

    [31]

    Xu R, Ma X C, Chen Y H, Mei Y, Ying L Y, Zhang B P, Long H 2022 Mat. Sci. Semicon. Proc. 144 106621Google Scholar

    [32]

    Zhou S, Peng X, Liu H W, Zhang Z F, Ye L J, Li H L, Xiong Y Q, Niu L B, Chen F L, Fang L, Kong C Y, Li W J, Yang X, Zhang A H 2022 Opt. Mater. Express 12 327

    [33]

    Wang Q L, Huang P, Liu Q, Li Y X, Qu Q L, Li M K, Homewood K P, Lu Y M, He Y B 2020 J. Alloys Compd. 834 155036Google Scholar

  • 图 1  氧化镓MSM探测器器件结构图

    Fig. 1.  The device structure of the gallium oxide MSM detector.

    图 2  不同退火温度的XRD图谱

    Fig. 2.  XRD patterns at different annealing temperatures.

    图 3  (a) 不同退火温度下的半峰宽和峰强度图像; (b)不同退火温度的平均晶粒尺寸图像

    Fig. 3.  (a) Images of the half-peak width and peak intensity at different annealing temperatures; (b) images of average grain size at different annealing temperatures.

    图 4  退火温度分别为600 ℃ (a), 700 ℃ (b), 800 ℃ (c)和900 ℃ (d)的AFM图像, 以及4个样品的均方根粗糙度图像(e)

    Fig. 4.  AFM images of annealing temperatures of 600 ℃ (a), 700 ℃ (b), 800 ℃ (c) and 900 ℃ (d), and RMS roughness images (e) of the four samples.

    图 5  (a) 不同退火温度下的氧化镓薄膜透射光谱; (b) 不同退火温度薄膜样品光学带隙图像

    Fig. 5.  (a) Transmission spectra of Ga2O3 thin films at different annealing temperatures; (b) optical band gap images of thin films at different annealing temperatures.

    图 6  不同退火温度下薄膜样品的XPS测量全谱 (a) 以及沉积态 (b) 和退火样品 (c) 的O1s精细谱

    Fig. 6.  XPS survey spectra (a) and high-resolution O1s spectra for the as-grown (b), in different annealing temperatures (c) of Ga2O3 film.

    图 7  室温下生长样品 (a) 和800 ℃ 退火样品 (b) 在黑暗环境下及254 nm 紫外光源照射下的I-V图像和半对数图像以及在5 V偏压下, 25 ℃ (c), 800 ℃ (d)的I-T图像及其双指数拟合I-T图像 (e) 和 (f)

    Fig. 7.  I-V images and semi-logarithmic images of samples grown at room temperature (a) and annealed at 800 ℃ (b) in the dark under 254 nm UV light source and under 5 V bias, the I-T image of 25 ℃ (c), 800 ℃ (d) and its bi-exponential fitting I-T images (e), (f).

    图 8  光开启时 (a) 和光关闭后 (b) 氧化镓MSM器件能带示意图, 途径1表示光生载流子的产生 (a) 与复合 (b), 途径2表示氧空位缺陷捕获 (a) 和释放 (b) 光生电子

    Fig. 8.  Schematic diagram of the energy band of the gallium oxide MSM device when the light is turned on (a) and after the light is turned off (b). Pathway 1 represents the generation (a) and recombination (b) of photogenerated carriers, and pathway 2 represents oxygen vacancy defect trapping (a) and release (b) photogenerated electrons.

    表 1  在5 V偏压下I-T双指数拟合图像响应时间参数表

    Table 1.  I-T Bi-exponential fitted image response time parameters at 5 V bias.

    Photodetectorτr1/sτr2/sτd1/sτd2/s
    25 ℃0.930.930.450.49
    800 ℃0.190.480.640.72
    下载: 导出CSV

    表 2  在–1.1 V偏压下的探测器参数汇总表

    Table 2.  Summary table of detector parameters at –1.1 V bias.

    PhotodetectorIdark/nAPDCR(I254/Idark)Rλ/(A·W–1)EQE/%D*/Jones
    25 ℃0.02621365.54 × 10–40.24.21 × 1010
    800 ℃0.6771021.30.10651.81.61 × 1012
    下载: 导出CSV

    表 3  当前氧化镓基MSM结构光电探测器主要性能参数汇总表

    Table 3.  Comparison of main performance parameters of current gallium oxide-based MSM photodetectors

    PhotodetectorMethodId/nAPDCRR254/
    (A·W–1)
    D*/JonesRef.
    Ga2O3/Al2O3Sol-gel0.125@15 V6730.044.6 × 1011[14]
    Ga2O3/SiCSputtering7.6@10 V3832.61.6 × 1012[17]
    Ga2O3/Al2O3PLD0.1@20 V52060[27]
    N:Ga2O3/Al2O3Sputtering0.01@10 V0.0136.1 × 1010[30]
    Ga2O3/Al2O3MOCVD0.17@10 V4.539.40.17 × 1012[31]
    Ga2O3/Al2O3Sputtering8.2 × 10–5@10 V3.58 × 1051.936.53 × 1013[32]
    Ga2O3/QuartzSputtering0.677@1.1 V1021.30.1061.61 × 1012This work
    下载: 导出CSV
    Baidu
  • [1]

    Liu X Z, Guo P, Sheng T, Qian L X, Zhang W L, Li Y R 2016 Opt. Mater. 51 203Google Scholar

    [2]

    Xu J J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar

    [3]

    Wang H, Ma J, Cong L, Zhou H, Li P, Fei L, Li B, Xu H, Liu Y 2021 Mater. Today Phys. 20 100464Google Scholar

    [4]

    Xie C, Lu X T, Liang Y, Chen H H, Wang L, Wu C Y, Wu D, Yang W H, Luo L B 2021 J. Mater. Sci. Technol. 72 189Google Scholar

    [5]

    Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M, Tang W H 2016 J. Alloys Compd. 660 136Google Scholar

    [6]

    Lu N Y, Gu Y, Weng Y Y, Da Z C, Ding Y 2019 Mater. Res. Express 6 095033Google Scholar

    [7]

    Wang L, Gu D W, Shen L J 2017 Solid State Sci. 72 10Google Scholar

    [8]

    Yu M, Wang H Q, Wei W, Peng B, Yuan L, Hu J C, Zhang Y M, Jia R X 2021 Appl. Surf. Sci. 568 150826Google Scholar

    [9]

    Ghosh S, Baral M, Kamparath R, Singh S D, Gangul T 2019 Appl. Phys. Lett. 115 251603Google Scholar

    [10]

    Kaur D, Kumar M 2021 Adv. Opt. Mater. 3 2002160Google Scholar

    [11]

    Wang D, Ma X C, Xiao H D, Chen R R, Le Yong, Luan C N, Zhang B, Ma J 2022 Mater. Res. Bull. 149 111718Google Scholar

    [12]

    Mukhopadhyay P, Hatipoglu I, Sakthivel T S, Hunter D A, Edwards P R, Martin R W, Naresh-Kumar G, Seal S, Schoenfeld W V 2021 Adv. Photonics Res. 2 2000067Google Scholar

    [13]

    Jeong S H, Vu Ti K O, Kim E K 2021 J. Alloys Compd. 877 160291Google Scholar

    [14]

    Yu M, Lv C D, Yu J G, Shen Y M, Yuan L, Hu J C, Zhang S N, Cheng H J, Zhang Y M, Jia R X 2020 Mater. Today Commun. 25 101532Google Scholar

    [15]

    Shen H, Yin Y N, Tian K, Baskaran K, Duan L B, Zhao X R, Tiwari A 2018 J. Alloys Compd. 766 601Google Scholar

    [16]

    Patila V, Lee B T, Jeong S H 2022 J. Alloys Compd. 894 162551Google Scholar

    [17]

    Li M Q, Yang N, Wang G G, Zhang H Y, Han J C 2019 Appl. Surf. Sci. 471 694Google Scholar

    [18]

    Zhang Y J, Yan J L, Li Q S, Qu C, Zhang L Y, Li T 2011 Physica B 406 3079Google Scholar

    [19]

    Goyal A, Yadav B S, Thakur O P, Kapoor A K, Muralidharan R 2014 J. Alloys Compd. 583 214Google Scholar

    [20]

    Feng Z Q, Huang L, Feng Q, Li X, Zhang H, Tang W h, Zhang J C, Hao Y 2018 Opt. Mater. Express 8 2229Google Scholar

    [21]

    Tien C H, Hsiao B W, Chen C M, Chen M I, Chiang J L, Wuu D S 2020 Ceram. Int. 46 24147Google Scholar

    [22]

    Singh A K, Gupta M, Sathe V, Katharria Y S 2021 Superlattice Microst. 156 106976Google Scholar

    [23]

    Yu J G, Nie Z Z, Dong L P, Yuan L, Li D J, Huang Y, Zhang L C, Zhang Y M, Jia R X 2019 J. Alloys Compd. 798 458Google Scholar

    [24]

    Wang H Y, Tang C M, Yang W J, Zhao J J, Liu L H, Mu J X, Zhang Y P, Zeng C Y 2022 Ceram. Int. 48 3481Google Scholar

    [25]

    Cui R R, Zhang J, Luo Z J, Guo X, Ding Z, Deng C Y 2021 Chinese Phys. B 2 028505Google Scholar

    [26]

    Wei P, Zhu D M, Huang S S, Zhou W C, Luo F 2013 Appl. Surf. Sci. 285P 577

    [27]

    Zhou H T, Cong L J, Ma J G, Chen M Z, Song D Y, Wang H B, Li P, Li B S, Xu H Y, Liu Y C 2020 J. Alloys Compd. 847 156536Google Scholar

    [28]

    Han J F, Yang D Z, Ma D G, Qiao W Q, Wang Z Y 2019 Org. Electron. 68 242Google Scholar

    [29]

    Gong. X, Tong M, Xia Y J, Cai W Z, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B, Heeger A J 2009 Science 325 1665Google Scholar

    [30]

    周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊 2021 70 178503Google Scholar

    Zhou S R, Zhang H, Mo H L, Liu H W, Xiong Y Q, Li H L, Kong C Y, Ye L J, Li W J 2021 Acta Phys. Sin. 70 178503Google Scholar

    [31]

    Xu R, Ma X C, Chen Y H, Mei Y, Ying L Y, Zhang B P, Long H 2022 Mat. Sci. Semicon. Proc. 144 106621Google Scholar

    [32]

    Zhou S, Peng X, Liu H W, Zhang Z F, Ye L J, Li H L, Xiong Y Q, Niu L B, Chen F L, Fang L, Kong C Y, Li W J, Yang X, Zhang A H 2022 Opt. Mater. Express 12 327

    [33]

    Wang Q L, Huang P, Liu Q, Li Y X, Qu Q L, Li M K, Homewood K P, Lu Y M, He Y B 2020 J. Alloys Compd. 834 155036Google Scholar

  • [1] 宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华. 基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器.  , 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [2] 张裕, 刘瑞文, 张京阳, 焦斌斌, 王如志. 氧化镓悬臂式薄膜日盲探测器及其电弧检测应用.  , 2024, 73(9): 098501. doi: 10.7498/aps.73.20240186
    [3] 董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平. 基于HfO2插层的Ga2O3基金属-绝缘体-半导体结构日盲紫外光电探测器.  , 2023, 72(9): 097302. doi: 10.7498/aps.72.20222222
    [4] 况丹, 徐爽, 史大为, 郭建, 喻志农. 基于铝纳米颗粒修饰的非晶氧化镓薄膜日盲紫外探测器.  , 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [5] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管.  , 2022, 71(3): 037301. doi: 10.7498/aps.71.20211536
    [6] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华. 具有大光电导增益的氧化镓薄膜基深紫外探测器阵列.  , 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [7] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管.  , 2021, (): . doi: 10.7498/aps.70.20211536
    [8] 龙泽, 夏晓川, 石建军, 刘俊, 耿昕蕾, 张赫之, 梁红伟. 基于机械剥离β-Ga2O3的Ni/Au垂直结构肖特基器件的温度特性.  , 2020, 69(13): 138501. doi: 10.7498/aps.69.20200424
    [9] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华. 超宽禁带半导体β-Ga2O3及深紫外透明电极、日盲探测器的研究进展.  , 2019, 68(7): 078501. doi: 10.7498/aps.68.20181845
    [10] 马海林, 苏庆. 氧分压对溅射制备氧化镓薄膜结构及光学带隙的影响.  , 2014, 63(11): 116701. doi: 10.7498/aps.63.116701
    [11] 潘惠平, 成枫锋, 李琳, 洪瑞华, 姚淑德. 蓝宝石衬底上生长的Ga2+xO3-x薄膜的结构分析.  , 2013, 62(4): 048801. doi: 10.7498/aps.62.048801
    [12] 郭红力, 杨焕银, 唐焕芳, 侯海军, 郑勇林, 朱建国. 高压退火对0.65PMN-0.35PT薄膜结构、形貌及电学性能的影响.  , 2013, 62(13): 130704. doi: 10.7498/aps.62.130704
    [13] 谢婧, 黎兵, 李愿杰, 颜璞, 冯良桓, 蔡亚平, 郑家贵, 张静全, 李卫, 武莉莉, 雷智, 曾广根. 射频磁控溅射法制备ZnS多晶薄膜及其性质.  , 2010, 59(8): 5749-5754. doi: 10.7498/aps.59.5749
    [14] 李阳平, 刘正堂. 等离子体发射光谱诊断用于射频磁控溅射GaP薄膜的工艺参数优化.  , 2009, 58(7): 5022-5028. doi: 10.7498/aps.58.5022
    [15] 王振宁, 江美福, 宁兆元, 朱 丽. 磁控共溅射法制备的Zn2GeO4多晶薄膜结构及其光致发光研究.  , 2008, 57(10): 6507-6512. doi: 10.7498/aps.57.6507
    [16] 李阳平, 刘正堂, 刘文婷, 闫 峰, 陈 静. GeC薄膜的射频磁控反应溅射制备及性质.  , 2008, 57(10): 6587-6592. doi: 10.7498/aps.57.6587
    [17] 李阳平, 刘正堂, 赵海龙, 刘文婷, 闫 锋. GaP薄膜的射频磁控溅射沉积及其计算机模拟.  , 2007, 56(5): 2937-2944. doi: 10.7498/aps.56.2937
    [18] 张锡健, 马洪磊, 王卿璞, 马 瑾, 宗福建, 肖洪地, 计 峰. 退火温度对低温生长MgxZn1-xO薄膜光学性质的影响.  , 2006, 55(1): 437-440. doi: 10.7498/aps.55.437
    [19] 张锡健, 马洪磊, 王卿璞, 马 瑾, 宗福建, 肖洪地, 计 峰. 射频磁控溅射法生长MgxZn1-xO薄膜的结构和光学特性.  , 2005, 54(9): 4309-4312. doi: 10.7498/aps.54.4309
    [20] 王玉恒, 马 瑾, 计 峰, 余旭浒, 张锡健, 马洪磊. 射频磁控溅射法制备SnO2:Sb薄膜的结构和光致发光性质研究.  , 2005, 54(4): 1731-1735. doi: 10.7498/aps.54.1731
计量
  • 文章访问数:  6087
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-31
  • 修回日期:  2022-10-11
  • 上网日期:  2022-11-11
  • 刊出日期:  2023-01-20

/

返回文章
返回
Baidu
map