搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

H-Pb-Cl中可调控的巨型Rashba自旋劈裂和量子自旋霍尔效应

薛文明 李金 何朝宇 欧阳滔 罗朝波 唐超 钟建新

引用本文:
Citation:

H-Pb-Cl中可调控的巨型Rashba自旋劈裂和量子自旋霍尔效应

薛文明, 李金, 何朝宇, 欧阳滔, 罗朝波, 唐超, 钟建新

Giant and tunable Rashba spin splitting and quantum spin Hall effect in H-Pb-Cl

Xue Wen-Ming, Li Jin, He Chao-Yu, Ouyang Tao, Luo Chao-Bo, Tang Chao, Zhong Jian-Xin
PDF
HTML
导出引用
  • 具有巨型Rashba自旋劈裂和量子自旋霍尔效应的材料在自旋电子器件应用中具有重要意义. 基于第一性原理, 提出一种可以将巨型Rashba自旋劈裂和量子自旋霍尔效应实现完美共存的二维(two dimension, 2D)六角晶格材料H-Pb-Cl. 由于系统空间反转对称性的破坏和本征电场的存在, H-Pb-Cl的电子能带中出现了巨型Rashba自旋劈裂现象(αR = 3.78 eV·Å). 此外, H-Pb-Cl的Rashba自旋劈裂是可以随双轴应力(–16%—16%)调控的. 通过分析H-Pb-Cl的电子性质, 发现在H-Pb-Cl费米面附近有一个巨大的带隙(1.31 eV), 并且体系由于Pb原子的s-p轨道翻转使得拓扑不变量Z2 = 1, 这就表明H-Pb-Cl是一个具有巨大拓扑带隙的2D拓扑绝缘体. 我们的研究为探索和实现Rashba自旋劈裂和量子自旋霍尔效应的共存提供了一种优良的潜在候选材料.
    Rashba spin splitting and quantum spin Hall effect have attracted enormous interest due to their great significance in the application of spintronics. According to the first-principles calculation, we propose a two-dimensional hexagonal lattice material H-Pb-Cl, which realizes the coexistence of giant Rashba spin splitting and quantum spin Hall effect. Owing to the break of space inversion symmetry and the existence of intrinsic electric field, H-Pb-Cl has a huge Rashba spin splitting phenomenon (αR = 3.78 eV·Å), and the Rashba spin splitting of H-Pb-Cl(–16%—16%) can be adjusted by changing the biaxial stress. By analyzing the electronic properties of H-Pb-Cl, we find that H-Pb-Cl has a huge band gap near the Fermi surface (1.31 eV), and the topological invariant Z2 = 1 of the system is caused by the inversion of s-p orbit, which indicates that H-Pb-Cl is a two-dimensional topological insulator with a huge topological band gap, and the gap is large enough to observe the topological edge states at room temperature. In addition, we further consider the effect of BN and graphane substrates on the topological band gap of H-Pb-Cl by using the H-Pb-Cl (111)-(1×1) /BN (111)-(2×2) and H-Pb-Cl(1×1)/ graphane (2×2) system, and find that the lattice mismatch between H-Pb-Cl (5.395 Å) and BN (2.615 Å) and between H-Pb-Cl (5.395 Å) and graphane (2.575 Å) are about 3% and 4.5%, respectively. According to our calculation results, H-Pb-Cl still retains the properties of topological insulator under the effect of spin orbit coupling, and is not affected by BN nor graphane. Our results show that the nontrivial topological band gap of H-Pb-Cl can be well preserved under both biaxial stress effect and substrate effect. In addition, H-Pb-Cl can well retain the nontrivial topological band gap under the stress of –16%–16%, and thus there are many kinds of substrate materials used to synthesize this material, which is very helpful in successfully realizing preparation experimentally. Our research provides a promising candidate material for exploring and realizing the coexistence of Rashba spin splitting and quantum spin Hall effect. And the coexistence of giant Rashba spin splitting and quantum spin Hall effect greatly broadens the scope of potential applications of H-Pb-Cl in the field of spintronic devices.
      通信作者: 薛文明, xuewm@hnie.edu.cn ; 李金, lijin@xtu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 11874316, 11404275, 11474244)和湖南省自然科学基金(批准号: 2016JJ3118)资助的课题.
      Corresponding author: Xue Wen-Ming, xuewm@hnie.edu.cn ; Li Jin, lijin@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874316, 11404275, 11474244) and the Natural Science Foundation of Hunan Province, China (Grant No. 2016JJ3118).
    [1]

    Moore J E 2010 Nature 464 194Google Scholar

    [2]

    Soumyanarayanan A, Reyren N, Fert A, Panagopoulos C 2016 Nature 539 509Google Scholar

    [3]

    Feng Y, Jiang Q, Feng B J, Yang M, Xu T, Liu W J, Yang X F, Arita M, Schwier E F, Shimada K, Jeschke H O, Thomale R, Shi Y G, Wu X X, Xiao S Z, Qiao S, He S L 2019 Nat. Commun. 10 4765Google Scholar

    [4]

    Lu J P, Yau J B, Shukla S P, Shayegan M 1998 Phys. Rev. Lett. 81 1282Google Scholar

    [5]

    Kuhlen S, Schmalbuch K, Hagedorn M, Schlammes P, Patt M, Lepsa M, Guntherodt G, Beschoten B 2012 Phys. Rev. Lett. 109 146603Google Scholar

    [6]

    Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150Google Scholar

    [7]

    Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y, Liu X J, Chen S, Pan J W 2021 Science 372 271Google Scholar

    [8]

    Lu Y H, Wang B Z, Liu X J 2020 Sci. Bull. 65 2080Google Scholar

    [9]

    Zezyulin D A, Konotop V V 2022 Phys. Rev. A 105 063323Google Scholar

    [10]

    Xu Z C, Zhou Z, Cheng E H, Lang L J, Zhu S L 2022 Sci. Chin. Phys. Mech. Astron. 65 283011Google Scholar

    [11]

    Zhao Q 2022 Mod. Phys. Lett. B 36 2250070

    [12]

    Liu H, Zhang T, Wang K, Gao F, Xu G, Zhang X, Li S X, Cao G, Wang T, Zhang J, Hu X, Li H O, Guo G P 2022 Phys. Rev. Appl. 17 044052Google Scholar

    [13]

    Smith L W, Chen H B, Chang C W, Wu C W, Lo S T, Chao S H, Farrer I, Beere H E, Griffiths J P, Jones G A C, Ritchie D A, Chen Y N, Chen T M 2022 Phys. Rev. Lett. 128 027701Google Scholar

    [14]

    Dai X Y, Liu B Y 2022 Phys. Rev. A 105 043313Google Scholar

    [15]

    Hai K, Wang Y F, Chen Q, Hai W H 2021 Sci. Rep. 11 18839Google Scholar

    [16]

    Manchon A, Koo H C, Nitta J, Frolov S M, Duine R A 2015 Nat. Mater. 14 871Google Scholar

    [17]

    红兰, 戈君, 双山, 刘达权 2022 71 016301Google Scholar

    Hong L, Ge J, Shuang S, Liu D Q 2022 Acta. Phys. Sin. 71 016301Google Scholar

    [18]

    Li Y, Ma X K, Zhai X K, Gao M N, Dai H T, Schumacher S, Gao T G 2022 Nat. Commun. 13 3785Google Scholar

    [19]

    Ghosh D, Roy K, Maitra S, Kumar P 2022 J. Phys. Chem. Lett. 13 5

    [20]

    Schlipf M, Giustino F 2021 Phys. Rev. Lett. 127 237601Google Scholar

    [21]

    Zhu L, Zhang T, Chen G, Chen H 2018 Phys. Chem. Chem. Phys. 20 30133Google Scholar

    [22]

    Awschalom D, Samarth N 2009 Physics 2 50Google Scholar

    [23]

    Henk J, Hoesch M, Osterwalder J, Ernst A, Bruno P 2004 J. Phys. Condens. Matter 16 43

    [24]

    Gong S J, Cai J, Yao Q F, Tong W Y, Wan X, Duan C G, Chu J H 2016 J. Appl. Phys. 119 125310Google Scholar

    [25]

    Krupin O, Bihlmayer G, Starke K, Gorovikov S, Prieto J E, Dobrich K, Blügel S, Kaindl G R 2005 Phys. Rev. B 71 201403Google Scholar

    [26]

    Koroteev Y M, Bihlmayer G, Gayone J E, Chulkov E V, Blugel S, Echenique P M, Hofmann 2004 Phys. Rev. Lett. 93 046403Google Scholar

    [27]

    Vajna S, Simon E, Szilva A, Palotas K, Ujfalussy B, Szunyogh L 2012 Phys. Rev. B 85 075404

    [28]

    Meier F, Dil H, Lobo-Checa J, Patthey L, Osterwalder J 2008 Phys. Rev. B 77 089902Google Scholar

    [29]

    Ast C R, Henk J, Ernst A, Moreschini L, Falub M C, Pacile D, Bruno P, Kern K, Grioni M 2007 Phys. Rev. Lett. 98 186807Google Scholar

    [30]

    Popović D, Reinert F, Hüfner S, Grigoryan V G, Springborg M, Cercellier H, Fagot-Revurat Y, Kierren B, Malterre D 2005 Phys. Rev. B 72 045419Google Scholar

    [31]

    Cercellier H, Didiot C, Fagot-Revurat Y, Kierren B, Moreau L, Malterre D, Reinert F 2006 Phys. Rev. B 73 195413Google Scholar

    [32]

    龚士静, 段纯刚 2015 64 187103Google Scholar

    Gong S J, Duan C G, 2015 Acta. Phys. Sin. 64 187103Google Scholar

    [33]

    Peng Q, Lei Y, Deng X, Deng J, Wu G, Li J, He C, Zhong J 2022 Physica E 135 114944Google Scholar

    [34]

    Sakano M, Bahramy M S, Katayama A, Shimojima T, Murakawa H, Kaneko Y, Malaeb W, Shin S, Ono K, Kumigashira H, Arita R, Nagaosa N, Hwang H Y, Tokura Y, Ishizaka K 2013 Phys. Rev. Lett. 110 107204Google Scholar

    [35]

    Bahramy M S, Arita R, Nagaosa N 2011 Phys. Rev. B 84 041202

    [36]

    Narayan A 2015 Phys. Rev. B 92 220101Google Scholar

    [37]

    Xiang F X, Wang X L, Veldhorst M, Dou S X, Fuhrer M S 2015 Phys. Rev. B 92 035123Google Scholar

    [38]

    Krempaský J, Volfova H, Muff S, Pilet N, Landolt G, Radovic M, Shi M, Kriegner D, Holy V, Braun J, Ebert H, Bisti F, Rogalev V A, Strocov V N, Springholz G, Minar J, Dil J H 2016 Phys. Rev. B 94 205111Google Scholar

    [39]

    Di Sante D, Barone P, Bertacco R, Picozzi S 2013 Adv. Mater. 25 509Google Scholar

    [40]

    Ishizaka K, Bahramy M S, Murakawa H, Sakano M, Shimojima T, Sonobe T, Koizumi K, Shin S, Miyahara H, Kimura A, Miyamoto K, Okuda T, Namatame H, Taniguchi M, Arita R, Nagaosa N, Kobayashi K, Murakami Y, Kumai R, Kaneko Y, Onose Y, Tokura Y 2011 Nat. Mater. 10 521Google Scholar

    [41]

    Krempaský J, Muff S, Min´ar J, Pilet N, Fanciulli M, Weber A P, Guedes E B, Caputo M, Müller E, Volobuev V V, Gmitra M, Vaz C A F, Scagnoli V, Springholz G, Dil J H 2018 Phys. Rev. X 8 021067

    [42]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [43]

    Knez I, Du R R, Sullivan G 2012 Phys. Rev. Lett. 109 186603Google Scholar

    [44]

    Liu W J, Xiong X L, Liu M L, Xing X W, Chen H L, Ye H, Han J F, Wei Z Y 2022 Appl. Phys. Lett. 120 053108Google Scholar

    [45]

    Yang M, Liu Y D, Zhou W, Liu C, Mu D, Liu Y N, Wang J O, Hao W C, Li J, Zhong J X, Du Y, Zhuang J C 2022 ACS Nano 16 2

    [46]

    Ezawa M 2012 New J. Phys. 14 033003Google Scholar

    [47]

    Zhang R W, Ji W X, Zhang C W, Li S S, Li P, Wang P J 2016 J. Mater. Chem. C 4 2088Google Scholar

    [48]

    Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W, Zhang S C 2013 Phys. Rev. Lett. 111 136804Google Scholar

    [49]

    Zhao H, Zhang C W, Ji W X, Zhang R W, Li S S, Yan S S, Zhang B M, Li P, Wang P J 2016 Sci. Rep. 6 20152Google Scholar

    [50]

    Zhou L, Kou L, Sun Y, Felser C, Hu F, Shan G, Smith S C, Yan B, Frauenheim T 2015 Nano Lett. 15 7867Google Scholar

    [51]

    Weng H, Dai X, Fang Z 2014 Phys. Rev. X 4 011002

    [52]

    Li X, Ying D, Ma Y, Wei W, Lin Y, Huang B 2015 Nano Res. 8 2954Google Scholar

    [53]

    Luo W, Xiang H 2015 Nano Lett. 15 3230Google Scholar

    [54]

    Jiang J W, Guo X Q, Ma Z, Wang G, Xu Y G, Zhang X W 2022 J. Mater. Chem. C 10 11329Google Scholar

    [55]

    Guo Z P, Yan D Y, Sheng H H, Nie S M, Shi Y G, Wang Z J 2021 Phys. Rev. B 103 115145Google Scholar

    [56]

    Wang X, Wan W H, Ge Y F, Zhang K C, Liu Y 2022 Physica E 143 115325Google Scholar

    [57]

    Perez M N R, Villaos R A B, Feng L Y, Maghirang A B, Cheng C P, Huang Z Q, Hsu C H, Bansil A, Chuang F C 2022 Appl. Phys. Rev. 9 011410Google Scholar

    [58]

    Li J, He C Y, Xiao H P, Tang C, Wei X L, Kim J, Kioussis N, Stocks M, Zhong J X 2015 Sci. Rep. 5 14115Google Scholar

    [59]

    Yuhara J, He B, Matsunami N, Nakatake M, Le Lay G 2019 Adv. Mater. 31 e1901017Google Scholar

    [60]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [61]

    Perdew J P, Burke K, Ernzerhof M 1998 Phys. Rev. Lett. 77 3865

    [62]

    Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685Google Scholar

    [63]

    Wu Q S, Zhang S N, Song H F, Troyer M, Soluyanov A A 2018 Comput. Phys. Commun. 224 405Google Scholar

    [64]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [65]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [66]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [67]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [68]

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, W. Molenkamp L, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [69]

    Liu Q, Guo Y, Freeman A 2013 Nano Lett. 13 5264Google Scholar

    [70]

    Gong Q, Zhang G L 2022 Int. J. Mol. Sci. 23 7629Google Scholar

    [71]

    Sino P A L, Feng L Y, Villaos R A B, Cruzado N H, Huang Z Q, Hsu C H, Chuang F C 2021 Nanoscale Adv. 3 6608Google Scholar

    [72]

    Hussain G, Samad A, Ur Rehman M, Guono G, Autieri C 2022 J. Magn. Magn. Mater. 563 169897Google Scholar

    [73]

    Xue W M, Li J, Peng X Y, He C Y, Ouyang T, Zhang C X, Tang C, Li Z Q, Lu D L, Zhong J X 2020 J. Phys. D: Appl. Phys 53 025302Google Scholar

    [74]

    Patel S, Dey U, Adhikari N P, Taraphder A 2022 Phys. Rev. B 106 035125Google Scholar

    [75]

    Xue W M, Li J, Peng X Y, He C Y, Ouyang T, Zhang C X, Tang C, Li Z Q, Liu H T, Zhong J X 2019 J. Phys. Condens. Matter 31 365002Google Scholar

    [76]

    Lee K, Yun W S, Lee J D 2015 Phys. Rev. B 91 125420Google Scholar

    [77]

    LaShell S, McDougall B, Jensen E 1996 Phys. Rev. Lett. 77 3419Google Scholar

  • 图 1  (a) 2D层状材料H-Pb-Cl结构的侧视图和俯视图; (b) H-Pb-Cl结构在布里渊区沿高对称点的声子谱

    Fig. 1.  (a) Side and top view of the crystal structure H-Pb-Cl; (b) phonon dispersion of 2D H-Pb-Cl along the high symmetry points in Brillouin zone.

    图 2  采用PBE和HSE06的2D H-Pb-Cl的能带结构 (a), (c) 不考虑SOC; (b), (d)考虑SOC. 蓝点、红点和绿点分别表示Pb原子的s, px, y和pz轨道的投影权重. 图(b)中的插图表示的是费米面附近的能带劈裂现象

    Fig. 2.  The band structure of 2D H-Pb-Cl using PBE and HSE06: (a), (c) Without SOC; (b), (d) with SOC. Blue, red and green dots represent the contribution of s, px, y, pz orbitals of Pb atoms, respectively. The illustration in Figure (b) shows the band splitting near the Fermi surface.

    图 3  (a) 沿着ky方向的瓦尼尔中心演化, 得到Z2 = 1; (b) H-Pb-Cl沿着锯齿形边缘的边缘态; (c) H-Pb-Cl在Γ点的能级演化

    Fig. 3.  (a) The evolutions of Wannier centers along ky, yielding Z2 = 1; (b) edge states of H-Pb-Cl on the zigzag edges; (c) evolution of energy bands at Γ for H-Pb-Cl.

    图 4  (a) 无双轴应力作用下H-Pb-Cl的功函数, ∆Φ表示的是静电势差; (b) H-Pb-Cl的静电势差在双轴应力从–16% 到16%作用下的变化图

    Fig. 4.  (a) Work functions of H-Pb-Cl under 0 biaxial stress, where ∆Φ represents the electrostatic potential difference under different biaxial stresses; (b) the variations of electrostatic potential difference ∆Φ of H-Pb-Cl with the biaxial stress of –16% to 16%.

    图 5  (a) 在双轴应力(–16%到16%)作用下H-Pb-Cl体系内的Rashba自旋劈裂系数αR的变化图; (b) H-Pb-Cl (1×1)/BN (2×2)的能带结构, 其中红色部分代表的是基底BN在能带中的贡献情况; (c) H-Pb-Cl (1×1)/石墨烷 (2×2), 其中紫色点线代表的是石墨烷在能带中的贡献情况

    Fig. 5.  (a) The variations of Rashba spin splitting αR of H-Pb-Cl with the biaxial stress of –16% to 16%; (b) band structure of H-Pb-Cl (1×1)/BN (2×2), with the red stars-lines contributed by BN substrate; (c) band structure of H-Pb-Cl (1×1)/graphane (2×2), with the purple dotted line contributed by graphane substrate.

    Baidu
  • [1]

    Moore J E 2010 Nature 464 194Google Scholar

    [2]

    Soumyanarayanan A, Reyren N, Fert A, Panagopoulos C 2016 Nature 539 509Google Scholar

    [3]

    Feng Y, Jiang Q, Feng B J, Yang M, Xu T, Liu W J, Yang X F, Arita M, Schwier E F, Shimada K, Jeschke H O, Thomale R, Shi Y G, Wu X X, Xiao S Z, Qiao S, He S L 2019 Nat. Commun. 10 4765Google Scholar

    [4]

    Lu J P, Yau J B, Shukla S P, Shayegan M 1998 Phys. Rev. Lett. 81 1282Google Scholar

    [5]

    Kuhlen S, Schmalbuch K, Hagedorn M, Schlammes P, Patt M, Lepsa M, Guntherodt G, Beschoten B 2012 Phys. Rev. Lett. 109 146603Google Scholar

    [6]

    Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150Google Scholar

    [7]

    Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y, Liu X J, Chen S, Pan J W 2021 Science 372 271Google Scholar

    [8]

    Lu Y H, Wang B Z, Liu X J 2020 Sci. Bull. 65 2080Google Scholar

    [9]

    Zezyulin D A, Konotop V V 2022 Phys. Rev. A 105 063323Google Scholar

    [10]

    Xu Z C, Zhou Z, Cheng E H, Lang L J, Zhu S L 2022 Sci. Chin. Phys. Mech. Astron. 65 283011Google Scholar

    [11]

    Zhao Q 2022 Mod. Phys. Lett. B 36 2250070

    [12]

    Liu H, Zhang T, Wang K, Gao F, Xu G, Zhang X, Li S X, Cao G, Wang T, Zhang J, Hu X, Li H O, Guo G P 2022 Phys. Rev. Appl. 17 044052Google Scholar

    [13]

    Smith L W, Chen H B, Chang C W, Wu C W, Lo S T, Chao S H, Farrer I, Beere H E, Griffiths J P, Jones G A C, Ritchie D A, Chen Y N, Chen T M 2022 Phys. Rev. Lett. 128 027701Google Scholar

    [14]

    Dai X Y, Liu B Y 2022 Phys. Rev. A 105 043313Google Scholar

    [15]

    Hai K, Wang Y F, Chen Q, Hai W H 2021 Sci. Rep. 11 18839Google Scholar

    [16]

    Manchon A, Koo H C, Nitta J, Frolov S M, Duine R A 2015 Nat. Mater. 14 871Google Scholar

    [17]

    红兰, 戈君, 双山, 刘达权 2022 71 016301Google Scholar

    Hong L, Ge J, Shuang S, Liu D Q 2022 Acta. Phys. Sin. 71 016301Google Scholar

    [18]

    Li Y, Ma X K, Zhai X K, Gao M N, Dai H T, Schumacher S, Gao T G 2022 Nat. Commun. 13 3785Google Scholar

    [19]

    Ghosh D, Roy K, Maitra S, Kumar P 2022 J. Phys. Chem. Lett. 13 5

    [20]

    Schlipf M, Giustino F 2021 Phys. Rev. Lett. 127 237601Google Scholar

    [21]

    Zhu L, Zhang T, Chen G, Chen H 2018 Phys. Chem. Chem. Phys. 20 30133Google Scholar

    [22]

    Awschalom D, Samarth N 2009 Physics 2 50Google Scholar

    [23]

    Henk J, Hoesch M, Osterwalder J, Ernst A, Bruno P 2004 J. Phys. Condens. Matter 16 43

    [24]

    Gong S J, Cai J, Yao Q F, Tong W Y, Wan X, Duan C G, Chu J H 2016 J. Appl. Phys. 119 125310Google Scholar

    [25]

    Krupin O, Bihlmayer G, Starke K, Gorovikov S, Prieto J E, Dobrich K, Blügel S, Kaindl G R 2005 Phys. Rev. B 71 201403Google Scholar

    [26]

    Koroteev Y M, Bihlmayer G, Gayone J E, Chulkov E V, Blugel S, Echenique P M, Hofmann 2004 Phys. Rev. Lett. 93 046403Google Scholar

    [27]

    Vajna S, Simon E, Szilva A, Palotas K, Ujfalussy B, Szunyogh L 2012 Phys. Rev. B 85 075404

    [28]

    Meier F, Dil H, Lobo-Checa J, Patthey L, Osterwalder J 2008 Phys. Rev. B 77 089902Google Scholar

    [29]

    Ast C R, Henk J, Ernst A, Moreschini L, Falub M C, Pacile D, Bruno P, Kern K, Grioni M 2007 Phys. Rev. Lett. 98 186807Google Scholar

    [30]

    Popović D, Reinert F, Hüfner S, Grigoryan V G, Springborg M, Cercellier H, Fagot-Revurat Y, Kierren B, Malterre D 2005 Phys. Rev. B 72 045419Google Scholar

    [31]

    Cercellier H, Didiot C, Fagot-Revurat Y, Kierren B, Moreau L, Malterre D, Reinert F 2006 Phys. Rev. B 73 195413Google Scholar

    [32]

    龚士静, 段纯刚 2015 64 187103Google Scholar

    Gong S J, Duan C G, 2015 Acta. Phys. Sin. 64 187103Google Scholar

    [33]

    Peng Q, Lei Y, Deng X, Deng J, Wu G, Li J, He C, Zhong J 2022 Physica E 135 114944Google Scholar

    [34]

    Sakano M, Bahramy M S, Katayama A, Shimojima T, Murakawa H, Kaneko Y, Malaeb W, Shin S, Ono K, Kumigashira H, Arita R, Nagaosa N, Hwang H Y, Tokura Y, Ishizaka K 2013 Phys. Rev. Lett. 110 107204Google Scholar

    [35]

    Bahramy M S, Arita R, Nagaosa N 2011 Phys. Rev. B 84 041202

    [36]

    Narayan A 2015 Phys. Rev. B 92 220101Google Scholar

    [37]

    Xiang F X, Wang X L, Veldhorst M, Dou S X, Fuhrer M S 2015 Phys. Rev. B 92 035123Google Scholar

    [38]

    Krempaský J, Volfova H, Muff S, Pilet N, Landolt G, Radovic M, Shi M, Kriegner D, Holy V, Braun J, Ebert H, Bisti F, Rogalev V A, Strocov V N, Springholz G, Minar J, Dil J H 2016 Phys. Rev. B 94 205111Google Scholar

    [39]

    Di Sante D, Barone P, Bertacco R, Picozzi S 2013 Adv. Mater. 25 509Google Scholar

    [40]

    Ishizaka K, Bahramy M S, Murakawa H, Sakano M, Shimojima T, Sonobe T, Koizumi K, Shin S, Miyahara H, Kimura A, Miyamoto K, Okuda T, Namatame H, Taniguchi M, Arita R, Nagaosa N, Kobayashi K, Murakami Y, Kumai R, Kaneko Y, Onose Y, Tokura Y 2011 Nat. Mater. 10 521Google Scholar

    [41]

    Krempaský J, Muff S, Min´ar J, Pilet N, Fanciulli M, Weber A P, Guedes E B, Caputo M, Müller E, Volobuev V V, Gmitra M, Vaz C A F, Scagnoli V, Springholz G, Dil J H 2018 Phys. Rev. X 8 021067

    [42]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [43]

    Knez I, Du R R, Sullivan G 2012 Phys. Rev. Lett. 109 186603Google Scholar

    [44]

    Liu W J, Xiong X L, Liu M L, Xing X W, Chen H L, Ye H, Han J F, Wei Z Y 2022 Appl. Phys. Lett. 120 053108Google Scholar

    [45]

    Yang M, Liu Y D, Zhou W, Liu C, Mu D, Liu Y N, Wang J O, Hao W C, Li J, Zhong J X, Du Y, Zhuang J C 2022 ACS Nano 16 2

    [46]

    Ezawa M 2012 New J. Phys. 14 033003Google Scholar

    [47]

    Zhang R W, Ji W X, Zhang C W, Li S S, Li P, Wang P J 2016 J. Mater. Chem. C 4 2088Google Scholar

    [48]

    Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W, Zhang S C 2013 Phys. Rev. Lett. 111 136804Google Scholar

    [49]

    Zhao H, Zhang C W, Ji W X, Zhang R W, Li S S, Yan S S, Zhang B M, Li P, Wang P J 2016 Sci. Rep. 6 20152Google Scholar

    [50]

    Zhou L, Kou L, Sun Y, Felser C, Hu F, Shan G, Smith S C, Yan B, Frauenheim T 2015 Nano Lett. 15 7867Google Scholar

    [51]

    Weng H, Dai X, Fang Z 2014 Phys. Rev. X 4 011002

    [52]

    Li X, Ying D, Ma Y, Wei W, Lin Y, Huang B 2015 Nano Res. 8 2954Google Scholar

    [53]

    Luo W, Xiang H 2015 Nano Lett. 15 3230Google Scholar

    [54]

    Jiang J W, Guo X Q, Ma Z, Wang G, Xu Y G, Zhang X W 2022 J. Mater. Chem. C 10 11329Google Scholar

    [55]

    Guo Z P, Yan D Y, Sheng H H, Nie S M, Shi Y G, Wang Z J 2021 Phys. Rev. B 103 115145Google Scholar

    [56]

    Wang X, Wan W H, Ge Y F, Zhang K C, Liu Y 2022 Physica E 143 115325Google Scholar

    [57]

    Perez M N R, Villaos R A B, Feng L Y, Maghirang A B, Cheng C P, Huang Z Q, Hsu C H, Bansil A, Chuang F C 2022 Appl. Phys. Rev. 9 011410Google Scholar

    [58]

    Li J, He C Y, Xiao H P, Tang C, Wei X L, Kim J, Kioussis N, Stocks M, Zhong J X 2015 Sci. Rep. 5 14115Google Scholar

    [59]

    Yuhara J, He B, Matsunami N, Nakatake M, Le Lay G 2019 Adv. Mater. 31 e1901017Google Scholar

    [60]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [61]

    Perdew J P, Burke K, Ernzerhof M 1998 Phys. Rev. Lett. 77 3865

    [62]

    Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, Marzari N 2008 Comput. Phys. Commun. 178 685Google Scholar

    [63]

    Wu Q S, Zhang S N, Song H F, Troyer M, Soluyanov A A 2018 Comput. Phys. Commun. 224 405Google Scholar

    [64]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [65]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [66]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [67]

    Zhang H J, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438Google Scholar

    [68]

    König M, Wiedmann S, Brüne C, Roth A, Buhmann H, W. Molenkamp L, Qi X L, Zhang S C 2007 Science 318 766Google Scholar

    [69]

    Liu Q, Guo Y, Freeman A 2013 Nano Lett. 13 5264Google Scholar

    [70]

    Gong Q, Zhang G L 2022 Int. J. Mol. Sci. 23 7629Google Scholar

    [71]

    Sino P A L, Feng L Y, Villaos R A B, Cruzado N H, Huang Z Q, Hsu C H, Chuang F C 2021 Nanoscale Adv. 3 6608Google Scholar

    [72]

    Hussain G, Samad A, Ur Rehman M, Guono G, Autieri C 2022 J. Magn. Magn. Mater. 563 169897Google Scholar

    [73]

    Xue W M, Li J, Peng X Y, He C Y, Ouyang T, Zhang C X, Tang C, Li Z Q, Lu D L, Zhong J X 2020 J. Phys. D: Appl. Phys 53 025302Google Scholar

    [74]

    Patel S, Dey U, Adhikari N P, Taraphder A 2022 Phys. Rev. B 106 035125Google Scholar

    [75]

    Xue W M, Li J, Peng X Y, He C Y, Ouyang T, Zhang C X, Tang C, Li Z Q, Liu H T, Zhong J X 2019 J. Phys. Condens. Matter 31 365002Google Scholar

    [76]

    Lee K, Yun W S, Lee J D 2015 Phys. Rev. B 91 125420Google Scholar

    [77]

    LaShell S, McDougall B, Jensen E 1996 Phys. Rev. Lett. 77 3419Google Scholar

  • [1] 王志梅, 王虹, 薛乃涛, 成高艳. 自旋轨道耦合量子点系统中的量子相干.  , 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [2] 李家锐, 王梓安, 徐彤彤, 张莲莲, 公卫江. 一维${\cal {PT}}$对称非厄米自旋轨道耦合Su-Schrieffer-Heeger模型的拓扑性质.  , 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [3] 薛海斌, 段志磊, 陈彬, 陈建宾, 邢丽丽. 自旋轨道耦合Su-Schrieffer-Heeger原子链系统的电子输运特性.  , 2021, 70(8): 087301. doi: 10.7498/aps.70.20201742
    [4] 陈星, 薛潇博, 张升康, 马余全, 费鹏, 姜元, 葛军. 两体相互作用费米系统在自旋轨道耦合和塞曼场中的基态转变.  , 2021, 70(8): 083401. doi: 10.7498/aps.70.20201456
    [5] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性.  , 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [6] 施婷婷, 汪六九, 王璟琨, 张威. 自旋轨道耦合量子气体中的一些新进展.  , 2020, 69(1): 016701. doi: 10.7498/aps.69.20191241
    [7] 梁滔, 李铭. 自旋轨道耦合系统中的整数量子霍尔效应.  , 2019, 68(11): 117101. doi: 10.7498/aps.68.20190037
    [8] 李志强, 王月明. 一维谐振子束缚的自旋轨道耦合玻色气体.  , 2019, 68(17): 173201. doi: 10.7498/aps.68.20190143
    [9] 杨圆, 陈帅, 李小兵. Rashba自旋轨道耦合下square-octagon晶格的拓扑相变.  , 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [10] 耿虎, 计青山, 张存喜, 王瑞. 缀饰格子中时间反演对称破缺的量子自旋霍尔效应.  , 2017, 66(12): 127303. doi: 10.7498/aps.66.127303
    [11] 赵正印, 王红玲, 李明. Al0.6Ga0.4N/GaN/Al0.3Ga0.7N/Al0.6Ga0.4N量子阱中的Rashba自旋劈裂.  , 2016, 65(9): 097101. doi: 10.7498/aps.65.097101
    [12] 刘胜利, 厉建峥, 程杰, 王海云, 李永涛, 张红光, 李兴鳌. 强自旋轨道耦合化合物Sr2-xLaxIrO4的掺杂和拉曼谱学.  , 2015, 64(20): 207103. doi: 10.7498/aps.64.207103
    [13] 陈东海, 杨谋, 段后建, 王瑞强. 自旋轨道耦合作用下石墨烯pn结的电子输运性质.  , 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [14] 龚士静, 段纯刚. 金属表面Rashba自旋轨道耦合作用研究进展.  , 2015, 64(18): 187103. doi: 10.7498/aps.64.187103
    [15] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构.  , 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [16] 张磊, 李辉武, 胡梁宾. 二维自旋轨道耦合电子气中持续自旋螺旋态的稳定性的研究.  , 2012, 61(17): 177203. doi: 10.7498/aps.61.177203
    [17] 李明, 张荣, 刘斌, 傅德颐, 赵传阵, 谢自力, 修向前, 郑有炓. AlGaN/GaN量子阱中子带的Rashba自旋劈裂和子带间自旋轨道耦合作用研究.  , 2012, 61(2): 027103. doi: 10.7498/aps.61.027103
    [18] 杨杰, 董全力, 江兆潭, 张杰. 自旋轨道耦合作用对碳纳米管电子能带结构的影响.  , 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [19] 余志强, 谢泉, 肖清泉. 狭义相对论下电子自旋轨道耦合对X射线光谱的影响.  , 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
    [20] 周青春, 王嘉赋, 徐荣青. 自旋-轨道耦合对磁性绝缘体磁光Kerr效应的影响.  , 2002, 51(7): 1639-1644. doi: 10.7498/aps.51.1639
计量
  • 文章访问数:  4085
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-24
  • 修回日期:  2022-11-29
  • 上网日期:  2023-01-07
  • 刊出日期:  2023-03-05

/

返回文章
返回
Baidu
map