搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多晶金刚石薄膜硅空位色心形成机理及调控

李俊鹏 任泽阳 张金风 王晗雪 马源辰 费一帆 黄思源 丁森川 张进成 郝跃

引用本文:
Citation:

多晶金刚石薄膜硅空位色心形成机理及调控

李俊鹏, 任泽阳, 张金风, 王晗雪, 马源辰, 费一帆, 黄思源, 丁森川, 张进成, 郝跃

Formation mechanism and regulation of silicon vacancy centers in polycrystalline diamond films

Li Jun-Peng, Ren Ze-Yang, Zhang Jin-Feng, Wang Han-Xue, Ma Yuan-Chen, Fei Yi-Fan, Huang Si-Yuan, Ding Sen-Chuan, Zhang Jin-Cheng, Hao Yue
PDF
HTML
导出引用
  • 金刚石硅空位色心在量子信息技术和生物标记领域有重要应用前景. 本文对硅衬底上多晶金刚石生长过程中硅空位色心形成机理及调控方法进行研究. 通过改变金刚石生长氛围中的氮气和氧气比例, 实现了对硅空位色心发光强度的有效调控, 所制备系列多晶金刚石样品的光致发光光谱显示, 硅空位色心荧光峰与金刚石本征峰的比值最低为1.48, 最高可达334.46, 该比值与金刚石晶粒尺寸正相关. 进一步用光致发光面扫描和拉曼面扫描分析样品可知, 多晶金刚石中的硅应来自于硅衬底, 在多晶金刚石生长过程中, 衬底硅单质先扩散至金刚石晶粒处, 随着金刚石晶粒生长, 硅单质再扩散并入金刚石晶体结构中形成硅空位色心. 不同样品硅空位发光强度的差异, 是由于生长过程中氮气和氧气对金刚石硅空位色心的形成分别起到促进和抑制的作用.
    Diamond silicon vacancy centers (SiV centers) have important application prospects in quantum information technology and biomarkers. In this work, the formation mechanism and regulation method of SiV center during the growth of polycrystalline diamond on silicon substrate are studied. By changing the ratio of nitrogen content to oxygen content in the growing atmosphere of diamond, the photoluminescence intensity of SiV center can be controlled effectively, and polycrystalline diamond samples with the ratios of SiV center photoluminescence peak to diamond intrinsic peak as high as 334.46 and as low as 1.48 are prepared. It is found that nitrogen promotes the formation of SiV center in the growth process, and the inhibition of oxygen. The surface morphology and photoluminescence spectrum for each of these samples show that the photoluminescence peak intensity of SiV center is positively correlated with the grain size of diamond, and the SiV center’s photoluminescence peak in the diamond film with obvious preferred orientation of crystal plane is higher. The distribution of Si centers and SiV centers on the surface of polycrystalline diamond are further characterized and analyzed by photoluminescence, Raman surface scanning and depth scanning spectroscopy. It is found that during the growth of polycrystalline diamond, the substrate silicon diffuses first into the diamond grain and then into the crystal structure to form the SiV center. This paper provides a theoretical basis for the development and application of SiV centers in diamond.
      通信作者: 任泽阳, zeyangren@xidian.edu.cn ; 张金风, jfzhang@xidian.edu.cn
    • 基金项目: 国家磁约束核聚变能发展研究专项基金 (批准号: 2019YFE03100200)、国家自然科学基金 (批准号: 62127812, 62134006, 62004148, 61874080, 62204193)、国家科技重大专项 (批准号: 2009ZYHW0015)、中央高校基本科研业务费专项资金 (批准号: XJS221103)、中国博士后科学基金 (批准号: 2021TQ0256)和芜湖-西电产学研合作专项资金(批准号: XWYCXY-012021010)资助的课题
      Corresponding author: Ren Ze-Yang, zeyangren@xidian.edu.cn ; Zhang Jin-Feng, jfzhang@xidian.edu.cn
    • Funds: Project supported by the National Special Fund for Magnetic Confinement Nuclear Fusion Energy R&D Program (Grant No. 2019YFE03100200), the National Natural Science Foundation of China (Grant Nos. 62127812, 62134006, 62004148, 61874080, 62204193), the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2009ZYHW0015), the Fundamental Research Funds for the Central Universities, China (Grant No. XJS221103), the China Postdoctoral Science Foundation (Grant No. 2021TQ0256), and the Wuhu and Xidian University Special Fund for Industry-University-Research Cooperation, China (Grant No. XWYCXY-012021010).
    [1]

    Schrand A M, Hens S A C, Shenderova O A 2009 Crit. Rev. Solid State Mater. Sci. 34 18Google Scholar

    [2]

    Yu S J, Kang M W, Chang H C, Chen M C, Yu Y C 2005 J. Am. Chem. Soc. 127 17604Google Scholar

    [3]

    Pingault B, Jarausch D D, Hepp C, Klintberg L, Becker J N, Markham M, Becher C, Atatüre M 2017 Nat. Commun. 8 15579Google Scholar

    [4]

    Rose B C, Huang D, Zhang Z H, Stevenson P, Tyryshkin A M, Sangtawesin S, Srinivasan S, Loudin L, Markham M L, Edmonds A M, Twitchen D J, Lyon S A, deLeon N P 2018 Science 361 60Google Scholar

    [5]

    Bradac C, Gao W, Forneris J, Trusheim M E, Aharonovich I 2019 Nat. Commun. 10 5625Google Scholar

    [6]

    Le Sage D, Arai K, Glenn D R, Devience S J, Pham L M, Rahn-Lee L, Lukin M D, Yacoby A, Komeil A, Walsworth R L 2013 Nature 496 486Google Scholar

    [7]

    Aharonovich I, Neu E 2014 Adv. Opt. Mater. 2 911Google Scholar

    [8]

    A. M. Zaitsev 2000 Phys. Rev. B 61 12909Google Scholar

    [9]

    Dobrinets I A, Vins V G, Zaitsev A M 2013 HPHT-Treated Diamonds (Vol. 181) (Berlin: Springer)

    [10]

    Ganesan K, Ajikumar P K, Ilango S, Mangamma G, Dhara S 2019 Diamond Relat. Mater. 92 150Google Scholar

    [11]

    Goss J P, Jones R, Breuer S J 1996 Phys. Rev. Lett. 77 3041Google Scholar

    [12]

    Rogers L J, Jahnke K D, Teraji T, Marseglia M, Müller C, Naydenov B, Schauffert H, Kranz C, Isoya J, McGuinness L P, Jelezko F 2014 Nat. Commun. 5 4739Google Scholar

    [13]

    Sternschulte H, Thonke K, Sauer R 1994 Phys. Rev. B. 50 14554Google Scholar

    [14]

    Feng T, Schwartz B D 1993 J. Appl. Phys. 73 1415Google Scholar

    [15]

    Neu E, Steinmetz D, Riedrich-Möller J, Gsell S, Fischer M, Schreck M, Becher C 2011 New J. Phys. 13 25012Google Scholar

    [16]

    Ralchenko V G, Sedov V S, Martyanov A K, Bolshakov A P, Boldyrev K N, Krivobok V S, Nikolaev S N, Bolshedvorskii S V, Rubinas O R, Akimov A V, Khomich A A, Bushuev E V, Khmelnitsky R A, Konov V I 2019 Acs Photonics 6 66Google Scholar

    [17]

    Neu E, Albrecht R, Fischer M, Gsell S, Schreck M, Becher C 2012 Phys. Rev. B 85 245207Google Scholar

    [18]

    Yang B, Li J, Guo L, Huang N, Liu L, Zhai Z, Long W, Jiang X 2018 CrystEngComm 20 1158Google Scholar

    [19]

    Neu E K 2012 Silicon Cacancy Color Centers in Chemical Vapor Deposition Diamond: New Insights into Promising Solid State Single Photon Sources (Saarbrücken: Universität des Saarlandes)

    [20]

    Yang B, Yu B, Li H N, Huang N, Liu L S, Jiang X 2019 Carbon 156 242Google Scholar

    [21]

    Dragounová K, Ižák T, Kromka A, Potůček Z, Bryknar Z, Potocký S 2018 Appl. Phys. A 124 219Google Scholar

    [22]

    Potocký S, Izsák T, Varga M, Kromka A 2015 Phys. Status Solidi B 252 2580Google Scholar

    [23]

    Sedov V, Ralchenko V, Khomich A A, Vlasov I, Vul A, Savin S, Goryachev A, Konov V 2015 Diamond Relat. Mater. 56 23Google Scholar

    [24]

    Lv R Y, Yang X G, Yang D W, Niu C Y, Zhao C X, Qin J X, Zang J H, Dong F Y, Dong L, Shan C X 2021 Chin. Phys. Lett. 38 076101Google Scholar

    [25]

    Wan L F, Mu C Y, Liu Y F, Cheng S H, Wang Q L, Li L A, Li H D, Zou G T 2022 Chin. Phys. Lett. 39 036801Google Scholar

    [26]

    王峰浩, 胡晓君 2013 62 158101Google Scholar

    Wang F H, Hu X J 2013 Acta Phys. Sin. 62 158101Google Scholar

    [27]

    Lagomarsino S, Flatae A M, Kambalathmana H, Sledz F, Hunold L, Soltani N, Reuschel P, Sciortino S, Gelli N, Massi M, Czelusniak C, Giuntini L, Agio M 2021 Front. Phys. 8 601362Google Scholar

    [28]

    Locher R, Wild C, Herres N, Behr D, Koidl P 1994 Appl. Phys. Lett. 65 34Google Scholar

    [29]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405Google Scholar

    [30]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095Google Scholar

    [31]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414Google Scholar

    [32]

    Wei W 2007 Vacuum 81 857Google Scholar

    [33]

    Shah S I, Waite M M 1992 Appl. Phys. Lett. 61 3113Google Scholar

    [34]

    Wang J J, Lv F X 1996 Chin. Phys. Lett. 13 473Google Scholar

  • 图 1  (a) 硅衬底金刚石样品的光致发光光谱, 纵轴刻度范围0—20是线性坐标, 20—500是对数坐标; (b) 钼衬底上以样品S1生长条件生长的金刚石样品的光致发光光谱; (c) S1—S5硅空位色心荧光峰与金刚石本征峰的比值; (d) 硅衬底金刚石样品生长速率

    Fig. 1.  (a) SiV photoluminescence spectra of diamond samples, the scale range on the vertical axis is 0–20 for linear coordinates, and 20–500 for logarithmic coordinate; (b) photoluminescence spectra of diamond samples grown on molybdenum substrate under sample S1 growth condition; (c) ratio of SiV fluorescence peak to diamond intrinsic peak of sample; (d) growth rate of samples.

    图 2  (a1)—(a5)不同生长条件的金刚石薄膜表面形貌; (b1)—(b5) 以738 nm (硅空位零声子线)为中心的PL表面扫描测试结果(测试范围10 μm× 10 μm, 测试步长100 nm), 其中(a1), (b1) S1; (a2), (b2) S2; (a3), (b3) S3; (a4), (b4) S4; (a5), (b5) S5

    Fig. 2.  Morphology (a1)–(a5) and SiV photoluminescence mapping (b1)–(b5) of diamond film under different growth conditions, the test range of the latter is 10 μm×10 μm, and the test step is 100 nm: (a1), (b1) S1; (a2), (b2) S2; (a3), (b3) S3; (a4), (b4) S4; (a5), (b5) S5.

    图 3  不同生长条件的金刚石薄膜以738 nm (硅空位零声子线)为中心的PL深度扫描测试结果(测试深度范围为聚焦深度±4 μm, 长度12 μm, 测试扫描步距为100 nm) (a) S2; (b) S5

    Fig. 3.  SiV photoluminescence mapping in the vertical direction of diamond film under different growth conditions, the depth range of the test was ±4 μm, the length was 12 μm, and the scanning step was 100 nm: (a) S2; (b) S5.

    图 4  (a)不同生长条件的金刚石薄膜拉曼光谱测试结果; (b)样品S3的拉曼光谱放大图

    Fig. 4.  (a) Raman spectra of diamond film under different growth conditions; (b) magnified Raman spectra of sample S3.

    图 5  样品S3的面扫描结果 (a)样品面扫描测试区域为红框所示10 μm×10 μm区域, 测试步长为100 nm; (b)以1332 cm–1 (金刚石)为中心的拉曼面扫描结果; (c) 以738 nm (金刚石硅空位色心)为中心的PL面扫描结果; (d)以520.7 cm–1 (硅单质)为中心的拉曼面扫描结果; 箭头指出了几个晶粒在各图当中的位置, 从光谱看白色箭头所指的晶粒无硅单质信号, 绿色箭头所指的晶粒既有硅单质信号也有硅空位色心信号

    Fig. 5.  Test zone of sample S3 mapping: (a) The scanning test area of the sample surface is the 10 μm×10 μm area shown in the red box, and the test step is 100 nm; (b) Raman mapping centered on 1332 cm–1; (c) PL mapping centered on 738 nm; (d) Raman mapping centered on 520.7 cm–1. The arrows indicate the positions of several grains in each diagram, from the spectrum, the grains indicated by the white arrows have no silicon simple substance signal, while the grains indicated by the green arrows have both silicon simple substance signal and silicon vacancy color center signal.

    图 6  (a)样品S3做深度扫描的表面位置; (b)以520.7 cm–1(硅单质)为中心的拉曼深度扫描结果; (c)以738 nm (硅空位零声子线)为中心的PL深度扫描结果. 虚线框内的大晶粒中硅单质基本都转化为硅空位色心

    Fig. 6.  (a) Test zone of sample S3 mapping in the vertical direction, the scanning test area of the sample surface area shown in the red line, and the test step is 100 nm; (b) Raman mapping centered on 520.7 cm–1; (c) PL mapping centered on 738 nm. Silicon elements in the large grains in the wire frame are basically transformed into silicon vacancy color centers.

    表 1  样品生长工艺参数汇总(1 sccm = 1 mL/min, 1 bar = 105 Pa)

    Table 1.  Summary of the growth parameters.

    微波功
    率/W
    气压/
    mbar
    总气
    体流
    量/sccm
    甲烷
    流量
    /sccm
    氮气
    流量
    /sccm
    氧气
    流量
    /sccm
    S142001852001000
    S24200185200100.020
    S342001852001000.5
    S44200185200100.020.5
    S54200185200100.021.0
    下载: 导出CSV
    Baidu
  • [1]

    Schrand A M, Hens S A C, Shenderova O A 2009 Crit. Rev. Solid State Mater. Sci. 34 18Google Scholar

    [2]

    Yu S J, Kang M W, Chang H C, Chen M C, Yu Y C 2005 J. Am. Chem. Soc. 127 17604Google Scholar

    [3]

    Pingault B, Jarausch D D, Hepp C, Klintberg L, Becker J N, Markham M, Becher C, Atatüre M 2017 Nat. Commun. 8 15579Google Scholar

    [4]

    Rose B C, Huang D, Zhang Z H, Stevenson P, Tyryshkin A M, Sangtawesin S, Srinivasan S, Loudin L, Markham M L, Edmonds A M, Twitchen D J, Lyon S A, deLeon N P 2018 Science 361 60Google Scholar

    [5]

    Bradac C, Gao W, Forneris J, Trusheim M E, Aharonovich I 2019 Nat. Commun. 10 5625Google Scholar

    [6]

    Le Sage D, Arai K, Glenn D R, Devience S J, Pham L M, Rahn-Lee L, Lukin M D, Yacoby A, Komeil A, Walsworth R L 2013 Nature 496 486Google Scholar

    [7]

    Aharonovich I, Neu E 2014 Adv. Opt. Mater. 2 911Google Scholar

    [8]

    A. M. Zaitsev 2000 Phys. Rev. B 61 12909Google Scholar

    [9]

    Dobrinets I A, Vins V G, Zaitsev A M 2013 HPHT-Treated Diamonds (Vol. 181) (Berlin: Springer)

    [10]

    Ganesan K, Ajikumar P K, Ilango S, Mangamma G, Dhara S 2019 Diamond Relat. Mater. 92 150Google Scholar

    [11]

    Goss J P, Jones R, Breuer S J 1996 Phys. Rev. Lett. 77 3041Google Scholar

    [12]

    Rogers L J, Jahnke K D, Teraji T, Marseglia M, Müller C, Naydenov B, Schauffert H, Kranz C, Isoya J, McGuinness L P, Jelezko F 2014 Nat. Commun. 5 4739Google Scholar

    [13]

    Sternschulte H, Thonke K, Sauer R 1994 Phys. Rev. B. 50 14554Google Scholar

    [14]

    Feng T, Schwartz B D 1993 J. Appl. Phys. 73 1415Google Scholar

    [15]

    Neu E, Steinmetz D, Riedrich-Möller J, Gsell S, Fischer M, Schreck M, Becher C 2011 New J. Phys. 13 25012Google Scholar

    [16]

    Ralchenko V G, Sedov V S, Martyanov A K, Bolshakov A P, Boldyrev K N, Krivobok V S, Nikolaev S N, Bolshedvorskii S V, Rubinas O R, Akimov A V, Khomich A A, Bushuev E V, Khmelnitsky R A, Konov V I 2019 Acs Photonics 6 66Google Scholar

    [17]

    Neu E, Albrecht R, Fischer M, Gsell S, Schreck M, Becher C 2012 Phys. Rev. B 85 245207Google Scholar

    [18]

    Yang B, Li J, Guo L, Huang N, Liu L, Zhai Z, Long W, Jiang X 2018 CrystEngComm 20 1158Google Scholar

    [19]

    Neu E K 2012 Silicon Cacancy Color Centers in Chemical Vapor Deposition Diamond: New Insights into Promising Solid State Single Photon Sources (Saarbrücken: Universität des Saarlandes)

    [20]

    Yang B, Yu B, Li H N, Huang N, Liu L S, Jiang X 2019 Carbon 156 242Google Scholar

    [21]

    Dragounová K, Ižák T, Kromka A, Potůček Z, Bryknar Z, Potocký S 2018 Appl. Phys. A 124 219Google Scholar

    [22]

    Potocký S, Izsák T, Varga M, Kromka A 2015 Phys. Status Solidi B 252 2580Google Scholar

    [23]

    Sedov V, Ralchenko V, Khomich A A, Vlasov I, Vul A, Savin S, Goryachev A, Konov V 2015 Diamond Relat. Mater. 56 23Google Scholar

    [24]

    Lv R Y, Yang X G, Yang D W, Niu C Y, Zhao C X, Qin J X, Zang J H, Dong F Y, Dong L, Shan C X 2021 Chin. Phys. Lett. 38 076101Google Scholar

    [25]

    Wan L F, Mu C Y, Liu Y F, Cheng S H, Wang Q L, Li L A, Li H D, Zou G T 2022 Chin. Phys. Lett. 39 036801Google Scholar

    [26]

    王峰浩, 胡晓君 2013 62 158101Google Scholar

    Wang F H, Hu X J 2013 Acta Phys. Sin. 62 158101Google Scholar

    [27]

    Lagomarsino S, Flatae A M, Kambalathmana H, Sledz F, Hunold L, Soltani N, Reuschel P, Sciortino S, Gelli N, Massi M, Czelusniak C, Giuntini L, Agio M 2021 Front. Phys. 8 601362Google Scholar

    [28]

    Locher R, Wild C, Herres N, Behr D, Koidl P 1994 Appl. Phys. Lett. 65 34Google Scholar

    [29]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405Google Scholar

    [30]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095Google Scholar

    [31]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414Google Scholar

    [32]

    Wei W 2007 Vacuum 81 857Google Scholar

    [33]

    Shah S I, Waite M M 1992 Appl. Phys. Lett. 61 3113Google Scholar

    [34]

    Wang J J, Lv F X 1996 Chin. Phys. Lett. 13 473Google Scholar

  • [1] 何健, 贾燕伟, 屠菊萍, 夏天, 朱肖华, 黄珂, 安康, 刘金龙, 陈良贤, 魏俊俊, 李成明. 碳离子注入金刚石制备氮空位色心的机理.  , 2022, 71(18): 188102. doi: 10.7498/aps.71.20220794
    [2] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制研究.  , 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [3] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制.  , 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [4] 王凯悦, 郭睿昂, 王宏兴. 金刚石氮-空位缺陷发光的温度依赖性.  , 2020, 69(12): 127802. doi: 10.7498/aps.69.20200395
    [5] 陈隆, 陈成克, 李晓, 胡晓君. 氧化对单颗粒层纳米金刚石薄膜硅空位发光和微结构的影响.  , 2019, 68(16): 168101. doi: 10.7498/aps.68.20190422
    [6] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响.  , 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [7] 厉巧巧, 韩文鹏, 赵伟杰, 鲁妍, 张昕, 谭平恒, 冯志红, 李佳. 缺陷单层和双层石墨烯的拉曼光谱及其激发光能量色散关系.  , 2013, 62(13): 137801. doi: 10.7498/aps.62.137801
    [8] 王凯悦, 朱玉梅, 李志宏, 田玉明, 柴跃生, 赵志刚, 刘开. 氮掺杂金刚石{100}晶面的缺陷发光特性.  , 2013, 62(9): 097803. doi: 10.7498/aps.62.097803
    [9] 王凯悦, 李志宏, 田玉明, 朱玉梅, 赵媛媛, 柴跃生. 金刚石中GR1中心的光致发光特性研究.  , 2013, 62(6): 067802. doi: 10.7498/aps.62.067802
    [10] 王凯悦, 李志宏, 张博, 朱玉梅. 光致发光光谱研究金刚石光学中心的振动结构.  , 2012, 61(12): 127804. doi: 10.7498/aps.61.127804
    [11] 王凯悦, 李志宏, 高凯, 朱玉梅. 电子辐照金刚石的光致发光研究.  , 2012, 61(9): 097803. doi: 10.7498/aps.61.097803
    [12] 高立, 张建民. 微量Mg掺杂ZnO薄膜的光致发光光谱和带隙变化机理研究.  , 2010, 59(2): 1263-1267. doi: 10.7498/aps.59.1263
    [13] 段宝兴, 杨银堂. 利用Keating模型计算Si(1-x)Gex及非晶硅的拉曼频移.  , 2009, 58(10): 7114-7118. doi: 10.7498/aps.58.7114
    [14] 缪竞威, 王培禄, 朱洲森, 袁学东, 王 虎, 杨朝文, 师勉恭, 缪 蕾, 孙威立, 张 静, 廖雪花. 氮团簇离子注入单晶硅的光致发光谱研究.  , 2008, 57(4): 2174-2178. doi: 10.7498/aps.57.2174
    [15] 王英龙, 卢丽芳, 闫常瑜, 褚立志, 周 阳, 傅广生, 彭英才. 具有窄光致发光谱的纳米Si晶薄膜的激光烧蚀制备.  , 2005, 54(12): 5738-5742. doi: 10.7498/aps.54.5738
    [16] 白 莹, 兰燕娜, 莫育俊. 拉曼光谱法计算多孔硅样品的温度.  , 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
    [17] 黄凯, 王思慧, 施毅, 秦国毅, 张荣, 郑有炓. 内电场对纳米硅光致发光谱的影响.  , 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [18] 胡晓君, 戴永兵, 何贤昶, 沈荷生, 李荣斌. 空位在金刚石近(001)表面扩散的分子动力学模拟.  , 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
    [19] 梁二军, 晁明举. 激光诱导多孔硅晶格畸变的Raman光谱和光致发光谱研究.  , 2001, 50(11): 2241-2246. doi: 10.7498/aps.50.2241
    [20] 戴永兵, 沈荷生, 张志明, 何贤昶, 胡晓君, 孙方宏, 莘海维. 金刚石/硅(001)异质界面的分子动力学模拟研究.  , 2001, 50(2): 244-250. doi: 10.7498/aps.50.244
计量
  • 文章访问数:  4490
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-18
  • 修回日期:  2022-11-18
  • 上网日期:  2022-11-28
  • 刊出日期:  2023-02-05

/

返回文章
返回
Baidu
map