-
全球气候变化与南极臭氧空洞的形成促使人们关注大气臭氧含量的变化. 臭氧通常通过天底卫星实现全球连续观测, 进而获得全球柱浓度, 但随着对臭氧的深入研究, 全球臭氧分层观测问题也随之出现. 本文将加权乘代数算法与辐射传输模型SCIATRAN相结合, 采用2011年Chappuis-Wulf波段的SCIAMACHY临边辐射数据, 反演出15—40 km高度之间的平流层臭氧廓线, 解决了全球臭氧分层观测问题. 在全球臭氧分层图中, 观测到全球臭氧传输从低纬度地区的形成上升到中高纬度地区的消耗下降的整个过程, 这与布鲁尔-多布森环流直接相关. 在9—10月南极臭氧空洞最严重时期, 南极极地环流对臭氧传输的阻碍作用明显, 极地环流出现“透明墙”效果. 一方面赤道臭氧难以传输至南极地区进行补充, 另一方面南极地区上空存在的臭氧消耗物质滞留导致臭氧消耗加速, 低补充和高消耗共同造成南极臭氧空洞. 全球臭氧分层观测为全球臭氧研究提供了新的视角, 将会促进人们对臭氧形成、传输以及消耗过程的研究.Global climate change and the formation of the Antarctic ozone hole have prompted people to pay attention to the changes in atmospheric ozone content. The global continuous observation of ozone is achieved by retrieving the global total column concentration from nadir satellite data. In this work, the weighted multiplication algebraic algorithm is combined with the radiative transfer model SCIATRAN, by using the 2011 Chappuis-Wulf band SCIAMACHY limb radiation data to retrieve the stratospheric ozone profile between 15- and 40 km altitude, solving the ozone global stratified observation problems. In the ozone global stratification map, the whole process of the global transmission of ozone formed in low latitude regions to high latitude regions is observed, which is directly related to the Brewer-Dobson circulation. During the most severe period of the Antarctic ozone hole from September to October, the Antarctic polar vortex has an obvious hindering effect on ozone transmission, and the polar vortex has a “transparent wall” effect. On the one hand, it is difficult to transfer ozone from the equatorial region to the Antarctic region for replenishment. On the other hand, the retention of ozone-depleting substances over the Antarctic region leads to the acceleration of ozone depletion, and the combination of low replenishment and high depletion contributes to the Antarctic ozone hole. Compared with the global total column concentration of ozone, the observation of global ozone stratification is very valuable for scientific research and will promote the detailed study of the whole process of ozone formation, transmission, and consumption.
-
Keywords:
- ozone global stratification /
- Limb satellites /
- weighted multiply algebra /
- wavelength pairing
[1] Sofieva V F, Tamminen J, Kyrölä E, Mielonen T, Veefkind P., Hassler B, Bodeker G E 2014 Atmospheric Chem. Phys. 14 283Google Scholar
[2] 刘玉柱, 邓绪兰, 李帅, 管跃, 李静, 龙金友, 张冰 2016 65 113301Google Scholar
Liu Y Z, Deng X L, Li S, Gan Y, Li J, Long J Y 2016 Acta Phys. Sin. 65 113301Google Scholar
[3] 郑彬,施春华 2007 56 4277Google Scholar
Zheng S, Deng S H 2007 Acta Phys. Sin. 56 4277Google Scholar
[4] Dhomse S S, Kinnison D, Chipperfield M P, Salawitch R J, Cionni I, Hegglin M I, Zeng G. 2018 Atmospheric Chem. Phys. 18 8409Google Scholar
[5] Meul S, Dameris M, Langematz U, Abalichin J, Kerschbaumer A, Kubin A, Oberländer H S 2016 Geophys. Res. Lett. 43 2919Google Scholar
[6] Fang X, Pyle J A, Chipperfield M P, Daniel J S, Park S, Prinn R G 2019 Nat. Geosci. 12 592Google Scholar
[7] Montzka S A, Dutton G S, Yu P, Ray E, Portmann R W, Daniel J S, Elkins J W 2018 Nature 557 413Google Scholar
[8] 曾祥昱, 王薇, 刘诚, 单昌功, 谢宇, 胡启后, 孙友文, Polyakov A V 2021 70 200201Google Scholar
Zeng X Y, Liu C, Shan C G, Xie Y, Hu Q H, Sun Y W, Polyakov A V 2021 Acta Phys. Sin. 70 200201Google Scholar
[9] Oman L D, Douglass A R, Salawitch R J, Canty T P, Ziemke J R, Manyin M 2016 Geophys. Res. Lett. 43 9869Google Scholar
[10] Wargan K, Kramarova N, Weir B, Pawson S, Davis S M 2020 Geophys. Res. Atmos. 125 e2019JD031892
[11] Noel S, Bovensmann H, Wuttke M W, Burrows J P, Gottwald M, Krieg E, Muller C 2002 Adv. Space Res. 29 1819Google Scholar
[12] Stolarski R S, Bloomfield P, McPeters R D, Herman J R 1991 Geophys. Res. Lett. 18 1015Google Scholar
[13] Farman J C, Gardiner B G, Shanklin J D 1985 Nature 315 207Google Scholar
[14] Burrows J P, Weber M, Buchwitz M, Rozanov V, Ladstätter-Weißenmayer A, Richter A, Perner D 1999 J. Atmos. Sci. 56 151Google Scholar
[15] Bovensmann H, Burrows J P, Buchwitz M, Frerick J, Noël S, Rozanov V V, Goede A P H 1999 J. Atmos. Sci. 56 127Google Scholar
[16] Thomas R J, Barth C A, Rusch D W, Sanders R W 1984 J. Geophys. Res. Atmos. 89 9569Google Scholar
[17] Degenstein D A, Bourassa A E, Lloyd N D, Llewellyn E J, McLinden C A, Piché L P, Roth C Z 2015 Optical Payloads for Space Missions (Beijing: World Book Publishing Company) p677
[18] Kizer S, Roell M, Flittner D, Damadeo R, Leavor K, Roller C, Querel R 2022 Continuing the Legacy of SAGE Data Products Vienna, Austria, May 23–27, 2022, EGU22-13523
[19] Taha G, Loughman R, Zhu T, Thomason L, Kar J, Rieger L, Bourassa A 2021 Atmos. Meas. Tech. 14 1015Google Scholar
[20] 刘进, 司福祺, 周海金, 赵敏杰, 窦科, 王煜, 刘文清 2014 63 214204Google Scholar
Liu J, Si F Q, Zhou H J, Zhao M J, Dou K, Wang Y, Liu W Q 2014 Acta Phys. Sin. 63 214204Google Scholar
[21] 赵敏杰, 司福祺, 陆亦怀, 汪世美, 江宇, 周海金, 刘文清 2013 62 249301Google Scholar
Zhao M J, Si F Q, Lu Y H, Wang S M, Jiang Y, Zhou H J, Liu W Q 2013 Acta Phys. Sin. 62 249301Google Scholar
[22] Aruga T, Heath D F 1982 Appl. Opt. 21 3047Google Scholar
[23] Guo X, Lu Y, Lü D 2004 Prog. Mater. Sci. 14 504
[24] Auvinen H, Oikarinen L, Kyrölä E 2002 J. Geophys. Res. 107 ACH
[25] Rohen G J, Savigny C., Llewellyn E J, Kaiser J W, Eichmann K U, Bracher A, Burrows J P 2006 Adv. Space Res. 37 2263Google Scholar
[26] 汪自军 2011 博士学位论文 (吉林: 吉林大学)
Wang Z J 2011 Ph. D. Dissertation (Jilin: Jilin University) (in Chinese)
[27] Wang Z, Chen S 2011 Chin Geogr Sci 21 554Google Scholar
[28] 朱芳, 司福祺, 詹锴, 窦科, 周海金 2021 光学学报 41 0401005
Zhu F, Si F Q, Zhan K, Dou K, Zhou H J Acta Opt. Sin. 41 0401005 (in Chinese)
[29] Flittner D E, Bhartia P K, Herman B M 2000 Geophys. Res. Lett. 27 2601Google Scholar
[30] Degenstein D A, Bourassa A E, Roth C Z, Llewellyn E J 2009 Atmospheric Chem. Phys. 9 6521Google Scholar
[31] Roth C Z, Degenstein D A, Bourassa A E, Llewellyn E J 2007 Can. J. Phys. 85 1225Google Scholar
[32] Pohl C, Rozanov V V, Mei L, Burrows J P, Heygster G, Spreen G 2020 J. Quant. Spectrosc. Radiat. Transf. 253 107118Google Scholar
[33] Kovar, P, Sommer, M 2021 Remote Sens. 13 1274Google Scholar
[34] Butchart N 2014 Rev. Geophys. 52 157Google Scholar
-
-
[1] Sofieva V F, Tamminen J, Kyrölä E, Mielonen T, Veefkind P., Hassler B, Bodeker G E 2014 Atmospheric Chem. Phys. 14 283Google Scholar
[2] 刘玉柱, 邓绪兰, 李帅, 管跃, 李静, 龙金友, 张冰 2016 65 113301Google Scholar
Liu Y Z, Deng X L, Li S, Gan Y, Li J, Long J Y 2016 Acta Phys. Sin. 65 113301Google Scholar
[3] 郑彬,施春华 2007 56 4277Google Scholar
Zheng S, Deng S H 2007 Acta Phys. Sin. 56 4277Google Scholar
[4] Dhomse S S, Kinnison D, Chipperfield M P, Salawitch R J, Cionni I, Hegglin M I, Zeng G. 2018 Atmospheric Chem. Phys. 18 8409Google Scholar
[5] Meul S, Dameris M, Langematz U, Abalichin J, Kerschbaumer A, Kubin A, Oberländer H S 2016 Geophys. Res. Lett. 43 2919Google Scholar
[6] Fang X, Pyle J A, Chipperfield M P, Daniel J S, Park S, Prinn R G 2019 Nat. Geosci. 12 592Google Scholar
[7] Montzka S A, Dutton G S, Yu P, Ray E, Portmann R W, Daniel J S, Elkins J W 2018 Nature 557 413Google Scholar
[8] 曾祥昱, 王薇, 刘诚, 单昌功, 谢宇, 胡启后, 孙友文, Polyakov A V 2021 70 200201Google Scholar
Zeng X Y, Liu C, Shan C G, Xie Y, Hu Q H, Sun Y W, Polyakov A V 2021 Acta Phys. Sin. 70 200201Google Scholar
[9] Oman L D, Douglass A R, Salawitch R J, Canty T P, Ziemke J R, Manyin M 2016 Geophys. Res. Lett. 43 9869Google Scholar
[10] Wargan K, Kramarova N, Weir B, Pawson S, Davis S M 2020 Geophys. Res. Atmos. 125 e2019JD031892
[11] Noel S, Bovensmann H, Wuttke M W, Burrows J P, Gottwald M, Krieg E, Muller C 2002 Adv. Space Res. 29 1819Google Scholar
[12] Stolarski R S, Bloomfield P, McPeters R D, Herman J R 1991 Geophys. Res. Lett. 18 1015Google Scholar
[13] Farman J C, Gardiner B G, Shanklin J D 1985 Nature 315 207Google Scholar
[14] Burrows J P, Weber M, Buchwitz M, Rozanov V, Ladstätter-Weißenmayer A, Richter A, Perner D 1999 J. Atmos. Sci. 56 151Google Scholar
[15] Bovensmann H, Burrows J P, Buchwitz M, Frerick J, Noël S, Rozanov V V, Goede A P H 1999 J. Atmos. Sci. 56 127Google Scholar
[16] Thomas R J, Barth C A, Rusch D W, Sanders R W 1984 J. Geophys. Res. Atmos. 89 9569Google Scholar
[17] Degenstein D A, Bourassa A E, Lloyd N D, Llewellyn E J, McLinden C A, Piché L P, Roth C Z 2015 Optical Payloads for Space Missions (Beijing: World Book Publishing Company) p677
[18] Kizer S, Roell M, Flittner D, Damadeo R, Leavor K, Roller C, Querel R 2022 Continuing the Legacy of SAGE Data Products Vienna, Austria, May 23–27, 2022, EGU22-13523
[19] Taha G, Loughman R, Zhu T, Thomason L, Kar J, Rieger L, Bourassa A 2021 Atmos. Meas. Tech. 14 1015Google Scholar
[20] 刘进, 司福祺, 周海金, 赵敏杰, 窦科, 王煜, 刘文清 2014 63 214204Google Scholar
Liu J, Si F Q, Zhou H J, Zhao M J, Dou K, Wang Y, Liu W Q 2014 Acta Phys. Sin. 63 214204Google Scholar
[21] 赵敏杰, 司福祺, 陆亦怀, 汪世美, 江宇, 周海金, 刘文清 2013 62 249301Google Scholar
Zhao M J, Si F Q, Lu Y H, Wang S M, Jiang Y, Zhou H J, Liu W Q 2013 Acta Phys. Sin. 62 249301Google Scholar
[22] Aruga T, Heath D F 1982 Appl. Opt. 21 3047Google Scholar
[23] Guo X, Lu Y, Lü D 2004 Prog. Mater. Sci. 14 504
[24] Auvinen H, Oikarinen L, Kyrölä E 2002 J. Geophys. Res. 107 ACH
[25] Rohen G J, Savigny C., Llewellyn E J, Kaiser J W, Eichmann K U, Bracher A, Burrows J P 2006 Adv. Space Res. 37 2263Google Scholar
[26] 汪自军 2011 博士学位论文 (吉林: 吉林大学)
Wang Z J 2011 Ph. D. Dissertation (Jilin: Jilin University) (in Chinese)
[27] Wang Z, Chen S 2011 Chin Geogr Sci 21 554Google Scholar
[28] 朱芳, 司福祺, 詹锴, 窦科, 周海金 2021 光学学报 41 0401005
Zhu F, Si F Q, Zhan K, Dou K, Zhou H J Acta Opt. Sin. 41 0401005 (in Chinese)
[29] Flittner D E, Bhartia P K, Herman B M 2000 Geophys. Res. Lett. 27 2601Google Scholar
[30] Degenstein D A, Bourassa A E, Roth C Z, Llewellyn E J 2009 Atmospheric Chem. Phys. 9 6521Google Scholar
[31] Roth C Z, Degenstein D A, Bourassa A E, Llewellyn E J 2007 Can. J. Phys. 85 1225Google Scholar
[32] Pohl C, Rozanov V V, Mei L, Burrows J P, Heygster G, Spreen G 2020 J. Quant. Spectrosc. Radiat. Transf. 253 107118Google Scholar
[33] Kovar, P, Sommer, M 2021 Remote Sens. 13 1274Google Scholar
[34] Butchart N 2014 Rev. Geophys. 52 157Google Scholar
计量
- 文章访问数: 3714
- PDF下载量: 51
- 被引次数: 0