-
化石燃料燃烧过程中产生的碳烟颗粒物是大气细粒子(PM2.5)的主要来源, 这些大量产生的碳烟颗粒物也是影响燃烧效率的重要因素; 乙炔(C2H2)作为碳烟生成的重要前驱体, 在碳烟生成过程中起到关键作用; 因此, 发展能够同时对碳烟颗粒物及C2H2浓度进行在线测量的方法, 对于碳烟生成机理的研究具有重要意义. 本文选择中心波长1540 nm的可调谐二极管激光器作为光源, 利用多通吸收方式搭建探测系统, 在自行设计的气固两相高温静态池中使用C2H2-N2混合气体载带石英砂颗粒模拟颗粒物环境, 通过获取6490.02 cm–1处C2H2目标谱线附近的一段消光光谱信号, 并从中分别提取出与颗粒物有关的消光信号和与C2H2有关的吸收信号, 从而实现了对颗粒物质量浓度和气体体积浓度的同时测量. 测量结果表明, 在500—1000 K温度范围内颗粒物质量浓度和气体体积浓度的测量值与参考值之间的平均偏差分别为2.73%和5.17%, 说明了本技术对于气体与颗粒物同时测量的良好性能.
-
关键词:
- 可调谐二极管激光吸收光谱 /
- 消光光谱 /
- 气体浓度 /
- 颗粒质量浓度
Soot particles from the combustion of hydrocarbon fuels are the main source of the air fine particles and they are also an important factor of reducing the combustion efficiency. As one of their major precursor, acetylene (C2H2) plays an important role in forming soot. So the simultaneous detecting of soot particle and C2H2 is significant in studying the mechanism of the soot formation. In this work, a sensor for the simultaneous detecting of soot particle and C2H2 is developed by using a single DFB diode laser with a wavelength near 1540 nm. The extinction spectrum near the proper C2H2 line at 6490.02 cm–1 is used to infer the mass concentration of particles and the C2H2 concentration. The performance of the sensor is confirmed in a home-made heated static cell which can provide well controlled gaseous environment and particulate environment. The measured mass concentration of particles and the C2H2 concentration are within 2.73% and 5.17% of the expected values over the full temperature range of 500–1000 K, respectively. All the measurements show the potential application of the sensor in the simultaneous detecting of soot particle and C2H2 at elevated temperature.-
Keywords:
- tunable diode laser absorption spectrum /
- extinction spectrum /
- gas concentration /
- particle mass concentration
[1] Fawole O G, Cai X M, MacKenzie A R 2016 Environ. Pollut 216 182Google Scholar
[2] Bergstrom R W, Russell P B, Hignett P 2002 J. Atmos. Sci 59 567Google Scholar
[3] Hai W, Frenklach M A 1997 Combust. Flame 110 173Google Scholar
[4] Richter H, Howard J B 2000 Prog. Energy Combust. Sci 26 565Google Scholar
[5] 刘文清, 陈臻懿, 刘建国 2019 环境科学研究 10 1645
Liu W Q, Chen Z Y, Liu J G 2019 J. Environ. Sci. 10 1645
[6] Hanson R K, Spearrin R M, Goldenstein C S 2016 Spectroscopy and Optical Diagnostics for Gases (Switzerland: Springer International Publishing) pp1–107
[7] Patimisco P, Sampaolo A, Dong L, Tittel F K, Spagnolo V 2018 Appl. Phys. Rev 5 011106Google Scholar
[8] 贾梦源, 赵刚, 侯佳佳, 谭巍, 邱晓东, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂 2016 65 128701Google Scholar
Jia M Y, Zhao G, Hou J J, Tan W, Qiu X D, Ma W G, Zhang L, Dong L, Yin W B, Xiao L T, Jia S T 2016 Acta. Phys. Sin. 65 128701Google Scholar
[9] Liu K, Wang L, Tan T, Wang G S, Zhang W J, Chen W D, Gao X M 2015 Sens. Actuators B Chem 220 1000Google Scholar
[10] Liu Z W, Zheng C T, Zhang T Y, Li Y F, Ren Q, Chen C, Ye W L, Zhang Y, Wang Y D, Tittel F K 2020 Anal. Chem 92 8178Google Scholar
[11] Deng B T, Sima C, Xiao Y F, Wang X F, Ai Y, Li T L, Lu P, Liu D M 2022 Opt. Lasers. Eng 151 106906Google Scholar
[12] Bürkle S, Biondo L, Ding C P, Honza R, Wagner S 2018 Flow. Turbul. Combust 101 139Google Scholar
[13] He D, Peng Z, Ding Y 2021 Fuel 284 118980Google Scholar
[14] 张亮, 刘建国, 阚瑞峰, 刘文清, 张玉钧, 许振宇, 陈军 2012 63 034214Google Scholar
Zhang L, Liu J G, Kan R G, Liu W Q, Zhang Y J, Xu Z Y, Chen J 2012 Acta. Phys. Sin. 63 034214Google Scholar
[15] Klingbeil A E, Jeffries J B, Hanson R K 2006 Meas. Sci. Technol 17 1950Google Scholar
[16] Liu N W, Xu L G, Zhou S, He T B, Zhang L, Wu D M, Li J S 2019 J. Quant. Spectrosc. Ra 236 106587Google Scholar
[17] Nasim H, Jamil Y 2014 Opt. Laser Technol 56 211Google Scholar
[18] Qiao S D, Ma Y F, Patimisco P, Sampaolo A, He Y, Lang Z T, Tittel F K, Spagnolo V 2021 Opt. Lett 46 977Google Scholar
[19] Giubileo G 2002 Proceedings of SPIE-The International Society for Optical Engineering 4762 318
[20] Skrotzki J, Habig J C, Ebert V 2014 Appl. Phys. B 116 393Google Scholar
[21] Wang F, Cen K F, Li N, Huang Q X, Chao X, Yan J H, Chi Y 2010 Flow Meas. Instrum 21 382Google Scholar
[22] Wang F, Wu Q, Huang Q, Zhang H, Yan J, Cen K 2015 Opt. Commun 346 53Google Scholar
[23] Lancaster D G, Richter D, Curl R F, Tittel F K, Goldberg I, Koplow J 1999 Opt. Lett 24 1744Google Scholar
-
-
[1] Fawole O G, Cai X M, MacKenzie A R 2016 Environ. Pollut 216 182Google Scholar
[2] Bergstrom R W, Russell P B, Hignett P 2002 J. Atmos. Sci 59 567Google Scholar
[3] Hai W, Frenklach M A 1997 Combust. Flame 110 173Google Scholar
[4] Richter H, Howard J B 2000 Prog. Energy Combust. Sci 26 565Google Scholar
[5] 刘文清, 陈臻懿, 刘建国 2019 环境科学研究 10 1645
Liu W Q, Chen Z Y, Liu J G 2019 J. Environ. Sci. 10 1645
[6] Hanson R K, Spearrin R M, Goldenstein C S 2016 Spectroscopy and Optical Diagnostics for Gases (Switzerland: Springer International Publishing) pp1–107
[7] Patimisco P, Sampaolo A, Dong L, Tittel F K, Spagnolo V 2018 Appl. Phys. Rev 5 011106Google Scholar
[8] 贾梦源, 赵刚, 侯佳佳, 谭巍, 邱晓东, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂 2016 65 128701Google Scholar
Jia M Y, Zhao G, Hou J J, Tan W, Qiu X D, Ma W G, Zhang L, Dong L, Yin W B, Xiao L T, Jia S T 2016 Acta. Phys. Sin. 65 128701Google Scholar
[9] Liu K, Wang L, Tan T, Wang G S, Zhang W J, Chen W D, Gao X M 2015 Sens. Actuators B Chem 220 1000Google Scholar
[10] Liu Z W, Zheng C T, Zhang T Y, Li Y F, Ren Q, Chen C, Ye W L, Zhang Y, Wang Y D, Tittel F K 2020 Anal. Chem 92 8178Google Scholar
[11] Deng B T, Sima C, Xiao Y F, Wang X F, Ai Y, Li T L, Lu P, Liu D M 2022 Opt. Lasers. Eng 151 106906Google Scholar
[12] Bürkle S, Biondo L, Ding C P, Honza R, Wagner S 2018 Flow. Turbul. Combust 101 139Google Scholar
[13] He D, Peng Z, Ding Y 2021 Fuel 284 118980Google Scholar
[14] 张亮, 刘建国, 阚瑞峰, 刘文清, 张玉钧, 许振宇, 陈军 2012 63 034214Google Scholar
Zhang L, Liu J G, Kan R G, Liu W Q, Zhang Y J, Xu Z Y, Chen J 2012 Acta. Phys. Sin. 63 034214Google Scholar
[15] Klingbeil A E, Jeffries J B, Hanson R K 2006 Meas. Sci. Technol 17 1950Google Scholar
[16] Liu N W, Xu L G, Zhou S, He T B, Zhang L, Wu D M, Li J S 2019 J. Quant. Spectrosc. Ra 236 106587Google Scholar
[17] Nasim H, Jamil Y 2014 Opt. Laser Technol 56 211Google Scholar
[18] Qiao S D, Ma Y F, Patimisco P, Sampaolo A, He Y, Lang Z T, Tittel F K, Spagnolo V 2021 Opt. Lett 46 977Google Scholar
[19] Giubileo G 2002 Proceedings of SPIE-The International Society for Optical Engineering 4762 318
[20] Skrotzki J, Habig J C, Ebert V 2014 Appl. Phys. B 116 393Google Scholar
[21] Wang F, Cen K F, Li N, Huang Q X, Chao X, Yan J H, Chi Y 2010 Flow Meas. Instrum 21 382Google Scholar
[22] Wang F, Wu Q, Huang Q, Zhang H, Yan J, Cen K 2015 Opt. Commun 346 53Google Scholar
[23] Lancaster D G, Richter D, Curl R F, Tittel F K, Goldberg I, Koplow J 1999 Opt. Lett 24 1744Google Scholar
计量
- 文章访问数: 3577
- PDF下载量: 45
- 被引次数: 0